Robust Two Sample Analysis

The JAGS analog to the two-sample t-test follows directly from the format described in $\mathbf{0 1 0} \boldsymbol{\&} 020$ MCMC Worksheets. Scaffolds are derived from J.K. Kruschke (K): Doing Bayesian Data Analysis - A Tutorial with R, JAGS, and Stan, available at https://sites.google.com/site/doingbayesiandataanalysis/. The only difference in One-sample versus Two-sample analysis is specifying a second variable in JAGS, derived from a column in the original data, that identifies group membership in the standard long-form data format. In K's scaffold, information about group column name is passed from the Driver level to the function genMCMC() at the 2nd level which in turn codes a numeric variable for JAGS.
from; Jags-Ymet-Xnom2grp-RrobustHetDRIVER

```
yName="Score"
xName="Group"
# Load the relevant model into R's working memory:
source("Jags-Ymet-Xnom2grp-MrobustHet.R")
#----------------------------------------------------------------------------
# Generate the MCMC chain:
mcmcCoda = genMCMC( datFrm=myDataFrame, yName=yName , xName=xName ,
    numSavedSteps=50000 , s aveName=fileNameRoot )
```



```
from: Jags-Ymet-X2grp-MrobustHet.R
\# THE DATA.
    \(y=\) as.numeric(datFrm[,yName])
    \(\mathrm{x}=\) as.numeric(as.factor(datFrm [,xName]))
    xLevels \(=\) levels(as.factor(datFrm[,xName]))
    Ntotal = length \((y)\)
\#-
    \# THE MODEL.
    modelString \(="\)
    model \{
    for (i in 1:Ntotal) \{
        \(y[i] \sim \operatorname{dt}\left(\operatorname{mu}[x[i]], 1 / \operatorname{sigma}[x[i]]^{\wedge 2}\right.\), nu \()\)
    \}
    for ( j in 1:2) ) \# 2 groups
        mu[j] ~ dnorm ( meanY, 1/(100*sdY)^2 )
        sigma[j] ~ dunif( sdY/1000 , sdY*1000 )
    \}
    \(n u \sim \operatorname{dexp}(1 / 30.0)\)
\}
    " \# close quote for modelString
```

The Two-sample Robust model structure looks identical in structure to the One-sample model. The difference lies in addition of index \boldsymbol{j}, with values of 1 or 2 , specifying group membership. This means that for the distribution of y_{i}, there are two mean parameters μ_{1} and μ_{2} and two precision parameters τ_{1} and τ_{2} for each group. Priors for each of the four distribution parameters for y_{i} are carried out independently. There is, however, only one normality parameter v, so only a single prior is detemined for this exactly as in the One-sample model.

Two Sample t-tests:

For comparison with MCMC resuls, the following are results from running standard t-tests with and without assuming equality of variance between the two group:

```
> t.test(Score~Group,data=myDataFrame, var.equal=FALSE) # unequal variances
            Welch Two Sample t-test
data: Score by Group
t = -1.958, df = 111.44, p-value = 0.05273
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
    -15.70602585 0.09366161
sample estimates:
            mean in group Placebo mean in group Smart Drug
                100.0351 107.8413
> t.test(Score~Group,data=myDataFrame, var.equal=TRUE) #equal variances
            Two Sample t-test
data: Score by Group
t = -1.9249, df = 118, p-value = 0.05665
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
    -15.8369851 0.2246208
sample estimates:
            mean in group Placebo mean in group Smart Drug
                        100.0351 107.8413
> var.test(Score~Group,data=myDataFrame)
            F test to compare two variances
data: Score by Group
F = 0.49457, num df = 56, denom df = 62, p-value = 0.00823
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
    0.2962264 0.8313852
sample estimates:
ratio of variances
                        0.4945694
> sd(myDataFrame$Score[myDataFrame$Group=="Placebo"])
[1] 17.8945
> sd(myDataFrame$Score[myDataFrame$Group=="Smart Drug"])
[1] 25.4452
```

The variance ratio F-test (see Biostatistics 170) indicates that the Welsh Test above is more appropriate.

Two Sample MCMC Results:

> show(summarylnfo)						
	Mean		Median	Mode	ESS	HDImass
mu [1]	99.2601668	99.27	72400099.	. 2606903	30169.3	0.95
mu [2]	107.1396293	107.14	440000107.	. 0112339	29957.3	0.95
muDiff	7.8794625	7.88	8380007.	. 9411225	29253.3	0.95
sigma[1]	11.3367363	11.21	15400011.	. 2390852	11999.9	0.95
sigma[2]	17.9232785	17.77	79500017.	. 4576198	11537.8	0.95
sigmaDiff	6.5865422	6.50	0730006.	. 4381478	22301.2	0.95
nu	3.8650320	3.50	0613002.	. 9775310	5588.0	0.95
$\operatorname{log10}(\mathrm{nu})$	0.5570688	0.5	448280 0.	. 5417733	7816.5	0.95
effsz	0.5319058	0.52	2916140.	. 5007781	26530.7	0.95
	HDIlow	HDIhigh CompVal PentGtCompVal				
mu [1]	95.79930000	102.	9110000	NA	NA	
$m u[2]$	101.78200000	112.3780000		NA		NA
muDiff	1.69020000	14.3730000		0	99.20802	
sigma[1]	8.08601000	14.7977000		NA	NA	
sigma[2]	12.84890000	23.3849000		NA	NA	
sigmaDiff	1.16020000	12.0011100		0	99.31401	
nu	1.61057000	6.8828200		NA	NA	
$\operatorname{log10(nu)~}$	0.26902467	0.8689435		NA	NA	
effsz	0.08978173	0.9767674		0	99.20802	
	ROPElow ROPEhigh		PcntLtROPE	PcntInROPE PcntGtROPE		
mu [1]	NA	NA	NA		NA	NA
mu [2]	NA	NA	NA		NA	NA
muDiff	-0.5	0.5	0.5079898	0.68398	86398	. 80802
sigma[1]	NA	NA	NA		NA	NA
sigma[2]	NA	NA	NA		NA	NA
sigmaDiff	-0.5	0.5	0.4139917	0.67798	86498	. 90802
nu	NA	NA	NA		NA	NA
$\operatorname{log10}(\mathrm{nu})$	NA	NA	NA		NA	NA
effsz	-0.1	0.1	0.2019960	2.31795	53697	. 48005

Summary of Findings:

The Variance Ratio test shows strong preference for the two groups having different variances (\mathbf{p}-value $=\mathbf{0 . 8} \%$). Similar results are seen in the MCMC plot for Differences in Scales (0.7% for zero difference in the mode and outside the HDI). The MCMC Post Predicion Plot shows a difference quite clearly both in the distribution of the original data (red histogram) and the different shapes of the probable t-distributions for each group. The fit looks good. The Normality plot with mode $=0.542$, quite a bit less than $\log _{10}(30)=1.4771$, indicates preference for the t-distribution versus Normal distribution as a better fit for the data, given the evident data outliers. As a result of using the t-distribution, lower variance is seen in the fit of MCMC compared with measurement of standard deviation fron the samples. MCMC difference in modes of μ includes only 0.8% of the distribution and outside the 95% HDI - impressive) whereas Welsh p-value for difference in means is $0.0523 \mathbf{(5 . 2 3 \%}$ - not significant).

How do the Welsh/Variance Ratio tests and MCMC Results compare?

Parameter:	Welsh Test:	95\% CI
μ	sample means:	for the difference:
	Placebo $=100.0351$	$[0.0934-15.706]$

$\sigma \quad$ sample sd:
Placebo $=17.8945$
Smart Drug $=25.4452$
Ratio $=0.4946$
for the ratio:
[0.2962-0.8314]

MCMC using JAGS: modes:
Placebo $=99.3$
Smart Drug = 107
modes:
Placebo = 11.2
for the difference:
[1.16-12]

Correlation of v with both shape parameters σ_{1} and σ_{2} is to be expected from the definition of the \mathbf{t}-distribution. Shape parameters σ_{1} and σ_{2} are show some correlation with each other. Otherwise correlations are low.

