
$ORIGIN \equiv 0$

Robust MCMC - Simple Regression

Simple Regression involves a model where the dependent variable y, with values indexed by *i*, are interpreted to be related to the independent variable x by means of the linear function $y_i = \beta_0 + \beta_1 x_i + \varepsilon$. The error term ε is commonly assumed belong to a Normal distribution. However in MCMC Robust regression using JAGS, the three parameter t-distribution is commonly utilized instead. JAGS Scaffolds are derived from the the text by J.K. Kruschke (K): *Doing Bayesian Data Analysis - A Tutorial with R, JAGS, and Stan*, available at https://sites.google.com/site/doingbayesiandataanalysis/.

As with other MCMC Robust models, variability in y_i are modeled with the t-distribution with parameters (v,μ,τ) . The behavior of μ is directly determined by the linear function with parameters β_0 and β_1 Priors are set with Normal distributions and vague initial values. Because the data y_i are not typically centered around zero, the β 's are strongly correlated. This may cause problems with JAGS Gibbs samplers, so the usual procedure is to standardize y_i producing the new variable zy_i . After the MCMC analylsis is run, posterior parameters are then converted back to original scale. Priors for (v,τ) are handled as before (see 030 MCMC). Because zy_i is standardized, values for all vague priors are set at standardized scales.

In K's 2nd level file containing function genMCMC() (in part shown below), note that the process of standardizing the data is handled within a data{} code segment, and conversion of standardized parameters back to scale of the original data is handled within the model{} segment.

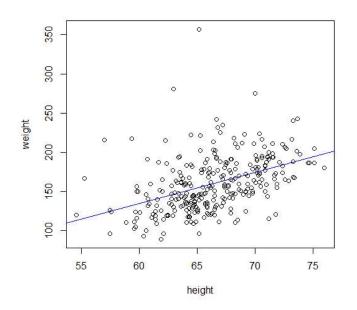
```
from: Jags-Ymet-Xmet-Mrobust.R
```

```
# THE DATA.
y = data[,yName]
x = data[,xName]
# Specify the data in a list, for later shipment to JAGS:
dataList = list(
x = x,
y = y
)
```

```
# THE MODEL.
modelString = "
# Standardize the data:
data {
    Ntotal <- length(y)
    xm <- mean(x)
    ym <- mean(y)
    xsd <- sd(x)
    ysd <- sd(y)
    for ( i in 1:length(y) ) {
        zx[i] <- ( x[i] - xm ) / xsd
        zy[i] <- ( y[i] - ym ) / ysd
    }
}
```

Standard Simple Linear Regression Results:

> summary(LM)


Call: lm(formula = weight ~ height, data = myData)

Residuals: Min 10 Median 30 Max -63.95 -21.17 -5.26 16.24 201.94

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) -104.7832 31.5056 -3.326 0.000992 *** height 3.9822 0.4737 8.406 1.77e-15 *** ---Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 `' 1

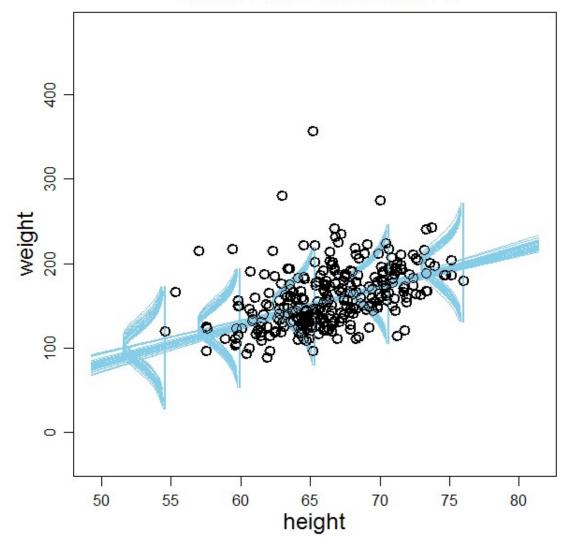
Residual standard error: 31.59 on 298 degrees of freedom Multiple R-squared: 0.1917, Adjusted R-squared: 0.189 F-statistic: 70.66 on 1 and 298 DF, p-value: 1.769e-15


```
# Specify the model for standardized data:
 model {
 for ( i in 1:Ntotal ) {
   zy[i] ~ dt( zbeta0 + zbeta1 * zx[i] ,
1/zsigma^2, nu)
 }
  # Priors vague on standardized scale:
  zbeta0 ~ dnorm(0, 1/(10)^2)
  zbeta1 ~ dnorm(0, 1/(10)^2)
  zsigma ~ dunif( 1.0E-3, 1.0E+3 )
  nu \sim dexp(1/30.0)
  # Transform to original scale:
  beta1 <- zbeta1 * ysd / xsd
  beta0 <- zbeta0 * ysd + ym - zbeta1 * xm *
ysd / xsd
  sigma <- zsigma * ysd
 }
  # close quote for modelString
```

#Run standard linear regression: LM=lm(weight~height,data=myData) summary(LM) confint(LM, level=0.95) Yhat=fitted(LM) e=residuals(LM) X=myData\$height Y=myData\$height RESULTS=data.frame(X,Y,Yhat,e) #PLOTTING REGRESSION LINE & POINTS: X=myData\$height Y=myData\$height Y=myData\$weight sd(Y) plot(X,Y,xlab='height',ylab='weight') abline(LM,col="blue")

> confint(LM,level=0.95)

	2.5 %	97.5 %
(Intercept)	-166.784813	-42.781609
height	3.049948	4.914503

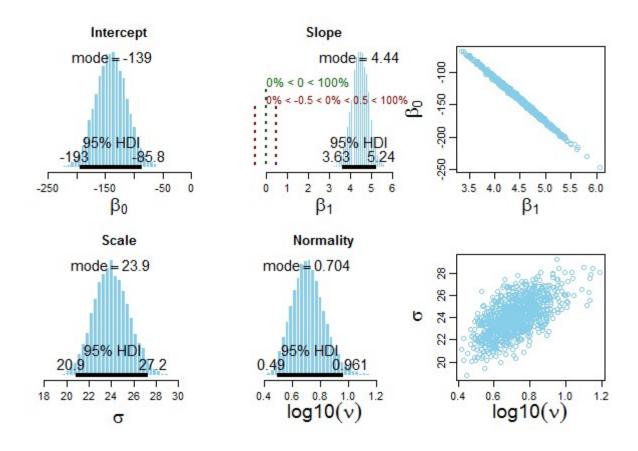

> sd(Y)

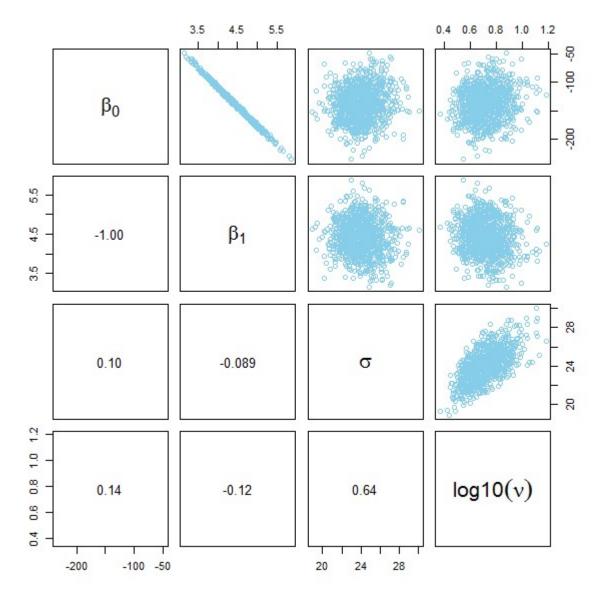
```
[1] 35.07212
```

MCMC Results:

> show(summaryInfo)									
	Mean	Median	Mode	ESS	HDImass				
beta0	-139.775801	-139.9595264	-138.8772426	16358.9	0.95				
beta1	4.458403	4.4597229	4.4412420	16651.3	0.95				
sigma	24.009506	23.9536256	23.8904383	6294.0	0.95				
nu	5.411979	5.1014283	4.6649534	4317.9	0.95				
log10(nu)	0.715502	0.7076918	0.7041195	4999.0	0.95				
	HDIlow	HDIhigh	CompVal Pcnt	GtCompVal	ROPElow	ROPEhigh			
beta0	-193.4713221	-85.7968016	NA	NA	NA	NA			
betal	3.6295620	5.2409550	0	100	-0.5	0.5			
sigma	20.8806035	27.2448702	NA	NA	NA	NA			
nu	2.9115509	8.6545470	NA	NA	NA	NA			
log10(nu)	0.4904864	0.9610638	NA	NA	NA	NA			
PcntLtROPE PcntInROPE PcntGtROPE									
beta0	NA	NA	NA						
betal	0	0	100						
sigma	NA	NA	NA						
nu	NA	NA	NA						
log10(nu)	NA	NA	NA						

Data w. Post. Pred. & 95% HDI


Summary of Findings:


Parameter:	Simple Regression:	95% CI	MCMC using JAGS:	95% HDI
	point estimate		mode	
β ₀	-104.78888832	[-166.7842.78]	-139	[-19385.8]
β ₁	3.9822	[3.05 - 4.91]	4.44	[3.63 - 5.24]
σ	35.07212		23.9	[20.9 - 27.2]

As before, values of the Normality parameter v > 30 (log₁₀(v) > 1.4771 indicates Normal distribution behavior. Therefore, observed posterior distribution of v (mode = 0.704) indicates a role to be played by the t-distribution in accounting for outlier data points. As a result, MCMC derived σ (mode = 23.9) is less than the point estimate determined by the standard deviation of the sample. The JAGS Bayesian modes for regression parameters are more-or-less simiar to the point standard (frequentist) estimates, although slope is more nearly similar than intercept. This makes sense because the center of the data distribution is far from height = 0, so intercept beyond range of the data might be expected to be highly variable.

The Post Prediction Plot, above, shows the original data points (N=300) along with a sample of regression prediction lines representing frequently encountered joint β_0 and β_1 . The humped distributions at values of x_i , are predictions of weight (y_i) given values of height (x_i) derived from sampling β_0 and β_1 along the MCMC chains.

In the pairwise plots, strong correlation between regression parameters β_0 and β_1 is seen, and is expected from a linear model. Correlations between σ and ν is seen and also expected for t-distributions models.

