
010 MCMC MCMC One Sample 1
ORIGIN 0 Bayesian Analysis using MCMCAnalog to the One Sample t-Test
Markov Chain Monte Carlo (MCMC) methods have become an increasingly popular Bayesian supplement or
alternative to standard (frequentist) statistical methods in assessing complex linear models (LM) and
generalized linear models (GLM). Bayesian methods focus on the relationship between data collected in a
particular study (D) and parameters of a model () chosen to interpret the data. According to Bayesian
reasoning, all parameters of the model are assigned "prior" probabilities P(). Likelihood of the data given
specific parameter values P(D|) are determined, and from this, "posterior" probabilities P(|D) are calculated
using Bayes Rule. The object of this form of Bayesian analysis is to find values of the parameters () that
maximize posterior probability. Because Bayesian analysis incorporates prior knowledge, or guesswork, about
the probability of parameter values P(), the posterior probability P(|D) makes use of this information for
better or worse. If prior information is strong and data weak, then Bayes rule will assign posterior probability
greatly influenced by the prior. This can be a good thing. In many if not most cases however, prior information
is weak. Standard practice is then to set "uninformative" (or uninformed) prior probabilities thus allowing the
data to dominate posterior probability. Under these circumstances, it doesn't really matter what prior
probabilities P() are initially used, as long as they are uninformed; P(|D) remains stable.
Some models applied to data are simple enough that Bayes rule can be applied "analytically" (i.e., through exact
formula). In more complex models, however, "marginal probabilities" involving sums or integrals in the
denominator of Bayes rule resist analytic solution. In addition, a complex model involving many parameters
involves a "space" of possible parameter combinations that is usually too large for exhaustive enumeration of
posterior probability for each and every parameter value combination. Therefore, a heuristic search "random
walk" algorithm is employed that starts somewhere in the combination of parameter values, and seeks a
posterior probability maximum. The form of random walk employed is a first order Markov chain - meaning
that each new step taken in the walk is dependent only on current position in the parameter space. Step
direction is determined by a form of the Metropolis algorithm (named after Nicholas Metropolis) in which
stepping trends toward the posterior probability maximum, but also samples lesser values at frequencies related
to their posterior probabilities. Typically multiple Markov chains are run, usually with differing starting points,
to verify the existence of a single posterior probability maximum. When the Markov chain random walks
stabilize, the Metropolis algorithm produces a frequency distribution of parameter estimates directly related to
posterior probabilities around that maximum. Specific, and generally more efficient, variants of the Metropolis
algorithm include the Gibbs sampler (in JAGS) and Hamiltonian Monte Carlo methods (in Stan), among others.
Shown below is a comparison example of MCMC analysis involving a model of data typical for the one-sample
t-test. The model involves the assumption that a collected sample of data is derived from a Normal distribution
governed by two parameters:  = ( for mean, and  for standard deviation). We wish to estimate these
parameters. Although the model is simple, implementation of MCMC analysis in R involves a major increase in
programming sophistication. Fortunately, J.K. Kruschke has come to our rescue with his wonderfully
informative book Doing Bayesian Data Analysis - A Tutorial with R, JAGS, and Stan (i.e., 2nd edition) that
includes complete scripts intended as "scaffolds" for doing many different kinds of MCMC analysis using R.
The complete set of scaffolds are available at https://sites.google.com/site/doingbayesiandataanalysis/. Here I
swipe the scaffold for the one-sample model, and modify it slightly for our use. For an introduction to Bayesian
methods, Kruschke's text is highly recommended.

Set up a dedicated folder: Since Kruschke's scaffold involves
multiple files both read as scripts in R
and written as interim files and
analysis results, it is probably wise to
set up a dedicated folder for each
analysis to keep everything together.
I copied his relevant scaffold files to a
new folder labeled "010 MCMC". I'll
modify these, and maintain his
pristine originals elsewhere.

getwd()setwd("C:/010 MCMC")getwd()# Example for Jags-Ymet-Xnom1grp-Mnormal.R #--- # OpƟonal generic preliminaries:graphics.off() # This closes all of R's graphics windows.
rm(list=ls()) # Careful! This clears all of R's memory!#---

010 MCMC MCMC One Sample 2
Kruschke's scaffold for each MCMC analysis
always involves three files, in this case labeled:
Jags-Ymet—Xnom1grp—Mnormal-Example.R
Jags—Ymet—Xnom1grp—Mnormal.R
DBDA2E—utilities.R
These files, destined to be run in JAGS via R package
rjags, exist in a hierarchy. The first,
Jags—Ymet—Xnomlgrp—Mnorma1-Example.R,
is a top-level "driver". It organizes all activities and
calls functions residing in the other files. The second
file, Jags—Ymet—Xnom1grp-Mnormal.R, is a 2nd
level file consisting of model specifcations and calls to
a 3rd level file, DBDA2E-utilities.R, containing a
general set of functions, used by multiple models.

Since, I've modified the driver here, I will
re-label it, but leave the other files unchanged.
So, the hierarchy of files in my folder is:
010 JAGS DRIVER.R
Jags-Ymet—Xnomlgrp-Mnormal.R
DBDA2E-utilities.R

Read Data and Do a t-Test:
The data is from Kruschke's simulated data of IQ in TwoGroupIQ.csv, a comma-delimited file,
easily written by MS Excel. We use only the "Smart Drug" group for analysis in what follows.
From: Jags.OneSampleT-Driver.R
Load The data file myDataFrame = read.csv(file="TwoGroupIQ.csv")myData = myDataFrame$Score[myDataFrame$Group=="Smart Drug"]myData

> myData
 [1] 102 107 92 101 110 68 119 106 99 103 90 93 79 89
[15] 137 119 126 110 71 114 100 95 91 99 97 106 106 129
[29] 115 124 137 73 69 95 102 116 111 134 102 110 139 112
[43] 122 84 129 112 127 106 113 109 208 114 107 50 169 133
[57] 50 97 139 72 100 144 112

t.test(myData,alternaƟve="two.sided",mu=100,conf.level = 0.95)
One Sample t-test
data: myData
t = 2.446, df = 62, p-value = 0.0173
alternative hypothesis: true mean is not equal to 100
95 percent confidence interval:
 101.4330 114.2496
sample estimates:
mean of x
 107.8413

sd(myData) > sd(myData)
[1] 25.4452

^ Mean of sample lies outside the 95% confidence interval, with P value = 0.0173
Point estimate of  = 107.8413; point estimate of  = 25.4452.

010 MCMC MCMC One Sample 3

MCMC Analysis:
Remainder of driver file:
OpƟonal: Specify filename root and graphical format for saving output.# Otherwise specify as NULL or leave saveName and saveType arguments # out of funcƟon calls.fileNameRoot = "OneGroupIQnormal-" graphFileType = "eps" #--- # Load the relevant model into R's working memory:source("Jags-Ymet-Xnom1grp-Mnormal.R")#--- # Generate the MCMC chain:mcmcCoda = genMCMC(data=myData , numSavedSteps=20000 , saveName=fileNameRoot)#--- # Display diagnosƟcs of chain, for specified parameters:parameterNames = varnames(mcmcCoda) # get all parameter namesfor (parName in parameterNames) { diagMCMC(codaObject=mcmcCoda , parName=parName , saveName=fileNameRoot , saveType=graphFileType)}#--- # Get summary staƟsƟcs of chain:summaryInfo = smryMCMC(mcmcCoda , compValMu=100.0 , ropeMu=c(99.0,101.0) , compValSigma=15.0 , ropeSigma=c(14,16) , compValEff=0.0 , ropeEff=c(-0.1,0.1) , saveName=fileNameRoot)show(summaryInfo)# Display posterior informaƟon:plotMCMC(mcmcCoda , data=myData , compValMu=100.0 , ropeMu=c(99.0,101.0) , compValSigma=15.0 , ropeSigma=c(14,16) , compValEff=0.0 , ropeEff=c(-0.1,0.1) , pairsPlot=TRUE , showCurve=FALSE , saveName=fileNameRoot , saveType=graphFileType)#---

< Multiple files are written
in the working directory.
Graphics files are in *.eps
format.
< 2nd level file placed in
memory here.

< diagnostic function at
2nd level called here,
generating graphic
output.

< summary information
at 2nd level called here,
with results reported to
R's console and to a
*.csv file.

< Estimate distribution
function at 2nd level
called here. Results
plotted in *.eps files
and repored to R's
console graphics.

THE MODEL. modelString = " model { for (i in 1:Ntotal) { y[i] ~ dnorm(mu , 1/sigma^2) } mu ~ dnorm(meanY , 1/(100*sdY)^2) sigma ~ dunif(sdY/1000 , sdY*1000) } " # close quote for modelString

Inside the 2nd level file: Jags-Ymet-Xnom1grp-Mnormal.R
function gen MCMC() contains specification of the model as well
as the driver for running the MCMC. This includes setting up
uninformative prior probabilities, setting initial values for four
chains, running a "burn-in" set of steps (hopefully finding a
maximum in posterior probability), and then sampling the
distribution of parameters near the maximum.

010 MCMC MCMC One Sample 4

MCMC Run & Sample Results:
Compiling model graph
 Resolving undeclared variables
 Allocating nodes
Graph information:
 Observed stochastic nodes: 63
 Unobserved stochastic nodes: 2
 Total graph size: 206
Initializing model
 |++| 100%
Burning in the MCMC chain...
 |**| 100%
Sampling final MCMC chain...
 |**| 100%
> show(summaryInfo)
 Mean Median Mode ESS HDImass HDIlow
mu 107.8483785 107.8475830 107.6582644 20000.0 0.95 101.22564584
sigma 25.9843709 25.8224529 25.5828597 11418.5 0.95 21.53742063
effSz 0.3045989 0.3044004 0.2967111 19487.3 0.95 0.04509976
 HDIhigh CompVal PcntGtCompVal ROPElow ROPEhigh PcntLtROPE PcntInROPE
mu 114.2027194 100 99.085 99.0 101.0 0.420 1.53
sigma 30.8633374 15 100.000 14.0 16.0 0.000 0.00
effSz 0.5522863 0 99.085 -0.1 0.1 0.085 5.59
 PcntGtROPE
mu 98.050
sigma 100.000
effSz 94.325 ^ Summary results from smryMCMC() in the 2nd level file are

reported to R's console. These include means, medians, modes
for the posterior distribution of parameters  and . A derived
quantity for Effect Size is also calculated.
Effect Size (EFFSz) is defined by: EFFSz = (-100)/

MCMC Run Diagnostics:
Behavior of the Markov chains are assessed graphically. For each parameter:
Top-left graph indicates "mixing" of the chains. One hopes to see that the values sampled are more-or-less
equivalent across chains, indicating that none of the chains have become stuck at a unique place in the
sampled parameter space.
Top-right graph shows autocorrelation between successive steps for each Markov chain. One hopes to see the
chains settle down during the run, observed left to right, to essentially zero autocorrelation. ESS is effective
sample size, which is a ratio of steps over ACF (autocorrelation factor) for all autocorrelation lags. For a stable
& accurate estimates, ESS equal to or greater than 10,000 is preferred. See Kruschke p. 184.
Bottom-left graph shows the "shrink factor" (Gelman-Rubin convergence statistic) along the chains. This
statistic measures a ratio of variance between chains versus within. Kruschke suggests that levels below 1.1
indicate satisfactory convergence of the chains toward a single maximum.
Bottom-right shows the distribution of the parameter estimates for each Markov chain. One hopes to see
close agreement among the curves. MCSE = standard deviation of sample/sqrt(ESS). Low values indicate a
stable estimate of the parameter mean - a good thing.

010 MCMC MCMC One Sample 5

010 MCMC MCMC One Sample 6
MCMC Parameter Estimates & HDI:

The blue histograms on this page display posterior distributions found for , , and Effect Size already
summarized above. By default, as specified in the header of function plotPost() in‘3rd level file
DBDA2E-utilities.R, the mode of each distribution is given numeric value in the graph (median and
mean are other options). Thus, a mode of  = 109 is observed for the posterior probability distribution of 
collected by the Gibbs sampler, with 95% of the posterior sample ranging between 102 and 114. The
interval, termed "95% Highest Density Interval" (HDI), functions in a way somewhat similar to Confidence
Intervals (CI) in regular statistics. A "Comparison Value" (100 in this instance shown in green and passed
to functions smryMCMC() and plotMCMC() in the 2nd level file by the firs level driver), indicates a value to
compare the HDI against more-or-less similar to conducting a t-test using CIs. However, as pointed out, CIs
are formulated by considering the concept of repeated samples in regular statistics, whereas HDIs indicate a
posterior probability distribution, so the two are not equivalent. In this case a Comparison Value of 100
resides below 99% of the sampled posterior distribution, so is very unlikely to characterize . The other
boundaries (indicated in red on the histograms) specify a "Region of Practical Equivalence" (ROPE) for the
Comparison Value (100), allowing for graded as opposed to all-or-none decisions of "in" versus "out"of the
HDI. The ROPE is specified in the same manner as the Comparison Value in the driver file. Histograms for  and Effect Size work similarly, with Comparison Values of (15,0) for (, Effect Size) respectively.

The top-right graph, termed "Post Prediction Plot" compares frequencies of the original data in red (N=62)
versus a sample of Normal distributions determined by values of (, ) that have near the highest joint
posterior probability. The number of curves plotted is specified in function plotMCMC() within the 2nd level
file Jags-Ymet-Xnomlgrp-Mnormal.R.

010 MCMC MCMC One Sample 7

Although derived from very different perspectives, application of a Normal distribution model to the data
yields roughly comparable results. As gleefully pointed out by Bayesians, MCMC provides more
detail, and this extra information may turn out to be useful. Notably, the Post Prediction Plot above suggests
that the Normal distribution model applied in both Bayesian and non-Bayesian studies may not be adequate.
The central hump of the data exceeds that predicted by "best-fit" Normal distribution curves because data
outliers pull the Normal distribution outward (i.e.. increase ) to account for such divergent observations. So,
as suggested by Kruschke, a different model distribution might better fit the data.

[21.6 - 30.8] posterior distribution mode = 25.7sample sd = 25.4452'

 [102 - 114]posterior distribution mode = 109 [101.4 - 114. 2]sample mean = 107.8413:
95% HDIMCMC using JAGS:95% CIt-Test:Parameter:

So, how do the t-test and MCMC results compare?

The stable sample of parameters derived from successive steps in the Markov chains are simultaneous and
joint estimates, in this case of  and . Pairwise plots are used to identify whether parameter estimates
are correlated. If so, then the histograms above, as marginal estimates of each parameter separately,
cannot tell the whole story! Here, correlation between  and  is low.

Pairwise Plots of Estimated Parameters:

010 MCMC MCMC One Sample 8

