Two Sample T-test

By: Samia Porto, Andrew Slavetskas

This **two-sample t-test** compares two independent sets of data that have equal or similar variances. The variances can be compared using another test, such as the **F-test** or the **Levene test**. After the variances are determined to be equal, this t-test can compare the means of those sets of data to determine whether the two means are statistically similar.

Two Sample t-Test with Equal Variances

Assumptions

- The values in both datasets are random and normally distributed
- Variances are approx equal but unknown
- X1 and X2 are independent

Null and Alternative Hypotheses

- H0 -> $\mu_1 = \mu_2$ The null states that the two means are	equal.
--	--------

- H1 -> $\mu_1 \neq \mu_2$

The alternative states that they are not equal

Prototype in R:- (Based on the example used for the F-test)

X=read.table("Pizza.txt",header=T)

attach(X)
X1=Time[Company=="A"]
 X1
[1] 20.4 24.2 15.4 21.4 20.2 18.5 21.5

X2=Time[Company=="B"]
X2
[1] 20.2 16.9 18.5 17.3 20.5

Time	Company
20.4	A
24.2	A
15.4	А
21.4	A
20.2	A
18.5	А
21.5	A
20.2	В
16.9	В
18.5	В
17.3	В
20.5	В

Test Statistics:

Two Sample t-test

data: X1 and X2 t = 1.1194, df = 10, p-value = 0.1446 alternative hypothesis: true difference in means is greater than 0 95 percent confidence interval: -0.9588602 Inf sample estimates: mean of x mean of y 20.22857 18.68000 R gives results with a t statistic value, degrees of freedom (df), and the P-value. It also gives the confidence interval for the test and the actual means of the two data sets.

Explanation of the variables in the T-test command:

X1 and X2 are the two data sets.

Alternative is H_1 or the opposite of the null hypotheses; possible choices for this field are two.sided, upper, or lower.

Var.equal tells R that the variances are equal (T) or not (F). If this flag is set to F then this test is used for unequal variances.

Conf.level is the confidence level for the test; it equates to $1-\alpha$ and sets the confidence intervals for the test.

Decision Rule:

If P-value > α , accept H₀, and reject the H₁ If P-value > α , accept H₁, and reject H₀

Conclusion :

If we assume that the error rate (α) is 0.05 \rightarrow in this case P-value > α , we accept Null hypotheses. As in both samples have equal means.

Two Sample t-Test with Unequal Variances

** In the case of Two Sample t-Test with unequal variances, we follow the same steps as the previous example. The only difference is the prototype in R will follow the following format:

t.test(X1,X2, alternative=c("two.sided", "less", "greater"), var.equal=F,conf.level= (α-1))

