$ORIGIN \equiv 0$

Robust Two Sample Analysis

The JAGS analog to the two-sample t-test follows directly from the format described in 010 &020 MCMC Worksheets. Scaffolds are derived from J.K. Kruschke (K): *Doing Bayesian Data Analysis - A Tutorial with R, JAGS, and Stan*, available at https://sites.google.com/site/doingbayesiandataanalysis/. The only difference in One-sample versus Two-sample analysis is specifying a second variable in JAGS, derived from a column in the original data, that identifies group membership in the standard long-form data format. In K's scaffold, information about group column name is passed from the Driver level to the function genMCMC() at the 2nd level which in turn codes a numeric variable for JAGS.

from; Jags-Ymet-Xnom2grp-RrobustHetDRIVER

Generate the MCMC chain:

mcmcCoda = genMCMC(datFrm=myDataFrame , yName=yName , xName=xName , numSavedSteps=50000 , saveName=fileNameRoot)

The Two-sample Robust model structure looks identical in structure to the One-sample model. The difference lies in addition of index *j*, with values of 1 or 2, specifying group membership. This means that for the distribution of y_i , there are two mean parameters μ_1 and μ_2 and two precision parameters τ_1 and τ_2 for each group. Priors for each of the four distribution parameters for y_i are carried out independently. There is, however, only one normality parameter v, so only a single prior is detemined for this exactly as in the One-sample model.

Two Sample t-tests:

For comparison with MCMC resuls, the following are results from running standard t-tests with and without assuming equality of variance between the two group:

```
> t.test(Score~Group,data=myDataFrame, var.equal=FALSE) # unequal variances
```

```
Welch Two Sample t-test
```

```
data: Score by Group
t = -1.958, df = 111.44, p-value = 0.05273
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-15.70602585 0.09366161
sample estimates:
    mean in group Placebo mean in group Smart Drug
    100.0351 107.8413
```

> t.test(Score~Group,data=myDataFrame, var.equal=TRUE) #equal variances

```
Two Sample t-test
```

> var.test(Score~Group,data=myDataFrame)

```
F test to compare two variances
```

```
> sd(myDataFrame$Score[myDataFrame$Group=="Placebo"])
[1] 17.8945
```

> sd(myDataFrame\$Score[myDataFrame\$Group=="Smart Drug"])
[1] 25.4452

The variance ratio F-test (see Biostatistics 170) indicates that the Welsh Test above is more appropriate.

Two Sample MCMC Results:

>	show	lsummarv	Info)
- C				

	Ν	lean		Median		Mode		ESS	HDIm	lass
mu[1]	99.2601	668	99.2	2724000	99.	.2606903	303	169.3	С	.95
mu[2]	107.1396	5293 3	107.1	1440000	107	.0112339	299	957.3	С	.95
muDiff	7.8794	625	7.8	8838000	7.	.9411225	292	253.3	С	.95
sigma[1]	11.3367	/363	11.2	2154000	11	.2390852	119	999.9	С	.95
sigma[2]	17.9232	2785	17.	7795000	17	.4576198	11	537.8	С	.95
sigmaDiff	6.5865	5422	6.5	5073000	6	.4381478	223	301.2	С	.95
nu	3.8650	320	3.5	5061300	2	.9775310	55	588.0	С	.95
log10(nu)	0.5570	688	0.5	5448280	0	.5417733	78	316.5	С	.95
effSz	0.5319	058	0.5	5291614	0	.5007781	265	530.7	С	.95
	HI	DIlow		HDIhigh	n Cor	mpVal Pc	ntGi	tComp	Jal	
mu[1]	95.7993	80000	102	.9110000)	NA			NA	
mu[2]	101.7820	00000	112	.3780000)	NA			NA	
muDiff	1.6902	20000	14	.3730000)	0	(99.208	302	
sigma[1]	8.0860	1000	14	.7977000)	NA			NA	
sigma[2]	12.8489	00000	23	.3849000)	NA			NA	
sigmaDiff	1.1602	20000	12	.0011100)	0	(99.314	401	
nu	1.6105	57000	6	.8828200)	NA			NA	
log10(nu)	0.2690	2467	0	.8689435	5	NA			NA	
effSz	0.0897	8173	0	.9767674	1	0	(99.208	302	
	ROPElow	ROPE	high	PcntLtH	ROPE	PcntInR	OPE	Pcnt	Gtrof	Έ
mu[1]	NA		NA		NA		NA		N	IA
mu[2]	NA		NA		NA		NA		N	IA
muDiff	-0.5		0.5	0.5079	9898	0.6839	863	98	.8080	2
sigma[1]	NA		NA		NA		NA		N	IA
sigma[2]	NA		NA		NA		NA		N	IA
sigmaDiff	-0.5		0.5	0.4139	9917	0.6779	864	98	.9080	2
nu	NA		NA		NA		NA		N	IA
log10(nu)	NA		NA		NA		NA		N	IA
effSz	-0.1		0.1	0.2019	9960	2.3179	536	97	.4800	5

Summary of Findings:

The Variance Ratio test shows strong preference for the two groups having different variances (p-value = 0.8%). Similar results are seen in the MCMC plot for Differences in Scales (0.7 % for zero difference in the mode and outside the HDI). The MCMC Post Predicion Plot shows a difference quite clearly both in the distribution of the original data (red histogram) and the different shapes of the probable t-distributions for each group. The fit looks good. The Normality plot with mode = 0.542, quite a bit less than $log_{10}(30) = 1.4771$, indicates preference for the t-distribution versus Normal distribution as a better fit for the data, given the evident data outliers. As a result of using the t-distribution, lower variance is seen in the fit of MCMC compared with measurement of standard deviation fron the samples. MCMC difference in modes of μ includes only 0.8% of the distribution and outside the 95% HDI - impressive) whereas Welsh p-value for difference in means is 0.0523 (5.23% - not significant).

How do the Welsh/Variance Ratio tests and MCMC Results compare?

Parameter:	Welsh Test:	95% CI	MCMC using JAGS:	95% HDI	
μ	sample means: Placebo = 100.0351 Smart Drug = 107.8413	for the difference: [0.0934 - 15.706]	modes: Placebo = 99.3 Smart Drug = 107	for the difference: [1.69 - 14.4]	
σ	sample sd: Placebo = 17.8945 Smart Drug = 25.4452 Ratio = 0.4946	for the ratio: [0.2962 - 0.8314]	modes: Placebo = 11.2 Smart Drug = 17.5	for the difference: [1.16 - 12]	

Correlation of v with both shape parameters σ_1 and σ_2 is to be expected from the definition of the t-distribution. Shape parameters σ_1 and σ_2 are show some correlation with each other. Otherwise correlations are low.