# Jags-Ymet-Xnom1grp-Mrobust.R # Accompanies the book: # Kruschke, J. K. (2015). Doing Bayesian Data Analysis, Second Edition: # A Tutorial with R, JAGS, and Stan. Academic Press / Elsevier. source("DBDA2E-utilities.R") #=============================================================================== genMCMC = function( data , numSavedSteps=50000 , saveName=NULL ) { require(rjags) #----------------------------------------------------------------------------- # THE DATA. y = data # Do some checking that data make sense: if ( any( !is.finite(y) ) ) { stop("All y values must be finite.") } Ntotal = length(y) # Specify the data in a list, for later shipment to JAGS: dataList = list( y = y , Ntotal = Ntotal , meanY = mean(y) , sdY = sd(y) ) #----------------------------------------------------------------------------- # THE MODEL. modelString = " model { for ( i in 1:Ntotal ) { y[i] ~ dt( mu , 1/sigma^2 , nu ) } mu ~ dnorm( meanY , 1/(100*sdY)^2 ) sigma ~ dunif( sdY/1000 , sdY*1000 ) nu ~ dexp(1/30.0) } " # close quote for modelString # Write out modelString to a text file writeLines( modelString , con="TEMPmodel.txt" ) #----------------------------------------------------------------------------- # INTIALIZE THE CHAINS. # Initial values of MCMC chains based on data: mu = mean(y) sigma = sd(y) initsList = list( mu = mu , sigma = sigma , nu = 5 ) #----------------------------------------------------------------------------- # RUN THE CHAINS parameters = c( "mu" , "sigma" , "nu" ) # The parameters to be monitored adaptSteps = 500 # Number of steps to "tune" the samplers burnInSteps = 1000 nChains = 4 thinSteps = 5 nIter = ceiling( ( numSavedSteps * thinSteps ) / nChains ) # Create, initialize, and adapt the model: jagsModel = jags.model( "TEMPmodel.txt" , data=dataList , inits=initsList , n.chains=nChains , n.adapt=adaptSteps ) # Burn-in: cat( "Burning in the MCMC chain...\n" ) update( jagsModel , n.iter=burnInSteps ) # The saved MCMC chain: cat( "Sampling final MCMC chain...\n" ) codaSamples = coda.samples( jagsModel , variable.names=parameters , n.iter=nIter , thin=thinSteps ) # resulting codaSamples object has these indices: # codaSamples[[ chainIdx ]][ stepIdx , paramIdx ] if ( !is.null(saveName) ) { save( codaSamples , file=paste(saveName,"Mcmc.Rdata",sep="") ) } return( codaSamples ) } # end function #=============================================================================== smryMCMC = function( codaSamples , compValMu , # must specify compValMu ropeMu=NULL , saveName=NULL , compValSigma=NULL , ropeSigma=NULL , compValEff=0.0 , ropeEff=c(-0.1,0.1) ) { summaryInfo = NULL mcmcMat = as.matrix(codaSamples,chains=TRUE) summaryInfo = rbind( summaryInfo , "mu" = summarizePost( mcmcMat[,"mu"] , compVal=compValMu , ROPE=ropeMu ) ) summaryInfo = rbind( summaryInfo , "sigma" = summarizePost( mcmcMat[,"sigma"] , compVal=compValSigma , ROPE=ropeSigma ) ) summaryInfo = rbind( summaryInfo , "nu" = summarizePost( mcmcMat[,"nu"] , compVal=NULL , ROPE=NULL ) ) summaryInfo = rbind( summaryInfo , "log10(nu)" = summarizePost( log10(mcmcMat[,"nu"]) , compVal=NULL , ROPE=NULL ) ) summaryInfo = rbind( summaryInfo , "effSz" = summarizePost( ( mcmcMat[,"mu"] - compValMu ) / mcmcMat[,"sigma"] , compVal=compValEff , ROPE=ropeEff ) ) if ( !is.null(saveName) ) { write.csv( summaryInfo , file=paste(saveName,"SummaryInfo.csv",sep="") ) } return( summaryInfo ) } #=============================================================================== plotMCMC = function( codaSamples , data , compValMu , # must specify compValMu ropeMu=NULL , compValSigma=NULL , ropeSigma=NULL , compValEff=0.0 , ropeEff=c(-0.1,0.1) , showCurve=FALSE , pairsPlot=FALSE , saveName=NULL , saveType="jpg" ) { # showCurve is TRUE or FALSE and indicates whether the posterior should # be displayed as a histogram (by default) or by an approximate curve. # pairsPlot is TRUE or FALSE and indicates whether scatterplots of pairs # of parameters should be displayed. #----------------------------------------------------------------------------- mcmcMat = as.matrix(codaSamples,chains=TRUE) chainLength = NROW( mcmcMat ) mu = mcmcMat[,"mu"] sigma = mcmcMat[,"sigma"] nu = mcmcMat[,"nu"] #----------------------------------------------------------------------------- if ( pairsPlot ) { # Plot the parameters pairwise, to see correlations: openGraph(width=7*3/5,height=7*3/5) nPtToPlot = 1000 plotIdx = floor(seq(1,chainLength,by=chainLength/nPtToPlot)) panel.cor = function(x, y, digits=2, prefix="", cex.cor, ...) { usr = par("usr"); on.exit(par(usr)) par(usr = c(0, 1, 0, 1)) r = (cor(x, y)) txt = format(c(r, 0.123456789), digits=digits)[1] txt = paste(prefix, txt, sep="") if(missing(cex.cor)) cex.cor <- 0.8/strwidth(txt) text(0.5, 0.5, txt, cex=1.25 ) # was cex=cex.cor*r } pairs( cbind( mu , sigma , log10(nu) )[plotIdx,] , labels=c( expression(mu) , expression(sigma) , expression(log10(nu)) ) , lower.panel=panel.cor , col="skyblue" ) if ( !is.null(saveName) ) { saveGraph( file=paste(saveName,"PostPairs",sep=""), type=saveType) } } #----------------------------------------------------------------------------- # Set up window and layout: openGraph(width=6.0,height=8.0*3/5) layout( matrix( c(2,3,5, 1,4,6) , nrow=3, byrow=FALSE ) ) par( mar=c(3.5,3.5,2.5,0.5) , mgp=c(2.25,0.7,0) ) # Select thinned steps in chain for plotting of posterior predictive curves: nCurvesToPlot = 20 stepIdxVec = seq( 1 , chainLength , floor(chainLength/nCurvesToPlot) ) # Compute limits for plots of data with posterior pred. distributions y = data xLim = c( min(y)-0.1*(max(y)-min(y)) , max(y)+0.1*(max(y)-min(y)) ) xBreaks = seq( xLim[1] , xLim[2] , length=ceiling((xLim[2]-xLim[1])/(sd(y)/4)) ) histInfo = hist(y,breaks=xBreaks,plot=FALSE) yMax = 1.2 * max( histInfo$density ) xVec = seq( xLim[1] , xLim[2] , length=501 ) #----------------------------------------------------------------------------- # Plot data y and smattering of posterior predictive curves: histInfo = hist( y , prob=TRUE , xlim=xLim , ylim=c(0,yMax) , breaks=xBreaks, col="red2" , border="white" , xlab="y" , ylab="" , yaxt="n" , cex.lab=1.5 , main="Data w. Post. Pred." ) for ( stepIdx in 1:length(stepIdxVec) ) { lines(xVec, dt( (xVec-mu[stepIdxVec[stepIdx]])/sigma[stepIdxVec[stepIdx]], df=nu[stepIdxVec[stepIdx]] )/sigma[stepIdxVec[stepIdx]] , type="l" , col="skyblue" , lwd=1 ) } text( max(xVec) , yMax , bquote(N==.(length(y))) , adj=c(1.1,1.1) ) #----------------------------------------------------------------------------- histInfo = plotPost( mu , cex.lab = 1.75 , showCurve=showCurve , compVal=compValMu , ROPE=ropeMu , xlab=bquote(mu) , main=paste("Mean") , col="skyblue" ) #----------------------------------------------------------------------------- histInfo = plotPost( sigma , cex.lab=1.75 , showCurve=showCurve , compVal=compValSigma , ROPE=ropeSigma , cenTend="mode" , xlab=bquote(sigma) , main=paste("Scale") , col="skyblue" ) #----------------------------------------------------------------------------- effectSize = ( mu - compValMu ) / sigma histInfo = plotPost( effectSize , compVal=compValEff , ROPE=ropeEff , showCurve=showCurve , cenTend="mode" , xlab=bquote( ( mu - .(compValMu) ) / sigma ), cex.lab=1.75 , main="Effect Size" , col="skyblue" ) #----------------------------------------------------------------------------- postInfo = plotPost( log10(nu) , col="skyblue" , # breaks=30 , showCurve=showCurve , xlab=bquote("log10("*nu*")") , cex.lab = 1.75 , cenTend="mode" , main="Normality" ) # (<0.7 suggests kurtosis) #----------------------------------------------------------------------------- # Blank plot plot(1, ann=FALSE, axes=FALSE, xlim=c(0,1) , ylim=c(0,1) , type="n" , xaxs="i" , yaxs="i" ) text(.5,.5,"[intentionally blank]",adj=c(.5,.5)) if ( !is.null(saveName) ) { saveGraph( file=paste(saveName,"Post",sep=""), type=saveType) } } #===============================================================================