Biostatistics 002

Guide to Tests

Guide to material covered in the Lecture Worksheets:

*	Descriptive statistics:		
	> Calculation of descriptive statistics	Descriptive Statistics	Biostatistics 020
	Graphical display of data	Summary and Graphic Display of Data	Biostatistics 030
*	Probability & Probability Distributions:		
	Guide to probability	Standard & Conditional Probability	Biostatistics 050
	Probability distributions	Probability Distributions	Biostatistics 070
	> Normal distribution	The Normal Distribution	Biostatistics 080
	Assessing Normality	Assessing Data Normality	Biostatistics 090
*	Sampling and Statistical Inference:		
	General strategies in sampling	General Strategies for Sampling a Population	Biostatistics 040
	Repeated sampling	Distribution of Means and Confidence Intervals	Biostatistics 100
	Logic of statistical inference	Formal Logic of Statistical Inference	Biostatistics 110
*	Tests For Continuous data:		
	Single Sample		
	 Testing sample mean 	One Sample t-Test	Biostatistics 120
	 Testing sample variance 	One Sample χ ² Test of Variance	Biostatistics 140
	> Two Samples		
	 Testing differences in sample means 		
	• Samples with <i>equal</i> variances	Two Sample t-Test for populations with Equal Variances	Biostatistics 160
	• Samples with <i>unequal</i> variances	Two sample t-Test for populations with Unequal Variances	Biostatistics 180
	o Nonparametric analog	Wilcoxon Rank Sum / Mann-Whitney Test	Biostatistics 220
	 Testing differences in sample variances 	F-test for equal variances / Levine Test	Biostatistics 170
	Two Samples with <i>paired</i> data		
	Testing sample mean difference	Paired t-Test	Biostatistics 150
	o Nonparametric analog	Sign Test	Biostatistics 200
	o Nonparametric analog	Wilcoxon Signed-Rank Test	Biostatistics 220
	Two or more samples		
	 One classification factor 		
	Omnibus testing sample means		
	With homoscedasticity	One-Way ANOVA for fixed effects	Biostatistics 230
	Without homoscedasticity	Welch's F-test for ANOVA	Biostatistics 240
	• Nonparametric analog	Kruskal-Wallis Test	Biostatistics 270

- Kruskal-Wallis Test
- Pairwise testing of means ٠
- Linear contrast testing of means ٠

Multiple Pairwise Comparison Procedures in One-Way ANOVA

Biostatistics 250

Biostatistics 260

Linear Contrasts in One-Way ANOVA

Biostatistics 002

Guide to Tests

	• Testing for variance homoscedasticity	Bartlett's Test for Homogeneity of Variance	Biostatistics 280
	 Two or more classification factors 		
	• Omnibus testing sample means		
	 Crossed factors 	Two-Way ANOVA for fixed effects	Biostatistics 280
	 Repeated measures 	Two-Way ANOVA without replication	Biostatistics 300
	• Nonparametric analog	Friedman Two-Way ANOVA by Ranks	Biostatistics 330
	• Nonparametric analog	Cochran's Q Test for Nominal (0,1) Data	Biostatistics 340
	 Nested factors 	Nested Two-Way ANOVA	Biostatistics 320
	> Two or more continuous or discrete variable	'S	
	 One dependent and one independent var 	iable	
	Description of relationship		
	 Constructing Regression Fit 	Simple Linear Regression	Biostatistics 350
	 Association and correlation 	Association and Correlation in "Simple" Regression	Biostatistics 370
	• Omnibus test of fit	ANOVA F/t-Tests for Regression fit	Biostatistics 360
	 One dependent and multiple independen 	t variables	
	Description of relationship		
	 Multiple regression fit 	Multiple Regression	Biostatistics 380
	 Relationship to ANOVA 	General Linear Models and "dummy" Coding	Biostatistics 390
	• Testing	Linear Modeling and "extra" Sum of Squares	Biostatistics 400
	 Choosing variables 	Choosing an Optimal Linear model	Biostatistics 401
	 Model comparison 	General F-test for Model Comparisons	Biostatistics 402
*	Tests For Count data:		
	Tests for Goodness of Fit		
	• Classic χ^2 testing of categories	χ^2 Test for Goodness of Fit	Biostatistics 410
	 Log-liklihood testing of categories 	G Test for Goodness of Fit	Biostatistics 420
	I esting in categories in sequence	Kolmogorov-Smirnov Test for Goodness of Fit in Sequence	Biostatistics 430
	 Contingency Testing 2V2 Tables 		
	• $2X2$ radies	2V2 Contingonor Tests of Association	Disstatistics 140
	 χ & G tests of association Except Test with fixed mousing 	2X2 Contingency Tests of Association	Diostatistics 440
	Exact rest with fixed margins DVC Tables	FISHEL'S LARCE LESE OF ASSOCIATION	Divsialistics 400
	- $x^2 g$ C tasts of association	DVC Contingonov Tosts of Association	Riostatistics 150
	 χ α G tests of association Contingency tables for paired data 	KAU Conungency resis of Association	Diosullistics 450
	Test of Concordance	McNemar's Test for Paired Data	Riostatistics A70
		THE VIEW S LOST IVE LAILOU DALA	Diosidistics 7/0