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ORIGIN 0  Robust MCMC - Simple Regression
Simple Regression involves a model where the dependent variable y, with values indexed by i, are interpreted to 
be related to the independent variable x by means of the linear function yi = 0 + 1xi +  .  The error term  is 
commonly assumed belong to a Normal distribution.  However in MCMC Robust regression using JAGS, the 
three parameter t-distribution is commonly utilized instead.  JAGS Scaffolds are derived from the the text by 
J.K. Kruschke (K): Doing Bayesian Data Analysis - A Tutorial with R, JAGS, and Stan, available at 
https://sites.google.com/site/doingbayesiandataanalysis/.  
As with other MCMC Robust models, variability in yi are modeled with the t-distribution with parameters 
(,,).  The behavior of  is directly determined by the linear function with parameters 0 and 1  Priors are 
set with Normal distributions and vague initial values.  Because the data yi are not typically centered around 
zero, the 's are strongly correlated.  This may cause problems with JAGS Gibbs samplers, so the usual 
procedure is to standardize yi producing the new variable zyi.  After the MCMC analylsis is run, posterior 
parameters are then converted back to original scale.  Priors for (,) are handled as before (see 030 MCMC).  
Because zyi is standardized, values for all vague priors are set at standardized scales.  

In K's 2nd level file containing function genMCMC() (in part shown below), note that the process of 
standardizing the data is handled within a data{} code segment, and conversion of standardized 
parameters back to scale of the original data is handled within the model{} segment.

from: Jags-Ymet-Xmet-Mrobust.R
# THE DATA.  y = data[,yName]  x = data[,xName]    # Specify the data in a list, for later shipment to JAGS:  dataList = list(    x = x ,    y = y   )
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    # THE MODEL.  modelString = "  # Standardize the data:  data {    Ntotal <- length(y)    xm <- mean(x)    ym <- mean(y)    xsd <- sd(x)    ysd <- sd(y)    for ( i in 1:length(y) ) {      zx[i] <- ( x[i] - xm ) / xsd      zy[i] <- ( y[i] - ym ) / ysd    }  }

  # Specify the model for standardized data:  model {    for ( i in 1:Ntotal ) {      zy[i] ~ dt( zbeta0 + zbeta1 * zx[i] , 1/zsigma^2 , nu )    }    # Priors vague on standardized scale:    zbeta0 ~ dnorm( 0 , 1/(10)^2 )      zbeta1 ~ dnorm( 0 , 1/(10)^2 )    zsigma ~ dunif( 1.0E-3 , 1.0E+3 )    nu ~ dexp(1/30.0)    # Transform to original scale:    beta1 <- zbeta1 * ysd / xsd      beta0 <- zbeta0 * ysd  + ym - zbeta1 * xm * ysd / xsd     sigma <- zsigma * ysd  }  " # close quote for modelStringStandard Simple Linear Regression Results:
> summary(LM)
Call:
lm(formula = weight ~ height, data = myData)
Residuals:
   Min     1Q Median     3Q    Max 
-63.95 -21.17  -5.26  16.24 201.94 
Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) -104.7832    31.5056  -3.326 0.000992 ***
height         3.9822     0.4737   8.406 1.77e-15 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 31.59 on 298 degrees of freedom
Multiple R-squared:  0.1917, Adjusted R-squared:  0.189 
F-statistic: 70.66 on 1 and 298 DF,  p-value: 1.769e-15

#Run standard linear regression:LM=lm(weight~height,data=myData)summary(LM)confint(LM, level=0.95)Yhat=fi ed(LM)e=residuals(LM)X=myData$heightY=myData$weightRESULTS=data.frame(X,Y,Yhat,e)#PLOTTING REGRESSION LINE & POINTS:X=myData$heightY=myData$weightsd(Y)plot(X,Y,xlab='height',ylab='weight')abline(LM,col="blue")
> confint(LM,level=0.95)
                  2.5 %     97.5 %
(Intercept) -166.784813 -42.781609
height         3.049948   4.914503
> sd(Y)
[1] 35.07212
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MCMC Results:

> show(summaryInfo)
                 Mean       Median         Mode     ESS HDImass
beta0     -139.775801 -139.9595264 -138.8772426 16358.9    0.95
beta1        4.458403    4.4597229    4.4412420 16651.3    0.95
sigma       24.009506   23.9536256   23.8904383  6294.0    0.95
nu           5.411979    5.1014283    4.6649534  4317.9    0.95
log10(nu)    0.715502    0.7076918    0.7041195  4999.0    0.95
                HDIlow     HDIhigh CompVal PcntGtCompVal ROPElow ROPEhigh
beta0     -193.4713221 -85.7968016      NA            NA      NA       NA
beta1        3.6295620   5.2409550       0           100    -0.5      0.5
sigma       20.8806035  27.2448702      NA            NA      NA       NA
nu           2.9115509   8.6545470      NA            NA      NA       NA
log10(nu)    0.4904864   0.9610638      NA            NA      NA       NA
          PcntLtROPE PcntInROPE PcntGtROPE
beta0             NA         NA         NA
beta1              0          0        100
sigma             NA         NA         NA
nu                NA         NA         NA
log10(nu)         NA         NA         NA
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As before, values of the Normality parameter  > 30 (log10() > 1.4771 indicates Normal distribution 
behavior.  Therefore, observed posterior distribution of  (mode = 0.704) indicates a role to be played by the 
t-distribution in accounting for outlier data points.  As a result, MCMC derived  (mode = 23.9) is less than 
the point estimate determined by the standard deviation of the sample.  The JAGS Bayesian modes for 
regression parameters are more-or-less simiar to the point standard (frequentist) estimates, although slope 
is more nearly similar than intercept.  This makes sense because the center of the data distribution is far 
from height = 0, so intercept beyond range of the data might be expected to be highly variable.
The Post Prediction Plot, above, shows the original data points (N=300) along with a sample of regression 
prediction lines representing frequently encountered joint 0 and 1.  The humped distributions at values 
of xi, are predictions of weight (yi) given values of height (xi) derived from sampling 0 and 1 along the 
MCMC chains.
In the pairwise plots, strong correlation between regression parameters 0 and 1 is seen, and is expected 
from a linear model.  Correlations between  and  is seen and also expected for t-distributions models.

[20.9 - 27.2]23.935.07212
[3.63 - 5.24]4.44[3.05 - 4.91]3.98221

[-193 - -85.8]-139[-166.78 - -42.78]-104.788888320 
mode point estimate 

95% HDIMCMC using JAGS: 95% CISimple Regression:Parameter:

Summary of Findings:
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