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ORIGIN 0  Model Diagrams for MCMC in JAGSRobust One Sample t-Test
In the text by J.K. Kruschke (K): Doing Bayesian Data Analysis - A Tutorial with R, JAGS, and Stan, strong 
emphasis is placed on the process of constructing suitable models for data.  Moreover, constructing a model in 
graphical format is presented as a highly desirable prelude to formal specification in JAGS.  Models are written 
in 2nd level files of his scaffold, inside function genMCMC().  Presented below is a modified summary of his 
suggested process showing the relationship between the graph and JAGS code.  Slightly greater emphasis is 
placed here in the graphs on the coding functions for distributions in JAGS, and the explicit forms of 
uninformative or "vague" priors actually utilized in these models.  Two models, "Normal" and "Robust" are 
analyzed below using K's data and scaffolds.  The complete set of files are available at 
https://sites.google.com/site/doingbayesiandataanalysis/.

One Sample Analysis using assumed Normal Distribution for the data:
from: Jags-Ymet-Xnom1grp-Mnormal.R

# THE DATA.  y = data  Ntotal = length(y)  # Specify the data in a list, for later shipment to JAGS:  dataList = list(    y = y ,    Ntotal = Ntotal ,    meanY = mean(y) ,    sdY = sd(y)  )  #-----------------------------------------------------------------------------  # THE MODEL.  modelString = "  model {    for ( i in 1:Ntotal ) {      y[i] ~ dnorm( mu , 1/sigma^2 )    }    mu ~ dnorm( meanY , 1/(100*sdY)^2 )    sigma ~ dunif( sdY/1000 , sdY*1000 )  }  " # close quote for modelString    #-----------------------------------------------------------------------------
As a simplifying convention, the data in the scaffolds is always given the name y with each data value from a 
dataset indexed by subscript i, thus yi.  Commonly yi are assumed to be derived from a Normal distribution 
implemented in JAGS script (similar but not identical with R script) as function dnorm() with two parameters 
(, ).  The mean  is as we might expect.  However, for technical reasons related to the underlying math, 
JAGS uses "precision"  = 1/2 as its preferred measure of variability instead of standard deviation  (or 
variance 2).  Except for user inconvenience, perhaps, this is of little concern - until one forgets to make the 
conversion.  
In a JAGS Bayesian models, each parameter of the distribution of data yi must be interpreted in terms of prior 
probabilities.  Fixed assignments involving direct conversion of one parameter to another are shown with black 
arrows above, such as the direct conversion of  to .  Parameters values derived from prior probability 
distributions are shown with blue arrows.  Prior distributions have parameters of their own, by convention 
indicated by Latin capital letters.  The choice of what kind of distribution to use to inform priors is left to the 
researcher and may be driven by prior understanding of the data.  Often, however, the research plan is to offer 
a sample of parameter values from "vague" (uninformative) prior distributions.  Vague they may be, but JAGS 
requires that each prior distribution be explicitly set by values assigned to their parameters.  
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So reading the chain in the graph leading to precision parameter   for the dnorm() distribution on data yi, values of  are drawn from a uniform distribution dunif() stocked with vague parameters L (for lower bound) 
and H (for upper bound).  Parameters L & H are set suitably wide by scaling them (1000) to observed standard 
deviation of the data y.  Parameter  is converted to parameter  by fixed assignment.  Similarly, in the chain 
specifying , priors are derived from a prior distribution, in this case dnorm() with prior parameters M (mean) 
and T (precision, again).  In similar fashion, M & T are set with wide properties scaled respectively to mean(y) 
for M, and low precision (sd(y)*100) relative to the data y for T. 
Looking that The JAGS code, one can see that each blue arrow is represented by an assignment statement 
using the symbol  ~.   Black arrows are explicitly set either within the function bracket itself, or in THE DATA 
block.  I agree with K that making a diagram such as this for a proposed model is a helpful first step in 
producing workable JAGS code.  Otherwise, it would be easy to mis-specify something.

In running the above model in JAGS (previously in 010 MCMC), the following results were obtained:

Lack of fit of the data (red histogram) relative to the set of probable normal distributions (light blue in same 
graph) motivates use of a more robust distribution that has a higher hump near the mean, but doesn't flatten 
so much in the presence of data outliers.  In the text, K offers suggests the t-distribution for this.  Unlike 
previously encountered, perhaps, the t-distribution in Bayesian analysis allows for translocation of the mean 
and scaling of variance in addition to change in shape of the curve traditionally associated with "degrees of 
freedom".  So accordingly, this t-distribution has three parameters:  for translocation of the mean,  as 
measure of variance, and  called the "normality parameter" by K for change in curve shape.  In this context,  is not restricted to integers, but can be any real number.  So, with three parameters to handle in the model, 
we need a diagram!
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from: Jags-Ymet-Xnom1grp-Mrobust.RRobust Estimation with the t-distribution: # THE DATA.  y = data    Ntotal = length(y)  # Specify the data in a list, for      later shipment to JAGS:  dataList = list(    y = y ,    Ntotal = Ntotal ,    meanY = mean(y) ,    sdY = sd(y)  )  #-----------------------------------------------------  # THE MODEL.  modelString = "  model {  for ( i in 1:Ntotal ) {    y[i] ~ dt( mu , 1/sigma^2 , nu )  }  mu ~ dnorm( meanY , 1/(100*sdY)^2 )  sigma ~ dunif( sdY/1000 , sdY*1000 )  nu ~ dexp(1/30.0)  }  " # close quote for modelString

In the Robust model, the t-distribution specified by JAGS dt() function replaces the Normal distribution 
dnorm() for distribution of the data yi.  Parameters  and  are modeled in the prior just as before.  So the 
only new thing is parameter .  Here we see that parameter ' is derived from an exponential distribution 
specified by JAGS function dexp().  This function has a lower bound of zero, but this is not permitted as a 
value for in dt().  So, like the conversion from  to , ' is converted to new parameter , by adding one to '.  The vague prior set for parameter K in dexp() essentially sets  to a high enough value that the 
t-distribution has the same properties as the Normal Distribution.  If posterior estimates of  are obtained at 
such high level, then the Robust model adds nothing over the Normal model for interpreting the data.
Along with all the diagnostics, the following MCMC results were obtained from JAGS:

> show(summaryInfo)
                 Mean      Median        Mode     ESS HDImass
mu        107.2188247 107.1986732 107.1967457 20000.0    0.95
sigma      19.8685986  19.7441150  19.3499467  8739.6    0.95
nu          9.6996929   5.5874225   3.4117924  3163.6    0.95
log10(nu)   0.8097367   0.7472115   0.6892981  5965.6    0.95
effSz       0.3746894   0.3696445   0.3750577 17266.9    0.95
                HDIlow     HDIhigh CompVal PcntGtCompVal
mu        101.65990729 112.8534621     100        99.375
sigma      13.38947018  26.7893499      15        92.200
nu          1.11302391  32.1646851      NA            NA
log10(nu)   0.22202070   1.5697941      NA            NA
effSz       0.07143793   0.6973514       0        99.375
          ROPElow ROPEhigh PcntLtROPE PcntInROPE PcntGtROPE
mu           99.0    101.0      0.270       1.34     98.390
sigma        14.0     16.0      3.845       9.61     86.545
nu             NA       NA         NA         NA         NA
log10(nu)      NA       NA         NA         NA         NA
effSz        -0.1      0.1      0.095       3.37     96.535
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Here we see from the Post Prediction Plot (top-right) a somewhat better fit with the data.  The posterior 
distribution for  on log10 scale has a mode of 0.689.  A value of log10(30) = 1.4771 or higher indicates no 
better fit of the data for the Robust model versus the Normal model.  In this case, we see some 
improvement with the Robust model.  Improvement is also seen in comparing Comparison Values and 
ROPE percentages, and in widths of the HDI's.  So a Robust is a somewhat better model of the data.
Pairwise plots of posterior parameter distributions, below, show independence of  with  and , but 
noticeable correlation of  with .  According to K, this makes sense, because data outliers involve a 
tradeoff between increasing variance with  vs changing the shape of the t-distribution for fatter tails 
with .
It is interesting to note that the Robust model, utilizing dt(), essentially reverts to a Normal model when 
the posterior probability of  > 30, or equivalently log10() > 1.4771.  So, as general practice, there's no 
reason not to use the Robust model always.



020 MCMC Robust MCMC One Sample 5


