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2007 Biostatistics 01 Welcome

Welcome to Biostatistics!

Please fill out a card with:
- Name
- Mgjor & Class (i.e., year)
- A way to contact you if necessary
such asemail or telephone #
- Brief reason for taking this class...

Also, pleasefill out the survey...

Class Syllabus & Organization:
- This course is above all "handson"!
- Attendance is key to success...
- Textbook will be the prime narrative.
- Read assignment each day/week before
lecture:
- Reading assignments can be found in the
Tentative Schedule on Blackboard
- Worksheets will be posted on Blackboard.
print them out and bring to class...
- Weekly Projects due on Tuesday in class.

Grading:
- See syllabus for breakdown.
- Note: be prepared for aquiz a any time!
- Grad students: Welll talk about this later...

Building a portfolio:
- agood strategy for using statistical materials.
- Importance of "prototyping"
- beware the "black box"!
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M athophobia:

"Mathophobiais an irrationa and impeditive
dread of mathematics. For any of avariety of
reasons a student can develop this emotiona
and intellectua block, making further progress
in mathematics and closely related fields very
difficult.” Mitchell Lazarus (ERIC)

In my opinion:

- important to realize the fears areirrational

- everyone has them

- fallure normally happensto everyone.

- math isatool, not an 1Q test.

- math represents power in academics & life

- the pathetic role of the 'phobe’ in ceding
initive & arole in decison making...

- math isfun to both fail and succeed in doing

Definition of Statistics:

"a branch of applied mathematics concerned with the collection and
interpretation of quantitative data and the use of probability theory
to estimate population parameters' (wordnet.princeton.edu)

" Statistics is the science and practice of developing knowledge
through the use of empirica data expressed in quantitative form.
It is based on statistical theory which isa branch of applied
mathematics. Within statistical theory, randomness and
uncertainty are modelled by probability theory. Because oneaim
of statistics is to produce the "best" information from available
data, some authors consider statistics abranch of decision
theory." (wikipedia.org)

Lies, Damned Lies, and Statistics
(e.g., http://www.bklein.de/stati tics)
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Read Rossner Chapter 1 for ageneral motivation...

- Statistics have dways been important in fields filled with
lots of data requiring summary but having exceptions.

- Varying usefulness in fields such as Physics versus Biology.
- Many traditional uses in Psychology, Evolution & Ecology
- Growing importance in Molecular Biology & Bioinformatics
Read Rossner Chapter 2 ASAP
- We will begin addressing these topics on Thursday.

- Check Blackboard and download available Lecture
worksheets and Thursday computer pod assignment.

- Follow instructions ...

- Assignments will be due in class
on the following Tuesday.
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Handling Data:

- Computer-based data M anipulation is key to
working with modern forms of statistics.

- We will begin using:

Microsoft Exce - a spreadsheet - check for tutorial
on the cd disk accompaning your text.

SPSS- Inthe pod. If you have reason to use another
program such as SAS, Systat, Minitab
please feel free.

R - afree web-resource (S& S-plusare smilar but
not free!). Thisisrapidly gaining amajor following
among many different workersincluding theoretica
mathematicians, biological researchers working in
bioinformatics and many other fieds.



#GETTING STARTED WITH THE R INTERPRETER

# Useful functions for summarizing statistical datain R:
# Note that anything prefaced by # isignored by the R interpreter.

# Examples of dataset come aready installed with R that may be consulted right away.
# For instance, the famousiris dataset of Anderson.
# Type or cut and past the following line into the R interpreter and see what happens:

iris
# Note the structure of this data table with rows (each flower often called statistical

"objects” or "individuals") and columns (variables). One column includes the species
name for each individual.

# Thiskind of dataistypical in statistics. In R, the structure is given a special name.
Try:

class(iris)

# the class "data.frame” is R's way of specifying flexible kinds of data including both

numbers and character information (as in the species column) along with labels for rows

and columns.

# Now, for summary information on the iris dataset, try:

summary(iris)

#Now, each variable (column) of theiris dataset is summarized with minimum and maximum
values, means and medians, quantiles — all good statistical information. Note also that the Species
column contains counts for each of the three species namesin the

iris dataset.

# For pairwise plots of al variables, try:

plot(iris)

#Now, you get pairwise plots of all columns. Note that some plots don't make much sense! Why?

In al statistical analysis, your job will be to interpret reports such as this and decide which are
meaningful and which are not.

# It is often useful to be able to extract particular pieces of datafrom larger data tables.
In R, you can extract the columns using the symbol$. Type:

iris$sepal.length



# What you get is an error message "NULL" meaning that R reports nothing! It isimportant to
compare this line with the column variable label "Sepal .Length” reported above. Note the
difference? Now try:

iris$Sepal .Length

# The R statistical language requires that you be specific about the case for al names. It turns out
we were lucky in thefirst place that "iris" was all in lower case letters. However, " Sepal .Length"
has both upper and lower case letters, and we must type things correctly. "Sepal.Length” is
different from "Sepal.length" and so on. Irritating, perhaps, but not a big problem now that you
have been warned!

# To avoid much typing, it is possible to simplify names for different data columns by “attaching” a
datafile to the current environment. Type:

Sepal.Length

#Theinterpreter returnsthe complaint: “Error: object "Sepal.Length™ not found”.
But if you:

attach(iris)
#and then:
Sepal .Length

# you can now view each data column by name directly. In R, the opposite of “attach” is*“ detach”.
Try it an see what happens.

# Now, let's do something useful with asingle column of the iris dataset. After attaching theiris
datafile to the environment, try:

hist(Petal .Length)

# A histogram like thisis useful for investigating the distribution of the individual measurements of
this variable (called "values' in this "sample" of measurements) in order to make a guess at the
distribution of all possible values (called the "population” of measurements). Thisdistinctionis
very important in statistics.

#To make you histogram more useful, you can specify the number of binsusing “nclass” and
colorsto the bars as follows:

hist(Petal .Length,nclass=25,col="gray” ,border="red”)

#Now, let's make a scatter plot of two variables. We will place Sepal.Length on the x axis and
Sepal .Width on they axis:



plot(Sepal .Length,Sepal .Width,col="red”,pch=21,bg=""green’)

# Note that in R, as with many statistical programs, a single column of data such as Sepal.Length is
called a"vector”. A vector issimply an ordered list of numbers (sometimes other things) with the
order indicated by an "index" indicating placement within the list.

# To access individua itemswithin avector in R, we use[]. For instance, try:
Sepal .Length[7]

#What does this number mean? Compare this with the entire data frame, and find the 7th itemin
vector Sepal.Length.

# An entire list of data numbers, consisting of vectors side by side is called adata "matrix". The
dataframe "iris" consists of a data matrix of four variable vectors plus a vector of species names.

# To access any piece of thisinformation, [] may be used aswell. Here, however, you must specify
both row and column indices:

iris[3,4]

# Can you find this number in the data matrix?
# Now try:

iris[3,5]

# Here the R interpreter tell you that the word "setosa’ sits in this spot and is one of three possible
alternatives (called "levels") including "setosa", "versicolor" and "virginica'.

# For alittle more fun, multiple values in the data frame can be extracted by using a vector we
make on the fly, using the ¢ (concatenation function):

iris[c(3,4,5,6,7,),2]

# Compare with the entire iris data set to see how this works. Here's a powerful (and cool) way to
make a vector by specifying start and end points of series of numbers incrementing by one using
":". Try thisand see what it does:

iris[c(1:6),3]

# One of the powerful features of R, like many programming languages, is the ability to name new
variables and load them with new values. Thisis done by use of an "assignment” operator. InR,
the assignment operator "<-" or "=" (two different ways to say the same thing) place values you
giveit into avariable you name. Let's name a new vector variable called "NewVar" and assign it
thevalues"1,3,5,7":

NewvVar <- c¢(1,3,5,7)

#Now "evaluate' the variable you have just made:



NewVar

#The evaluation shows that you have placed the values in the concatenation function c()inside
NewVar. Now let's make another:

Newvar2 = c¢(5,6,7,8)

# and evaluate:

NewVar?2

# Easy. We can now use "functions’ to do many important things. For instance, to calculate the
"mean" (average) of avector, use the built-in R function "mean()" placing whatever variable you
want within the parentheses:

mean(NewVar)

# How about the median, with "median()":

median(NewVar?2)

# Can you find the median of Sepal Lengthiniris:

median(Sepal .Length)?

Or, how about the mean of the first 50 rows in of irisfor Petal Width?

mean(iris$Petal .Width[1:50])

# There are many other useful functionsin R, such as:

min(NewVvar) # minimum value in vector

max(NewVar2) # maximum value in vector

sum(NewVar) # adding the elements of the vector.
length(Newvar?2) # finding how many numbers occur in the vector.

var(Petal .Length[1:50]) #for the variance of Petal Length for iris setosa.

# Many more functions may be found by typing:

help.start()

# Asyou have probably noticed, learning about and remembering the syntax of a programming

language such as R isamajor challenge and fundamental to using it effectively. To find more
information about any built in function in R, type a"?' followed by function name, eg:



?var

#It is often very useful to look at some variables according to values exhibited by another. For
instance, looking at the iris dataset:

iris

# one can see that data for iris species “setosa” are found in the first 50 lines, data for “versicolor”
in the next 50 lines, and for “virginica” in the last 50 lines. We can cal cul ate the number of lines,
minimum value, maximum value, mean value, standard deviation, and variance for one variable by
applying the above functions. For Sepal.Length in species “versicolor”, try:

length(Sepal .Length[51:100])

min(Sepal .Length[51:100])

max(Sepal .Length[Species==""versicolor’])
mean(Sepal .Length[Species=="versicolor’])
sd(Sepal .Length[Species=="versicolor’])
var(Sepal .Length[Species=="versicolor’])

# Asyou can see, thisis somewhat tedious, and requires manually checking rowsin theiris dataset
to determine which belong to the species “versicolor”. Alternatively, one can use “==" (double
equal sign indicating logical evaluation rather than assignment) and allow R to do the counting for
you. An easier way to combine such functionsisto use the function called “tapply” creating
variableslikethis

xbar=tapply(Sepal .Length,Species,mean)
n=tapply(Sepal .Length,Species, length)
mn=tapply(Sepal .Length,Species,min)
mx=tapply(Sepal .Length,Species,max)
s=tapply(Sepal .Length,Species,sd)
v=tapply(Sepal .Length,Species,var)

# and then using the “column combine: function:

cbind(““NUMBER”’=n,

“MINIMUM”=mn,

“MAXIMUM=mx,

“MEAN”’=xbar ,

“STD DEV”’=s,

“VARIANCE”=s) #Note use of multiple lines only to make this more readable! R doesn’t care.

# The result is atabulation of these variables for each speciesin turn. Note in the command above,
that wordsin“ " are used to specify labels; the symbol * * work also, but should not be intermixed.

# We can histogram each now by making the following Sepal .Length variables:



SL.setosa=Sepal .Length[Species==""setosa'"]
SL.versicolor=Sepal .Length[Species==""versicolor']
SL.virginica=Sepal .Length[Species=="virginica']

# Then formatting using the function” mfcol” for making 3 rows and 1 column:
par(mfcol=c(3,1))
# followed by making the histograms:

hist(SL.setosa,nclass=15,col="red")
hist(SL.versicolor,nclass=15,col="blue™)
hist(SL.virginica,nclass=15,col=""green™)

# After that, it isagood practice to reset the plotter back to a single plot:
par(mfcol=c(1,1))

# unless you intend to continue plotting graphs in groups of three indefinitely. A similar function
“mfrow” alows graphing in rows instead of columns:

par(mfrow=c(1,3))
hist(SL.setosa,nclass=15,col="red")
hist(SL.versicolor,nclass=15,col="blue™)
hist(SL.virginica,nclass=15,col=""green)
par(mfrow=c(1,1))

hist(SL.setosa,nclass=15,col="red")
hist(SL.versicolor,nclass=15,col="blue™)
hist(SL.virginica,nclass=15,col=""green)

# To alow comparison between histograms, limits based on maximum and minimum values
(observed on the graphs or calculated above) can be applied to the x and y axes:
par(mfcol=c(3,1))

hist(SL.setosa,nclass=15,col="red",

xlim=c(4,8),ylim=c(0,10))
hist(SL.versicolor,nclass=15,col="blue",

xlim=c(4,8), ylim=c(0,10))
hist(SL.virginica,nclass=15,col="green",

xlim=c(4,8), ylim=c(0,10))

par(mfcol=c(1,1))

# Now for making scatter plots with multiple coded points, we make variables by extracting
Sepal .Width for each Species:

SW.setosa=Sepal .Width[Species==""setosa"]



SW.versicolor=Sepal .Width[Species=="versicolor"]
SW.virginica=Sepal .Width[Species=="virginica"]

# Now for we make a plot using function “plot”. Limits xlim and ylim are specified to allow
plotting of all pointsin the graph. We then add points for the others using function “points’:

plot(SL.setosa,SW.setosa,pch=19,col="red",
xlim=c(4,8),ylim=c(2,4.5))

points(SL.versicolor,SW_.versicolor,pch="v",col="blue",
xlim=c(4,8),ylim=c(2,4.5))

points(SL.virginica,SW.virginica,pch=22,col="green",
xlim=c(4,8),ylim=c(2,4.5))

# Of course, points are color coded using “col” and different symbols are used using “pch”. To
find available options, enter:

#SAVING PLOTS:

# To save your histograms or plots, it is asimple matter of cutting and pasting them into your
favorite word processor such as MS Word. They can then be printed out in the normal way.

?points
#READING AND WRITING DATA:

# Writing and Reading data from external files is an important aspect of any statistical analysis.
Simple text files are the most general way to exchange data between formats and programs as
nearly all have ability to do thisin one way or another. To write the“iris’ datatable to atext file,
the easiest way isto cut and paste. Open atext file editor, and then cut and paste normally. Be
sure to include the first line containing names of the variables. Use your text editor to make a
simple text file named “iris.txt” and place this within R’ sworking directory. Y ou can find out
where the working directory is located by looking under “File/Change dir” on the R console.

# After writing the file, let’s see how to read it back into R.  For this, we will make a new variable
called “newlris’. Use the function “read.table” and then list the file.

newlris=read.table(“iris.txt”)
newlris

# Asyou can see, read.tablein R has correctly interpreted you “iris.txt” file and read all the data
points into the appropriate columns. From this, you can obtain summary information like before:

summary(newlris)

# To convert import iris.txt in to MS Excel, open the program and then under “File/Open” choose
R’sworking directory, and “All Files’” in the “Files of type” box. Open “iris.txt” and follow
Excel’sformatting instructions. Click the “Delimited” radio button with “ Start import at row 1”



then, click “Next”. Check the “ Space” box and now fields delimitation is shown by vertical lines.
The lines should correctly separate each data point isin itsown field. Now click “Next”. Now you
can change data format or just accept the defaults, click “Finish”. At this point, everything should
look like the original and you can save the file asanormal Excel worksheet. To reverse the
process and import adatafileinto R from Excel, it’s best to have Excel write asimple text file.
Open your datain Excel, and choose “File/Save As...” Make a new name for your file such as:
“IrisFromExcel” and “ Tab delimited Text” in the “ Save astype” box. Excel then complains that
changing to text format may loose formatting information, but say “Yes” anyway. Now exit Excel
WITHOUT SAVING (this preserves your original filein Excel). Now, on the R console, make a
new variable and use function “read.table” again:

Iris2=read.table(*“IrisFromExcel . txt”)
# And to verify al went well:

summary(lris2)
Iris2
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Descriptive Statistics
Interpreting MathCad Wor kshests:

For classes such asthis, whereit isuseful to make documentswith math symbols, graphs, etc, |
find the program M athCad to be quite ussful. This program makes available an extensve
library of mathematicsfunctionsallowingimport, export, and manipulation of data in
real-time. It also allows me todocument what | havedone using familiar mathematics symbols
directly compar abletothat seenin thetext, and lots of wordsin thewor ksheet itself. For the
purpose of prototyping statistical proceduresand tests, | find the combination ideal.

Note, however, that | do not require that you buy MathCad as| will makethese sheets available
toyou in both MathCad (*.mcd) and in Adobe Acrobat (*.pdf) formats.

To get star ted, thiswor ksheet is designed to provide an overview of what you might expect to
seein lecture worksheets from now on.

<- | normally put thisin all my worksheetsto sandardize use of index
ORIGIN = 0 variables across all my wor ksheets. It isan example of
"global assgnment” (usingthe symbol ~ on thekeyboar d).
Don't wor ry about what it means at this point.

N OK, so now you see how | nor mally label things...

Calculations:
2+2=4 <- Calculations ar edone in the normal way using familiar symbols.

35
= _7
5

6-5=30
= 3.142 <- Some common mathematical values are built in theprogram...

<- Variablesmay be named at any time.
Note, however, that there ar etwo distinct
meanings here for what wenormally term
Var .= 78 Var = 78 "equals'!

Assignment ver sus Evaluation:

" assignment " evaluation Assignment (indicated by use of : and shown on

the wor ksheet as:=) means" put the numerical
value 79 into avariable | now name Var" .

/ .
var2:= 6- 9 varz = 4.667 Evaluation (indicated by use of =) means" tell
mewhat valueis placed in the already named
variable Var".
(5+3) e
vard = var3 = 4.514 Thisdiginction isimportant and common to most

T programming languages...
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Data I nput:

Descriptive Statistics

iris:= READPRN("c:/2007BiostatsData/iris.txt" )

AN Thisiseasy usng the built-in READPRN() function for smple text format data. When
prototyping, using an exising wor ksheet, | can read in different datafilesand calculate
thingsin exactly the same way. A worksheet showing how to do a specific satistical test, for
ingance, iscritical for evaluating output from canned programsthat might other wise appear
tobea"BLACK BOX".
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SL = iris<1>
SW = iris<2>
PL = iris<3>
PW = iris<4>

length(SL) = 150

length(SW) = 150

length(PL) = 150

length(PW) = 150

<- Evaluation of variableiris.

Note that the display is often apartial list that may be
scrolled in the nor mal manner likea spreadsheet. The
variable might also be displayed in matrix form...

<- New variablesare now named and assigned to the valuesin differ ent
columns of the dataset iris. Notethat columnsstart their numbering
with'0'. Thisistheresult of my ORI GIN assgnment above. Thefirs
column of number sismer ey therow number. Scrollingdown one can
seethat there are 150 rows. Speciesnamesin column 5 didn't import
here as MathCad interpreted thedatato be numeric... Statigics
programs such as R will do a better job with this. However, we won't
worry about it for our purposes here.

<- usng built-in function length() to evaluate the number
of rows (i.e., objects = flowers) insdeour variable SL.
Thisisuseful.

<- Evaluating the other variables. Theresult ishardly a

surprise, but auseful check anyway in casesomething went
wrongin using function READPRN() above.
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Descriptive Statistics:

mean:
n := length(SL) n =150
i=0.n-1 <-setsup a lig of numbersfrom 0 to 149.
i =
S a7 Scroll on the evaluation here-> 0
2 to see them all! 1
2
N Note thisisthevaluein row 2 of variable SL, called by 3
using theindex ('[' Ieft bracket on the keyboard).
4
1 5
Xbpar == — Z (SLi) <- X.bar isthe name of the variable. The 6
n i bar part is shown asasubscript... -
8
N Sum values of SL over all rowsand
o 9
divide by n.
10
prototype for mean: 11
12
Xpar = 5.843 <- Evaluation of X.bar 13
14
B <- compare with MathCad's built-in
mean(SL) = 5.843 function mean(). Our method for 15

calculating a mean is confir med.

median:

<-usngM athCad's sor t() function to

Slsort := sort(SL) rearr ange thevalues of SL in or der.

. n .
midpoint := P midpoint = 75 <- figuring the midpoint (i.e., halfway) index

. 1
medianSL := E(SLSO”midpomt + SLSOVtmidpomHl) <-variable S .sort indexed by midpoints

~ When thenumber of valuesin avariable are even, the definition of
median requiresthat we average thetwo closest points.

prototype for median:

medianSL = 5.8 <- our explicit calculation matches M athCad's
median(SL) = 5.8 built-in function median().

mean(SL) = 5.843 median(SL) = 5.8

B i - <- Having prototyped one, we now have
mean(SW) = 3.057 median(SW) = 3 confidence that weknow how to
mean(PL) = 3.758 median(PL) = 4.35 calculate AL L of thesel

mean(PW) median(PW) = 1.3
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Descriptive Statistics:

sample variance and sample standard deviation:

1 2 <- applying for mula for sample variance.
vasL="TT {Z [(SLi - mean(SL)) ﬂ Variable SL isindexed by previously

defined index i. with mean(SL) as
pr ototyped above for mean.

standdevg := ,/varSL <- Standard deviation isthe squar er oot of variance
prototype:
varg| = 0.686 var(SL) = 0681  <- Notethe difference. MathCad's built-in function

must be calculating population variance!

n -var(SL) = 0.686  <- This conver ts population varianceinto sample variance.
1 Matches our calculation and confirmswhat MathCad
isdoing.

standdevg, = 0.828 stdev(SL) = 0.825 <- Again, doesn't match for samer eason.

/ n 1 -var(SL) = 0.828 <- Again converting to population standard deviation.
n —

This section displays the value and power of making prototypes! In gatistical analyss, it
isvery important to understand exactly what you are doing using a computer -based
gatistical program. For minor reasonslike here, a program may be doing something
subtly differ ent different than you expect. Without making a pr ototypethefirst time
you usea procedure, you might end up reporting, and perhapstrying to publish, an
ERROR... THISCAN BE VERY EM BARRASSING!

Properties of Mean and Variance:

Often, one has a choice in the units employed in measuring or counting aproperty. For
instance, one might decide to measure temperatur ein either degrees Celsius or

Fahr enheit. Conversion from one measurement tothe other typically involves
trandation (adding or subtracting aconstant) and scaling (multiplying a
measurement by a constant). Translation and scaling together may be summarized by
the following fomula, where x isthe original measurment and y isa measurement
"tranformed" by trandation and scaling.

y=a-Xx+Db
where cisthe multiplication congtant in scaling, and b isthetranslation constant.

You might recognizethisformulaasthe equation for aline. Asa result,
transformations of thiskind ar eoften called linear transfor mations.

In gatistics, we are inter eed in what happensto means and variance when original
measurements are modified in thisway.
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trandation: 0 0
0(5.1 0101
b:=5 149 1| 9.9
trandatedg, ;= SL + b 2|47 2| 97
3|46 3| 96
N Letb=5inthelinear 4| 5 4| 10
transformation above-> 5|54 5104
6|4.6 6| 9.6
SL=(7| 5 trandatedg =| 7 10
mean(SL.) = 5.843 8 | 4.4 8| 94
mean(translatedg ) = 10.843 929 ol 99
mean(SL) + b = 10.843 10( 5.4 10| 10.4
. _ 11| 4.8 11| 9.8
N trandation shiftsthe 228 ) o5&
mean value by b : :

13| 4.3 13| 9.3
varg, = 0.686 14| 5.8 14| 10.8
15| 5.7 15| 10.7

varg t .= - var( trandated

uiim - v )
varg ¢ = 0.686

A trandation does nothingto variance. Sincestandard deviation isthe square root of
variance, trandation does nothingto standar d deviation aswell.

scaling: 0 0
0(5.1 0|255
c=5
1149 1245
scaledSL = ¢c-SL 2147 2| 235
3|46 3| 23
A I .
Letc-5|nthellnear 2 5 BT
transfor mation above ->
5|5.4 5| 27
mean(SL) = 5.843 6|46 6| 23
mean(scaleds ) = 29.217 sSb=l7] 5 scleds =| 7| 25
8|4.4 8| 22
mean(SL) - ¢ = 29.217
9149 9 (245
. . 10| 5.4 10| 27
" scaling multiplies the mean by
the same factor cas each of 111458 11 24
thevaluesin SL 12| 4.8 12| 24
13| 4.3 13| 21.5
varg_ = 0.686 14| 5.8 14| 29
n
varg g = 0 -var(scaledSL) 15| 5.7 15| 28.5
n_

varg g = 17.142 varg - C-17142 < scaling multiplies observed variance by factor c2.

standdevs s =\ VarsLs standdevg s = 4.14 <- scaling multiplies observed
standar d deviation by factor c.
standdevg - c = 4.14
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linear transformation:

c=18 b:= 32 <-notethat these valueswould convert a degree measur ement
in Celsusinto the equivalent value on the Fahrenheit scale.

0 0
transformedg :=c-SL + b 051 0|41.18
1|49 1|40.82
NLetc=18& b=32inthe 2|47 2 | 40.46
linear tr ansformation above -> 346 3| 4028
4| 5 4 41
5|(5.4 5| 41.72
mean(SL) = 5.843 6 a6 6 [ 2028
mean(transformedg ) = 42.518 sL=[7] s transformedg. =| 7| 41
c-mean(SL) + b = 42.518 8|44 8139.92
9 (4.9 9 | 40.82
~ scaling multipliesthe mean by 10| 5.4 10| 41.72
the same factor c as each of 11| 4.8 11| 40.64
thevaluesin SL and addsfactor b 12|48 12| 20.62
13| 4.3 13| 39.74
varg, = 0.686 14] 5.8 14| 42.44
VarSLisans = - var(transformeds ) 15157  42-26

n —

varg| trans = 2.222 rarg - 2-222  <-scaling multiplies observed variance by factor c2

and translation in b has no effect.
standdevs| trans == V&' SLtrans

standdev trans = 1491 <- scaling multiplies observed standard deviation
by factor c and translation in b has no effect.
standdevg - ¢ = 1.491
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ORIGIN =0

iris:= READPRN("c:/2007BiostatsData/iris.txt" )

SL= iris<1>
() o|l1|2(|3]4
SW .= iris .
: 3 <- Column variables asbefore 0 1/5.1(35(14]0.2
PL := iris 1| 2|49 3|14]|02
PW .= iris<4> 2| 3[47|32|13]|0.2
3| 4|46(3.1|15|02
n:=length(SL)  n=150 gy yation of variableiris -> 4| 5| s5[36[14]02
i—0.n-1 5| 6|/54(39(|17|04
6 714613411403
Descriptive Statistics: MS=|7| 8] 5/34/15)02
8 914.4129(|1.4(0.2
mean and median: 9| 10[49]31]15]01
mean(SL) = 5.843 median(SL) = 5.8 10| 11(5.4(3.7|15|0.2
mean(SW) = 3.057 median(SW) = 3 11| 12|4.8(3.4|1.6|0.2
_ 12| 13|4.8| 3|1.4]|01
mean(PL) = 3.758 median(PL) = 4.35
_ 13| 14| 4.3 31101
mean(PW) median(PW) = 1.3 14| 15|5.8| 4(1.2]0.2
. o 15| 16|5.7|4.4|15|0.4
sample variance and samplestandard deviation:
n
varg = - var(SL varg = 0.686 stdg = ,/var stdg = 0.828
sLi= T varsh) s L= varg, SL
n
vargy = - var(SwW vargy = 0.19 stdgyy := /var stdgy = 0.436
swi= —— - var(SW) Sw Sw =\ Varsw Sw
n
varpl = - var(PL varp, = 3.116 stdp = ./var stdp = 1.765
PLi= - var(PL) PL PL =\ VarpL PL
n
varpyy = - var(PW varpyy = 0.581 stdpyy =/ var stdpyy = 0.762
Pw i= - var(PW) PW PW =\ Varpw PW
range:
min(SL) = 4.3 max(SL) = 7.9
min(SW) = 2 max(SW) = 4.4 <- using built-in minimum and maximum functions
min(PL) = 1 max(PL) = 6.9
min(PW) = 0.1 max(PW) = 2.5
coefficient of variation:
stdg stdp
Vg = ————— cvg = 0.142 cVp = ———— cvpL = 0.302
SL mean(SL) SL PL mean(SL) PL
stdsyy stdpyy
CVgy = ———— cvgyy = 0.075 CVpy = —————— cvpyy = 0.13
SW mean(SL) SW PW mean(SL) PW

Graphic Display of Data

Graphic Display of Data

<- Input iris same dataset as before
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Scatter Plots:
45 T
[ )
[ ]
[ )
4 . .
[ )
[ ] [ ) [ ) [ ]
[ ] [ N )
[ ] LN ] [ )
35 LN ] ° —
[ ] [ ) [ N N ] [ ) [ ] [ N )
[ N ] [ ) [ )
SVV [ ) o0 [ ] [ ] [ N ] [ X N ] [ )
ooo [ ] o0 [ ] [ ] [ ]
3— [ N ) [ X N ] [ ) o0 [ N N J [ N N N ) o0 o0 —
[ ) o0 o000 O [ ] [ )
[ 3 N ] o0 000 [ ) [ ] [ )
[ ) [ ] [ ] [ ] [ N )
[ ] [ N ) [ ] [ )
251 e o LN ] ° (] —
[ ] [ ]
[ ] [ ] [ ] [ )
[ ] [ ]
2 | L | | | | |
4 45 5 55 6 6.5 7 75 8
SL

N Any pair of variables can beplotted to look for patterns...

(SL,SW,PL)
N Sameidea looking athreevariablesat atime...
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Histograms: @ ]
0| 4.133 0
1| 44 5
2 | 4.667 11
' 3 [4.933 16
plot := histogram(15, SL) 2 5o 12
5 | 5.467 19
A variable plot containstwo columns plot = 6 |5.733 15
column O: x axis= number of bins ! ° o
column 1: y axis = count in each bin 8 | 6267 13
9 | 6.533 14
10| 6.8 15
11| 7.067 2
12| 7.333 5
13| 7.6 5
14| 7.867 1

20

151

o ¥ 10
o

heck text for definitions of positively vs negatively
ewed digributions... What do you think here?

4 45 5 55 6 6.5 7 75 8

pl ot<o>

Stem & L eaf Plotsand Box plots:

Plots of thiskind generally r equire a mor e sophisticated system more directly
related to gatistical analysisthan MathCad worksheets.

Goto SPSS Sydat, or R...



Assignment for Week 2

Thisweek’ s reading assignment is admittedly a difficult one. The chapter goes well beyond
what’ s really necessary for an introduction to biostatistics, but please read it anyway! At this
point, | do not expect that you will be able to remember all of it, or that you will be able to work
many of the more difficult problems at the end of the chapter. This material iswaiting for you in
the future as your experience with statistics increases, or when needed. Personally, | do this
often - usually learning something new (or forgotten) each time | return to asubject —and it’s
nice to have somewhere familiar to start.

The purpose in reading this section now isto become familiar with some of the basic
terminology associated with probability, and to get afeel for how probability isused in real-life
clinical studies and other situations. For our purposes, please familiarize yourself with the basic
logic of probability seen in the first part of the chapter and in Lecture Worksheet 05. Asyou can
see, calculations of multiplied, added, or conditional probabilities are central to many of these
endeavors, as are concepts of mutually exclusive, potentially co-occurring events, and
dependent versus independent variables. Care in framing probabilities with regard to the above
concepts, and in setting up appropriate study questions, are key to obtaining important resultsin
each case. Thetext provides awealth of examples about how to compute derived calculations
for different real-life situations. The examples and problems thus serve as templates waiting for
you as the need may arise. In conducting your own statistical analysis, there may be a problem
that has asimilar basic structure to one or more of these. At that point, the examples become
critically relevant. 'Y ou should work through the problems to master the appropriate calculations
in a prototype sheet. After that, the techniques you have learned can be applied to the problem at
hand with confidence.

In reading this chapter for the first time, it is also interesting to see how debate about the use of
statistics is framed, such as between the “Frequentist” versus “Bayesian” views of probability
and statistical inference. | found thisinteresting as| am increasingly asked about these topics
(usualy missing from introductory texts) motivated by recent developmentsin different
biological fields. | spent some time working through this material, so L ecture Worksheets 06-08
are intended as beginning prototypes for those who may wish to delve into the topic further.
Some of you, especialy graduate students, may have already encountered Bayesian risk
assessments, already. If interested, | will be happy to assist in these areas. We'll haveto learn
together!

For our project thisweek, | would like usto turn our attention to some practical aspects of data
simulation and analysis. Consult Lecture Worksheet 04 for a beginning discussion of probability
distributions. Next week and the following, we will look at particular distributions such as the
Binomial Distribution, Poisson Distribution, Normal Distribution and Chi-Square
Distribution in much greater detail. At thispoint, | think it would be useful for usto become
familiar with their basic properties by constructing simulated populations, graphing them, and
calculating afew descriptive statistics. We can then compare our simulated samples with the
theoretical properties of a perfectly distributed population for each distribution. The R
statistical system isideal for this, asit has built-in awide range of functions, so thisisan
opportunity to become more familiar with this powerful tool also. Excel will do some of what
we have in mind here, but alot more would have to be done by hand.



For this week, divide into groups of two or three. Make sure at least someone has a working
version of R. If not, let’s spend some time trying to get R going on your machines. Please bring
your computer to class if possible. Don’t worry if that’s not possible, since you will be working
in groups... However, since everyone said they had access to their own computers at home, now
isthetimeto get R installed and running. | can help you with thisin lab if necessary.

The project thisweek isasimple one! Consult the html Help section of the R console for
definition and syntax of the statistical functions you will use. For each distribution below, use
the appropriate function (prefaced with ‘r’) to generate 1000 data random data points and assign
the vector created to avariable name. Now using whatever program(s) you wish, histogram the
data and investigate each set of data points using appropriate descriptive statistics. Try different
parameter values for these distributions to see what they do. At this point, don’t worry very
much about what they mean. We will look into that shortly.

Now use the appropriate function (prefaced with ‘d’) to construct a population distribution using
the parameter values you have used before. For this function you will have to construct a vector
containing a series of X variables for which the function returns P(X). Plot thisfunction and
compare with your histograms.

For the Binomial Distrubution: parameters you will have to specify n = number of trials, k =
number of “successes’ & p = probability of successes. Try different values of each in turn
(keeping the others constant) and see what you get!

For the Poisson Distribution: you will have to specify parameter A (lambda) the expected
number of events over unit time. Vary A to see its effect on the distribution of your points.

For the Normal Distribution: you will have to specify p = mean, and ¢ = variance of the
distribution. Try different values of each holding the other constant to see the effect.

For the Chi-Square Distribution: you will have to specify df = degrees of freedom. Vary this
to see the distribution change.

Due next Tuesday in Class.
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Probability Distributions
ORIGIN =1

Statigicsis based upon compar isons of measurements collected from oneor more limited
samples, with what might be the expected values character izing the under lying population from
which thesampleshave been drawn. In fact, these expected valuesare sometimes/always not
easily determined. Important assumptions are alwaysinvolved linking samples with populations
and these assumptions underlie the usefulness of descriptive statistics, such as mean and
variance.

Eductive Inference:  eductive: " Tendingto dr aw out; extractive."
http:/Mmvww.thefr eedictionar y.com/Eductive

Statigicsistypically based on a pair of quantities:

X  <-observed samplevalues
P(x) <-probability of the sampled values under somemode of probability.

Models of probability differ depending on what's being analyzed and are
gener ally of two types:

Discrete <-Hereonly alimited number of values are expected such as" heads'
versus"tails' inacointoss,or "1","2","3","4","5"  or 6" in
aroll of asngledie.

Continuous <- Here an infinite (or nearly so) number of observations ar epossible
asin measuring temperature, length, weight, etc. of some animal.

In either case, specific obser vations (X) are associated with probability P(x) using

Probability Density functionswherethe area under the curve givesthe
probabilty for each valueof x.

Example Discrete Probability Density functions:

coin toss:

Therear etwo possible observations H <-"heads' =1 xp=1

T < "tails' =2 1)

X, =2 X =
2 2)
For afair coin: P(H) =12
P(T)=1/2

For 100 coin tosses, expected number of H = 100(1/2) = 50 E, =50

50
expected number of T = 100(1/2) = 50 E,=50 E= (5 )

50
E <-Two classesin x have
L 4905+ — equal numbers
499 :
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ORIGIN := 0

Probability Distributions

single die:
Therearesix possbleobservations. "1" = 1)
n 2" = 2 2
n 3" e 3 I - 1.. 6 3
"4t =4 X. =i X =
|
"5 =5 4
"6 =6 5
6)
For afair die, all probabilitiesare 1/6 for 1
obtaining one of thenumbers on any throw: P:= s P=0.167
16.667
For 100 dietosses, expected number for each: 16.667
16.667
E :=P-100 E=
! 16.667
16.667
16.667 )
16.68 [~ .
JE <- Six classesin x with equal
16.66 I~ values that need not be
whole numbers
16.64 : '
0 2 4 6
X
Binomial distribution:
If one conducts multipletrials with two possible outcomes, such astosinga coin
resultingin either a " heads' or "tails', the expected number of "heads' in a set of
trialsfollows thebinomial digtribution.
total number of trials (n): n:= 20
. - 0
probability of obtaining a 'r?eads(p?' 1 0953710 7
(more genererally termed " success") pi==
2 11.907-10 -5
number of timesone obtainsa " heads' ) 2 [1.812:10 4
.. . i=0.n-1
Note that thisisa range of discrete 3 (1.087-10 -3
possbilities (rangingfrom 0 ton) Koo 2 262110 3
= .
5 0.015
Expected probability for each k: (E,): EB := dbinom(k,n, p) 6 0.037
. “ = ] ,n,
k P eB-[7 0.074
0.2 8 0.12
e likel _ 9 0.16
<- It isunlikely to find O or
10 0.176
20 heads as outcome of
J:lfB 01~ T 20 cointosses. An 1 0.16
intermediate number is 12 0.12
much mor elikely. 13 0.074
0 14 0.037
0 10 20 15 0.015
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Example Continuous Probability Density functions:
Normal Distribution:

Many forms of data ar e continuous, so the probability function is continuous and the
area under the curve represents probability (often called " probability density").
Normal distributions ar ecommon, and underly many statistical methods.

n:=50 <-Out of all possblevalues, we will arbitrarily look at a st of n points.

i 0.n At the scalewe plot things here, this might aswell be continuous...

b:= _(% . nj c:=01 <-Arbitrary scaling factors so we can see thingsin the plot.

X;:=c- (i +b) <- Individual scaled valueswe plot on our x axis below.

pi=0 og==1 <- parametersof thestandard nor mal curve where p isthe
mean of the digtribution and 62 = o isthe variance

ENp = dnorm(x, 1 ,qu)

ENg := dnorm(x, ., (20 )| <- The Normal distribution isfamily of curves
EN := dnorm{ x, ,(0-5csq)] defined by different values of u and 2.

ENp = dnorn{x,(u + 1),cscﬂ

ENg := dnorm{x, (u — 1),(05 - 5]

0.8 |

ENc 04|

02

-3
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Example Continuous Probability Density functions:
Chi-Square (x2) Distribution:
Thisdigribution iscommonly encountered in satistics, especially in what is known as

" Goodness of Fit" tests. Wewill work with it later, but it isinteresting here to see that
x2 density digributions exhibit a different shape.

n:=50 <-Out of all possblevalues, we will arbitrarily look at a set of n point.
At the scalewe plot things here, this might aswell be continuous...

b:=14 c:= 0.3 <-Arbitrary scaling factors so we can see thingsin the plot.

X;:=c- (i +b) <- Individual scaled valueswe plot on our x axis below.

d=1 <- disa parameter for the 2 distribution called
" degrees of freedom" . Thusy?2isalsoa family of curves.

ECa := dchisg(x,d)

ECp := dchisgx,(d + 1)]  x2family plotted below. Asabove, probability density the
areaunder each curve.

ECc := dehisq[x, (d + 3)]
ECp := dchisg[x, (d + 5)]
ECE := dchisg[x, (d + 10)]

16
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Standard & Conditional Probability
ORIGIN := 0

Statigicsistypically based on a pair of quantities:

X  <-observed samplevalues
P(x) <-probability of the sampled values under somemodel of probability.

In fact, associating these two quantitiesisnot at all straightforward and isoften a point of
controversy asboth a theor etical and practical matter. Ther ear etwo important perspectives

- Frequentist (or Standard) Statistical Methods - mostly what we will do in this cour se.
- Bayesian Inference - increasingly prominent in several biological & biomedical fields.

Frequentist Method:

" The probability of an event isther éative frequency of a set of outcomes over an
indefinitely (or infinite) large number of trials." Rosner p. 44 Definition 3.1

Sometimes, for theoretical reasons, agpects of the probablity distributions are known or are
assumed. More commonly in practice, however, one takes a reasonably large empirical
sample and compar esit with known theor etical distributions, such asthe Normal Distribution.

X := rnorm(100,0, 1) <- For example drawing 100 values values from a Normal
population distribution by a random number generator
plot := histogram(30, x) givesthe following histogram...
15
10 I
plot<1> |
o
5 _
. _‘ BE A
-3 -2 -1 0 1 2 3 4
(o
plot

N From thislimited sample, one might conclude that the population from
which it was drawn hasaNor mal distribution...
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X = morm(5000,0,1) <- But what if we draw abigger sample, say 5000 values,

. S -
plot = histogram(100.x) and plot it with 100 binsinstead of 307

200
150 [~ Al _
plot¥ 100 - ' : .
o [
50 [~ =
0 - lm-
-4 -3 -2 -1 0 1 2 3 4
pI0t<0>

<- Conclusion: a higger sample isusually better...
But other factor susually comeinto play including cost/timein
conducting the sudy, and small scale bias of onesort or another.

Bayesian I nference:
Here two kinds of probability are distinguished:

"The prior probability of an event isthe best guess by the observer of an event's
probability in the absence of data. Thisprior probability may be a snglenumber, or it
may be arange of likely valuesfor the probability, perhapswith weights attached to
each possble value." Rosner p. 63, Definition 3.16.

"The posterior probability of an event isthe pr obability of an event after collecting

some empirical data. It isobtained by integrating information from the prior probability
with additional datarelated to the event in question.” Rosner p. 64, Definition 3.17.

We'll look at aspects of Bayesan Inference shortly...
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Thegeneral logic of probability:

Under either of the above views, probability (both as aconcept and a property) obeys
fundamental logical (or mathematical) rules. Theserulesare very important toall aspects

of statistical inferenceand indirect prediciton of outcomes.

Terminology:
sample space = the set of all possible outcomes
an event = any specific set of outcomes
P(x) = probability of event x, where 0 < P(x) <1
compliment of x = (1-P(x)) = P(~x). Compliment istheprobability of x

Not happening.
Mutually exclusive events:

Two events, A & B aremutually exclusiveif they can not both happen simultaneously.

| nter section of eventsisthe empty set:

P(AAB)=¢ <- for two events (the smallest number where intersection

A1 AA2A ..A)=¢  <fortwoor moreeventsi has a meaning)

Union of events - The Law of Addition of probabilities applies:

P(A v B) = P(A) + P(B) <- Probability of either A or B happening are their
separate probabilities added together ...

PA1v Azv Agv A = (P(A7) + P(A2) + P(A3) + ... + P(A)))
A for multiple exclusive events, add them all.
Potentially co-ocurring events:

Two events may occur simultaneously. Therearetwo kinds
1. Independent events:

The probilities of two events, i.e., P(A) & P(B) have no bearing on each other.
I nter section of events- the Law of Multiplied probabilities applies:

P(A A B) = P(A)P(B) < multiply theseparate probabilitiesto find the
pr obability of both events occuring Smultaneoudy.

P(A1 A A2 A Az A A = F(A7) - P(Ag) - A(A3) ... F(A))

N multiply all of them for multiple events
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Union of events- Expanded L aw of Addition applies::

P(A v B) = P(A) + P(B) - MA A B) < The probability of A or B happeningis
the separate probabilities added

Alternateequivalent forms together minusthe pr obability that

for I ndependent events only: both A & B occur together

P(A v B) = P(A) + P(B) - (1 - P(A)) <- The praobability of A or B happeningis

P(A v B) = P(B) + P(A) - (1 - P(B)) the probability of one plusthe

Note: the compliment here A simultaneous occurr ence of the other
= P(~A) or P(~B) but not thefirst!
Check the Venn diagramsin the text to puzzle this out!

Note that Union for multiple independent events gr eater than twoisnot given...

2. Dependent events:

The probabilities of two events ar er elated such that knowing the outcome of one
event influences the probability of the other.

iris:= READPRN("c:/2007BiostatsData/iris.txt" )

SL:= iris<1> SW .= iris<2>
@ W <- Readingthe FamousIrisdataagain...
PL := iris PW := iris
7
6 B ° L] L] : ’ ’ ]
5 B L] ° ’ ’ : L] E ’ ° : ]
PL 41— . . : ° E o o —

3 . —
2 . 1
1 R [ | T | | |

4 45 5 55 6 6.5 7 75 8

N A plot of Sepal Length (SL) and Petal Length (PL) shows dependence.
Measuring onevariable givesimportant information about the probable
values of the other.
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2. Dependent events:

I nter section of events- the Law of Multiplied probabilities fails:

P(A A B) # P(A)P(B)  <- Thisisamore formal statement of what dependence
actually means. In practical terms, one often assesses
the separate probabilitiesfor A and B, and then
compar estheir product with a separately estimated

pr obability of both events occuring smultaneoudy to
seeif they match.

To proceed at this point, one needs a concept of conditional probability...

P(A A B) = "P(BIA)" - P(A) <- intersection in terms of conditional probability.
. . Note that you can switch therolesof A & B
B A A) = "RAIB)" - K(B) depending on which isprior probability = known
versus poster ior probability = unknown.

* See below for mor ethan two events!

Conditional Probability:

The concept of conditional probability can be applied to both the independent and dependent
cases of potentially smultaneous events above, so I'll give both here..

Definition of Conditional Probability:

Rear ranging the Law of Multipied Pr obabilitiesto solve for one of the individual
probabilities (i.e., P(B)), gives thedefinition for conditional probability:

P('Q(A)B) also written P(BJA) with no differ ence in meaning.
A

R(B) =

"N Thisisthe conditional probability for B
given prior knowledge of A...

Calculating Inter section with Conditional Probability:

1. Independent case:

P(BIA)=P(B)=P(-A) Equalities here makestheL aw of Multiplied
P(A A B) = P(A) - P(B)

probabilities a special case of the mor egeneral one
below...

2. More general Dependent case:

P(A A B) = P(%) - P(A) <- For two events....
P(A1 A Az A Ag) = P(Aq) P[ AZ} P[ A3 } <- For three events.

antzntanh) = Ak '{@f)} | {mffm} - F{Aa Py AJ

N For morethan threeevents...
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Calculating Total Probability from Conditional Probability:

Thisformulation iscommonn to both the Independent and Dependent cases:

P(A) = P(A|B)*P(B) + P(A|-B)*P(~B) <- For two possbilitiesA & B...

* * N hat therolesof A & B
e E R AR el herded s

P(A) =% P(A|B)*P(B,) <-For A given multiple prior probabilities B,

1. Independent case:

The formulas simply reduces to multiplying P(B) or P(B;) depending on
number of B's

2. Dependent case:

Theformula doesn't reduce and conditional probabilties must be used as
stated above.

Bayes Rule:

The point of thisprocedure for two events A & B isto estimate one conditional
probability P(BJA) from theother conditional probability P(A|B) and one total
probablity P(B).

F{ﬁ\ . P(B) <- Of course, as above, the defined
P(B\ _ B) rolesof A & B here can bereversed.
A F{A\ P(B) + F( ) A(notB)
ﬁ\ i p(Bi) <- General form of Bayes Rule giving multiple
Bi\  (Bi) conditional probabilities for theB's given
A} A\ P( knowledge of mu'ltiple conditional.probabilites
Z P(A|B;) and multipletotal probabilites P(B;).

In clinical situations, A represents symptomsor r esults of atest, and the B's
represent patient condition(s) such asadisease. Known conditional probabilites
P(A|B;) can be estimated from theportion of patientswith a known condition(s) B;
showing positivetest results. Total probablility P(B;) for the condition(s) can be
estimated from thepopulation at large. Bayes Rule allowsthe researcher to
estimatethe conditional probability that the symptoms or test results indicate any
particular condition or disease. Powerful suff!

Clinical Terminology often used with Bayes Rule:
P(BJA) / P(BI~A) Relative Risk

P(B;|A) Predictive value positive of the tes (PV*)
P(~Bi[~A) Predictive value negative of the tes (PV")
P(A[B) Sensitivity of the symptomsor test

P(-A|-B)) Specificity of the symptomsor test

(-AlB) false negative for the symptomsor test

(Al~B)) false positivefor the symptomsor test



2007 Biostatistics 06 Examples using Bayes' Rule
Examples using Bayes Rule:

ORIGIN =1

Bayesian I nference:
Here two kinds of probability ar ediginguished:

"The prior probability of an event isthe best guess by the observer of an event's
probability in the absence of data. Thisprior probability may be a snglenumber, or it
may be arange of likely valuesfor the probability, perhapswith weights attached to
each possble value." Rosner p. 63, Definition 3.16.

"The posterior probability of an event isthe pr obability of an event after collecting
some empirical data. It isobtained by integrating information from the prior probability
with additional datarelated to the event in question.” Rosner p. 64, Definition 3.17.

Bayes Rule:

The point of thisprocedure for two events A & B isto estimateone conditional
probability P(BJA) from theother conditional probability P(A|B) and one total
probablity P(B).

F{ﬁ\ . P(B) <- Of course, as above, the defined
P(B\ _ ) rolesof A & B here can be reversed.
A A
/ F{ ) -P(B) + F{ B) P(notB)
ﬁ\ i p(Bi) <- General form of Bayes Rule giving multiple
Bi\  (Bi) conditional probabilities for theB's given
A} A\ P( knowledge of mu'ltiple conditional.probabilites
Z P(A|B;) and multipletotal probabilites P(B;).

In clinical situations, A represents symptomsor r esults of atest, and the B's
represent patient condition(s) such asadisease. Known conditional probabilites
P(A|B;) can be estimated from theportion of patientswith a known condition(s) B;
showing positivetes results. Total probablility P(B;) for the condition(s) can be
estimated from thepopulation at large. Bayes Rule allowsthe researcher to
estimatethe conditional probability that the symptoms or test results indicate any
particular condition or disease. Powerful suff!

Clinical Terminology often used with Bayes Rule:
P(BJA) / P(BI~A) Relative Risk

P(B;|A) Predictive value positive of the tes (PV*)
P(~Bi[~A) Predictive value negative of the tes (PV")
P(A[B) Sensitivity of the symptomsor test

P(-A|-B)) Specificity of the symptomsor test

(-AlB) false negative for the symptomsor test

(AlI-B) false positivefor the symptomsor test
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Example 3.26 Rosner p. 61: HYPERTENSION

The Datain M atrix Form: Terminology:
11 84 ) 1 1 084) < Senstivity: P(A|B)
v |2 0 .23 v |10 023 <(I-Specificity)
011-.84 0 1 016 < (1 - Sensitivity)
001-.23) 00 077) < gpedificity P(~AlB))
AB#

Given unconditional (prior) probabilities:

Pg:=.2 Pg=0.2 < Probability that an adult in the population
generally is hypertensive

Pg:=1-Pg Png =08  <Probability NOT hypertensive (1-Pg)

Conditional probabilities
CPpg = .84 < Senstivity: P(A|B) - Probability that hypertensves (B) are
classed hypertensive by the machine (A)

CPang = .23 < (1 - Specificity): P(A|~B) - Probability that NON hypertensi\_/es
are classed hyper tensive by the machine

Bayes Rule
CPaB - Pp

CP = CP = 0477
BA " CPag - P + CPAng - P BA

" Note that this correspondsto calculating PV+* above and in the text.

The conditional (posterior) probability that the machine properly classes hyper tensives
as hypertensvesis 0.477

Bayes Rule using the above terminology:

sensitivity := .84
specificity := .77
sensitivity - Pg
CVpIusiz . —
sengitivity - Pg + (1 — specificity) - (1 - PB) CVplus = 0477

A Different variable names, sameresult...
Bayes Rule for Predictive Value Negative (PV-):

specificity - (1 - PB)
specificity - (1 — Pg) + (1 — sensitivity) - Pg

CVminus = CVminus = 0.951
A It isimportant to note that PV- servesto ask the same question as PV+*
except in the opposite sense for the meaning of condition B. TheO'sor 1's

can be reversed above, or the interpretation of PV* vs PV- rever sed, giving
the same result.
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Soif: Terminology:
00 .84 ) 0 0 0.84) < Specificity P(~A|~B,)
- 01 .23 v 01023 < (1 - Sensitivity)
101-.84 10 016 < (1- Spedificity)
111-.23) 11077) < Sensitivity: P(A[B)

sensitivity := .77 < Meanings are now turned ar ound.

specificity := .84
Pg:= 0.8 < Thisisturned around also...
sensitivity - Pg
CVpIusiz . —
sensitivity - Pg + (1 — specificity) - (1 - PB) CVplus = 0.951

N Sameresult asfor PV- above now that everything isturned ar ound.

Applying Bayes' Rulein itsgeneral form: Bayes Rulein general for m asabove

For thisproblemi=2 ﬁ\ . p(Bi)
Bj Bj
Unconditional (prior) probabilities: _'\ = Y
DI EECH
Pg1:= .2 <-P(B,): probability of hypertensives . B;
I
Pg2:= .8 <-P(B,): probability of NOT hypertensives

Conditional probabilities
Pap1 = .84 <- P(A|B,): Probability of positive test for hypertensives
Pag2:= 0.23 <- P(A|B,): Probability of positivetest for NON hyper tensives
Applying Bayes' Rulein its general form:

For P(B,|A):
PaB1- PB1

PB1A =
PaB1- Pe1+ PaB2- PB2 PBI1A = 0477

N Samereault asthe first PV* test above.

For P(B,|A):

PaB2- P2
PB2A = PB2A = 0.523

PaB1- Pe1+ PaB2- P2

N Notethat thisisNOT the same probability asfor PV- above asthe
conditional probability isdependent on A here (whereas above it was ~A)!
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Example 3.27 Rosner p. 62 Bayes Rulein general form asabove:
Unconditional (prior) Conditional A
probabilities: probabilities: 5 \ P(—
=.99 P, =.001

PB1 AB1 A" A\

Pg2 = .001 Pag2:= .9 Z P(

Pg3:= .009 PAB3 = -9

P .

Pia = AB1 PB1 Pgia = 0.099 <P(B,A)

PaB1- Pe1+ PaB2- Pe2+ PaB3- PB3

PaB2- P2
PB2A = Pgoa = 0.09 <P(B,JA)
PaB1- Pe1+ PaB2- Pe2+ PaB3- Pa3

PaB3- PB3
PB3A = Pe3a = 0.811 <P(B;lA)
PaB1- Pe1+ PaB2- Pe2+ PaB3- Pa3

Example 3.28 Rosner p. 63:

Unconditional (prior) Conditional

probabilities: probabilities:
Pg1:= .98 Pap1 = .001
Pg2:= .015 PAB2:= 9
Pg3:= .005 PAB3 = 9
PaB1- PB1
PB1A = Pg1A = 0.052 <P(B,A)
PaB1- Pe1+ PaB2- Pe2+ PaB3- P3
PaB2- P2
PB2A = Pgoa = 0.711 <P(B,JA)
PaB1- Pe1+ PaB2- Pe2+ PaB3- Pa3
PaB3- PB3
PB3A = Pe3a = 0.237 <P(B;lA)

PaB1- Pe1+ PaB2- Pe2+ PaB3- Pg3
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Determining Risk for Familiesusing Pedigree Analysis:
ORIGIN =1

Bayes Rule:
The point of thisprocedure for two events A & B isto estimateone conditional

probability P(BJA) from theother conditional probability P(A|B) and one total
probablity P(B).

F{ﬁ\ . P(B) <- Of course, as above, the defined
P(E\ _ B) rolesof A & B here can be reversed.
A) A AN
—!-PB —— - P(notB
P(B) A )H{notB} FnatB)
ﬁ\ i p(Bi) <- General form of Bayes Rule giving multiple
E\ _ Bi) conditional probabilitiesfor theB's given
A) - Z ﬁ\ ' P(B-) knowledge of mu'ltiple conditional.probabilites
Bi l P(A|B;) and multipletotal probabilites P(B;).

In clinical situations, A represents symptomsor r esults of atest, and the B's
represent patient condition(s) such asadisease. Known conditional probabilites
P(A|B;) can be estimated from theportion of patientswith a known condition(s) B;
showing positivetes results. Total probablility P(B;) for the condition(s) can be
estimated from thepopulation at large. Bayes Rule allowsthe researcher to
estimatethe conditional probability that the symptoms or test results indicate any
particular condition or disease. Powerful suff!

Pedigree Analysis:

In genetic counseding, potential par entsin a family with history of a genetic disease
often ask about therisk they facein deciding whether to have additional children or
not. Useof Bayes' Rule (also called Bayestheorem) issandard practice in providing
them with thisinfor mation.

Example:

Two ssters, Kim and Ann, arein a family with a hisory of Hemophilia A asshown in
the following pedigree. Hemophilia A isa sex-linked recessivetrait (gene located on
the X chromosome). Of course, given their family history, each woman wantsto know
her risk of beinga carrier for thisgenetic tr ait.

KIM ANN

.;é%; Z £/££
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Because brothers of both women exhibit the trait, they must have received it from their
mother (sex-linked). Sincetheir mother doesn't exhibit symptoms she must bea
carrier - that is, one of her X chromosomes carriesthe alledefor Hemophilia A but it is
masked by anormal alleleon the other chromosome. So mother isindicated asa
carrier by gray on the pedigreeabove.

From smple Mendelian inheritance, we know that both Kim and Ann have a 50%
chance of receivingtheHemophilia A allelefrom their mother. We call thistheir
common or unconditional probability of being acarrier for thetrait.

However, each woman has already had children whose traits we can assess, so we know
something morethat is specific for each. We call thistheir conditional pr obability of
being a carrier given knowledgeabout their children.

So we have all theinformation weneed to perform a Bayesian analysis.

Using Bayes Rule: KIM
" o : Bi) P(
unconditional probability ("prior"):
. : A) A\
Pg1:=.5 <probability shesacarrier Z - A(Bi)
Pgp:= .5 < probability she'snot acarrier

conditional probability

Pag1:= .25 < probability her sonsare normal given that she'sa carrier (her conditionis B,)
and Sonsare event A (a test)

Pag2:= 1.0 < probability her sons are normal given she'sNOT acarrier - her conditionisB,

PaB1- PB1
PB1A :=
PaB1- Pe1+ PaB2: Pe2 PBIA = 0.2 <P(BJA)
ANNA A

unconditional probability ("prior"): B P(Bi)

' Bi) _ Bi)
Pg1:=.5 <probability she'sacarrier A) Z A (B)
Pg2:= .5 < probability she'snot acarrier . Bi

I

conditional probability

PAB1 = 5t < probability her sons are nor mal given that she'sa carrier (her conditionis B,)
and Sonsare event A (atest)

Pag2:= 1.0 < probability her sons are normal given she'sNOT acarrier - her conditionisB,

PaB1- PB1

PB1A =
PaB1- Pe1+ PaB2- Pa2 PB1A = 0.058824 < P(B,|A)

So even given their common genetic history from their mother, knowledge about thechildren
each woman has bor ne substantially modifies our inter pretion of her risk of being a carrier!
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Bayesian Analysisin Tabular Form:
The above analyses have been set up in exactly the same way asour other examples. From

what | understand, geneticists often present their analysisin a dightly differ ent tabular
form. Samereaults, but it looksa little different:

Hemophilia A KIM:

Probability: ~ Kimisacarrier KimisNOT acarrier Compar e with above:
prior: 0.5 0.5 <- Pg1 P2
conditional: 0.25= 05 1.0 < PAB1 PaB2
(two normal sons)

joint: 0.125 0.5 <- PaBi-Per  PaB2-Ps2
posterior: 0.125/(0.125+0.5) =0.2 or 20% <- PB1A

For Hemophilia A: ANN

Probability: ~ Annisacarrier AnnisNOT acarrier Compar e with above:
prior: 0.5 0.5 <- Pg1 P2
conditional: 0.0625 = 05" 1.0 <- PAB1 PAB2

(four normal sons)

joint: 0.03125 0.5
J < PaB1- Pe1 PaB2- P2

P - 0
poserior: 0.03125/(0.03125+0.5) 0.058824 or 5.8% . PBIA



2007 Biostatistics 08 ROC Curves

Recelver Operating Characteristic (ROC) Curves:
ORIGIN =1

In previous examples, we tr eated thetests (column A) asdrictly binary, that is, + versus-, 0
versusl, or "yes' versus" no". In real life of coursethe resultsof atest may involve a " grey
area" such asnumerical resultsin which a cut-off for " test-pogtive" ver sus” test-negative"
must be established.

Example 3.26 Rosner p. 61: HYPERTENSION

The Datain M atrix Form: Terminology:

11 84 ) 1 1 084) < Sensitivity: P(A|B)

- 10 .23 _ |1 0023 <(1- Specificity)
011-.84 0 1 016 < (1 - Senstivity)
001-.23) 00 077) < gpedificity P(~AlB))
AB#

N t"greyarea” indeciding0vs1incolumn A???

Example 3.32-3.34 Rosner p.64-66: RADIOLOGY

Roc curvesareagraphic display of the peformance of a test given that thetest allows
different criteria for deciding" test-postive" ver sus™ ted-negative' . In thisexample, five
different dividing points between " test-postive’ ver sus" test-negative' wer eproposed. For
each criterion, sensitivity and specificity (as defined above) wer edetermined:

Table 3.3 p. 65:
truestatus - tes o+
1 23 4 5 6 ) <criteria(1-6)
-Normal > 3366 11 2 58
+Abnormal > | 3 5 2 17 33 51

36

8 8 22 35 109) < Column Totals
~ Row Totals

Interpretingtheresults of thetest under the different criteria:

Criterion (1): " definitely nor mal"

+ }eﬁ)tals 11 3\
51 0 51) fcwal 10 38 11 1) sensitivity, == 1.0
onepjys:=| 58 0 58 - M 58 M = 101
109 0 109) totals 012 010 o
51 00 O) speC|f|C|ty1 =00
00 i
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Criterion (2): " probably normal"”

test
+ - totals

actual
48 3 51 .

twoplys= | 25 33 58 -
73 36 109 totals

Criterion (3): " questionable”

test
+ - totals

actual
46 5 51,

threepjus:= | 19 39 58 -
65 44 109 ) totals

Criterion (4): " probably abnormal”

test
+ - totals
actual
4 7 51) .

fourpiys = | 13 45 58 -
57 52 109 ) totals

Criterion (5): " definitely abnormal”

test
+ - totals

actual
33 18 51 .

fiveplys=| 2 56 58 -
35 74 109) totals

Criterion (6): " everyoneabnormal”

test
+ - totals

actual
0 51 51)

S.Xp|u31: 0 58 58 -
0 109 109/ totals

ROC Curves

48)
51
25
58
3
51
33
58 )

46
51
19
58
5
51
39
58 )

44
51
13
58
7
=
»
58 )

®)
51
2
58
18
51
56
58 )

0)
51
9
58
51
51
58
58 )

o o r P o o r P o O kR Bk o O kR B

o O -

o r O P o r O P o r O B o r O B

o + O

0.941)
0.431
0.059
0.569 )

0.902)
0.328
0.098
0.672)

0.863)
0.224
0.137
0.776 )

0.647")
0.034
0.353
0.966 )

0
1

sensitivity2

specificity2

sensitivity3

specifici ty3

sensitivity4

specificity4

sensitivity5

specificity5

sensitivity6

specificity6

= 0.941

= 0.569

= 0.902

= 0.672

:= 0.863

= 0.776

= 0.647

:= 0.966

=00

=10
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ROC Curves

Collecting Sensitivity & Specificity:

sengitivity =

ROC plat:

sensitivity
(S5,

1)
0.941
0.902
0.863
0.647

0 )

specificity =

0 )
0.569
0.672
0.776
0.966

1)

1 — specificity =

1)
0.431
0.328
0.224
0.034

0 )

1-gpecificity

In compar ing different test methods, the area under this curve may be estimated using
the Trapezoidal Method or compared visually... The greater the ar eaunder the curvethe

better.

For r eferences on how to employ the Trapezoidal Method for determining areas

under cur ves, search Google or see:

http://metric.ma.ic.ac.uk/integration/techniques/definite/numer ical-methods/trapezoidal-rule/

http:/Mww.geocities.com/rsrirang2001/M athematics/NumericalM ethodg/trape/trape.htm

http:/Mmww.kent.k12.wa.ug/staff/DavidWright/cal culusbook/46/index.html
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Working with the Binomial Probability Distribution
ORIGIN = 0

The Binomial probability distribution, also called 'Binomial probability-mass' functionis
a commonly employed theor etical disribution for data taking on discrete values. It is
derived from consderations of permutations and combinations.

Per mutations; " The number of permutations of n thingstaken k at atime...
represents the number of ways of selecting k items out of n where the order of

selection isimportant.” Rosner Definition 4.8, p. 91.

n:=3 < nthings... meaning of factorials (!)
k=2 <takenk at atime n==6 3.2.1=6
n! k! =2 2.1=2
Ll Sy NPy = 6 (n— k)l =1

N number of Permutations of n thingstakek at at time

For example, let then thingsbethe letters: A, B, C. How many pair sof |etter s can we
make wher etheorder of letter sisimportant?

AB AC BC

< fortunately the number nisrdatively small, sx!
BA CA CB y y

What happensif:

n:= 20 <nthings...

= < n k im
k=7 takenk at atime n! = 24329 x 10°
n! k! = 5040
NPy := _ 8
(n — k)! NPk = 3.907 x 10 (n— K)! = 6227 x 109

A number of Permutations of n thingstakek at at time

Fortunately we have thisformula, because listing all of the possilities
and counting them up would take sometime...

Combinations; "The number of combinations of n thingstaken k at atime...
represents the number of ways of selecting k objects out of n Where the order of

selection does NOT matter." Rosner Definition 4.11, p. 93.

For example with samen & k asthefirst oneabove:

n:=3 <nthings...
k=2 <takenk at atime
n'=6
n! k!l =2
nCyg=—— _
k! (n-k)! nCx =3 (- k) =1

N number of Combination of n thingstakek at at time

Note that thisis half thenumber of Per mutations with n=3, k=2.
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What about the larger example above?
n:= 20 <nthings...

— <takenk at atime
k=7 Nl = 2.4329 x 10
nC o k! = 5040
K= —"— _
ki (n— K)! nCy = 77520 (n—K)! = 6227 x 10°

A number of Combination of n thingstakek at at time
nP
?k = 5040 < a somewhat larger differ ence here!
nCk

M ost softwar e packages contain built-in functions for Permutations and Combinations

n:=20
k=7
permut(n, k) = 3.907 x 10° NP, = 3907 x 108 <and match our
combin(n, k) = 77520 (nCx) = 77520 calculationsabove so
serve as pr ototype...
Important symmetry in calculation of Combinations:
combin(n,k) = 77520 combin[n, (n — k)] = 77520 <k or (n-k) give

the same result

8 14 for combination
ermut(n, k) = 3.907 x 10 ermut[n, (n — k)] = 4.8272 x 10
permut(n, k) x permut[n, )] x but NOT

tation.
The Binomial Distribution: permutation

Statigicsistypically based on a pair of quantities (Note greater precision herein satement):

X <- A "random variabl€' some of whose values may be obser ved in a dataset.
P(X) <-probability of all values of X under somemodel of pr obability.

Thebinomial distribution is an exampleof a probability function linking specific values X
with a probability P(X) where X takeson only discr etevalues, such as 1,2,3, ...

"Thedigribution of the number of successesin statistically independent trials, where
the probability of successon each trial isp, isknown asthe binomial distribution...”
Rosner Equation 4.5 p. 96.

n & k takeon the same meaning as abovefor Combinations

n:=20 <total number of things- usually called "trials' in thiscontext.

k:=7 <our Xabove=number of " successes' - where" success" ver sus" failur "
take on two arbitrary states such as
"heads' vs"tails', or " present”
one additional consider ation: vs" absent" e,

p:=05 < the probability of " success" for any onetime. In acoin flip, p= 0.5,
but thisisoneof several posshbilities one might want to invegtigate
for instance if thecoin were thought tobe 'not fair'...

q:=1-p <probability p for " success" implies probability g for " failure" ...
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So, having specified avalue for therandom variable X ask:
We employ the binomial probability function - let's call it Pg(X = k):

Pg := combin(n, k) - pk~ qn_k Pg = 0.0739

"N Thisisthe probability that k " successes' will befound in ntrials.

We can look at Pg(X) for other valuesof k if welike. Sincen =20 isnot toolarge, let's
look at all valuesof {k =0.1.2.3 ... 20} here:

k:=0..20
_ 7‘\
K 9.5367 x 10

PBk := combin(n, k) - pk- q- 6

1.9073x 10
And Plot Pg: 0.0002
0.0011
0.0046
0.0148
015 7] 0.037
__ - 0.0739
Pe  01f - 0.1201
& 0.1602
PR = 0.1762
0.1602
0.1201

0.2

005~ 1

0 5 10 15 20 0.0739
k 0.037

N Remember here, k r epresentsthe values that random 0.0148
variable X can have, and P representsthe associated 0.0046

pr obability P(X=k). Thisisthe Binomial " probability 0.0011

distribution" or " probability-mass function" named above. 0.0002

5

Of course, different valuesof n, k & p give different results 19073 10

— 7
n=7 k=0.n p=3 gq:=1-p 95367x 10 ')
k

Psz := combin(n, k) - pk- q-

0.0824")
0.2471
0.3177
Peo, 02| - | 0.2269
0.0972
0.025
%, s 0.0036

K 0.0002 )

0.4
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Softwar e calculation of the" exact" Binomial Distribution:

Most computer packages have built-in functionsfor calculating the Binomial distribution:

0) 0.0824")
0.2471
0.3177
0.2269

P|33k := dbinom(k, n, p) 1
2
3
4 " | 0.0972
5
6

0.4

0.025
0.0036
7) 0.0002 )

P L —
B3k 0.2

0 ! X P(X=k)
0 2 4 6
k

" This protype gives us confidence in the meaning of the
built-in function dbinom(k,n,p) ...

Softwar e calculation of the Cumulative Binomial Distribution:

0.0824
They also havefunctions calculating thecumulative distribution also: 0 3294\
. 0.6471
Cpg3 := pbinom(k,n,p) n=7 p=03
g c 0.874
1 B37 1 09712
] 0.9962
| 0.9998
Ces, 05 1)

k

N Compare PB3 with CB3 above. The
cumulative distribution simply addsthe
0 probabilities P(X=k) as k goesfrom O ton.

Note that these functions make obsolete tr aditional standard tables, such asTable1in
the Rosner's Appendix. However, it isimportant to know what thesefunctionsare
actually doing, so conaulting the thistable ser ves as an impor tant prototype.
Usethetableto verify whether we obtained the correct valuesfor:

n=7,p=03and k ={0,1,2, ... n}.
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Softwar e calculation of the I nver se Cumulative Binomial Distribution:

Most computer packages also include functionsfor calculating the inverseof sgandard
probability distribution functions. In other wor kds, they are designed to allow usto go
backwards and recover X from the cumulative distribution of P(X).

0.0824) 0.0824) 0 )
0.2471 o3s "7 P=03 ! 2
0177 0.6471 Qg3, = obi nom(p,n,Cgsk) 2 4
Pra = 0.2269 Cas = 0.874 A inversefunction K-> QB3 = °
0.0972 0.9712 4 !
0.025 0.9962 > !
0.0036 0.9998 6 !
0.0002 ) 1) 7) "

A . TP
cumulative probability distribution Here QB3 are the values

A " exact" probability distribution of X recovered from f(X=k) for
different values of k as above.

Asyou can e, thisinverse function works, but not all that well... Oneisattempting

to convert probabilities P(X) which MIGHT be viewed as continuous into discrete values
X. Thisinvariably involves deciding on boundariesin P(X) toassgn to each X. $till,
one might have hoped for a better implimentation - so | wil be very car eful in using this
function in the futur e- thusthevalue of prototyping! Perhapsanother software
package does a better jab...

Calculating Mean and Variance of a Binomial Distribution:

Mean of the binomial population also known as" Expected Value" :

n=7 p=.3 q=1-p q=07 < parametersof thebinomial distribution
k:=0.n <valuesof X =k
p::Zk-dbinom(k,n,p) p=21 n-p=21 < p =n*p verified!

k

A gener al formula for calculating themean of adiscrete distribution

Variance of thebinomial population:

Var = Z (k=n- p)2- combin(n, k) - pk- qn_k Var = 1.47 n-p-q= 12147

K A variance = n*p*q verified!

A gener al formula for calculating variance of adiscretedigribution
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Generating Pseudo-Random Samples of a Binomial Distribution:

Most computer packages provide afunction for generatinga " random" sample of data
using a built-in random number gener ator. These samplesare very useful in comparing
"real" data and prototyping procedures. It must be noted, however, that no " random"
number generator implemented by instr uctionsin a computer can be truly random. So,
we call them " pseudo-random” . In the better programs, however, pseudo-random data
never theless can be very realistic.

n=7 p=.3 < We must specify theseparameter sfor our intended
binomial distribution.

m := 100 < We must also tell the pseudo-random number gener ator
how many datapoints we want.

R1:= rbinom(m,n,p) < Our random sampleisplaced in variableR1, so let's

evaluateit!

SampleR: Binomial Distribution (population)
mean > XparR1 := mean(R1) XparR1 = 1.95 p:=n-p p=21
variance > SsOR1 = m 1 var(Rl) Ssgrp = 1.3207 vaaR:=n-p-q vaR = 1.47

m —

If wecollect alarger sample, then we might expect the sample and population mean and
variance to be closer - assuming the random number generator isup to the task!

n=7 p=.3 < We must specify theseparameter sfor our intended
binomial distribution.

m := 5000 < We must also tell the pseudo-random number gener ator
how many datapoints we want.

R2:= rbinom(m,n,p) < Our random sampleisplaced in variableR, so let's

evaluateit!

SampleR: Binomial Distribution (population)
mean > XparR2 := mean(R2) XparR2 = 2.1206 p:=n-p p=21
variance > SsRp = —0 - va(RY)  SsiRp= 1518359 vaR:=n-p-g varR = 1.47

m —

A close, but certainly not stellar ...
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Binomial Distribution - prototyping examplesfrom Rosner text

ORIGIN =0
Example 4.26, p. 96: INFECTIOUS DISEASE
n:=10 p:=0.2 < binomial distribution parameters
k=2 <valueof X
dbinom(k,n,p) = 0.302 < "exact" value of P(X)
Example 4.27, p. 97: PULMONARY DISEASE
n:=20 p:=0.05 < binomial distribution parameters
k:=0.2 <valueof X
0.3585 )
PB4k := dbinom(k,n,p)  Pgg=| 03774 < "exact" valuesof P(X)
0.1887 )
Z PB4, = 0.9245 < summing probabilites gives P(X < 3)
k

1- Pga = 0.0755 <snceweknow that 1-P(X<3) = P(X > 3)
k
k

Note that the cumulative function will calculate thesumsfor usautomatically:
n:=20 p:= 0.05
k:=0.2

0.3585)
CB4k := pbinom(k,n,p)  Cpg = 0.7358
0.9245 )
or even mor edirectly:
k:=2
pbinom(k,n,p) = 0.9245 < summing probabilites gives P(X < 3)

1 — pbinom(k,n,p) = 0.0755 < since we know that 1-P(X<3) = P(X > 3)
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Visualizing the cumulative probabilities as ar eas under thecur ve:
n:=20 p:= 0.05
k:=0.n

CBB4k := phinom(k,n, p) < Entire probability curvefor k = {0,1,2 ... 20}

<Red : P(X <3)

0.8
< Blue: P(X > 3)
Ceaa,
L 0.6
Caa,
a
0.4
0.2
k
Example 4.28, p. 98: INFECTIOUS DISEASE
Direct calculation:
n=5 p:=06 < binomial distribution parameters
k:=0.n <valueof X
00102) <-P(X=0)
0.0768
0.2304
:= dbinom(k, n, = <" exact" values of P(X)
PB5, (k,n,p)  Pgs 0.3456
0.2592
00778) <- P(X=5)

But also:
n=5 gq=1-p q=04 < binomial distribution parametersusngq
k:=0.n <valueof X
00778\ <-P(Y=0)
0.2592
0.3456
:= dbinom(k, n, = <" exact" values of P(Y)
PB5Q, (k,n,q) PesQ 0.2304
0.0768
0.0102) <-P(Y=5)

N Same values as above, but rever sed in order ...
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Example 4.29, p. 98:

n:= 1500 p:= 0.05
k:=75

dbinom(k,n,p) = 0.0472
k=74

pbinom(k,n,p) = 0.4835

1 — pbinom(k,n,p) = 0.5165

Example 4.30, p. 99:

n:= 100 p := 0.020
k=4
pbinom(k,n,p) = 0.9492

1 — pbinom(k,n,p) = 0.0508

PULMONARY DISEASE
< binomial distribution parameters

< valueof X

< Exact valuefor X = k = 75 casesin 1500 trials

< Thisisthe cumulative probability of obtaining
74 or fewer cases

< Thisisthe cumulative probability of obtaining
750r greater cases... The only tricky thingis
placing thecut off in the digribution...

INFECTIOUS DISEASE

< binomial distribution parameters
<valueof X

< Thisisthe cumulative probability of 1-4 deaths

< Thisisthe cumulative probability of >4 deaths

but if we evaluate ten deathsinstead of five:

n:= 100 p := 0.020
k=9
pbinom(k, n,p) = 0.999966

1 — pbinom(k,n,p) = 0.000034

< Thisisthe cumulative probability of 1-9 deaths

< Thisisthe cumulative probability of >9 deaths
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The Poisson Distribution
ORIGIN = 0

The Poisson Probability Distribution (also called probability-mass function) isadiscrete
distribution designed to simulatevery rare eventsin time or highly spacially separated
occur rences in space.

Theideaof "rareevents' here dependson the following assumptions (see Rosner p. 103):

- The probability of observing 1 event isdirectly proportional to the length of time
interval (or gpace) At so that the probability of the event P(X) is appr oximately AAt
for somecongant A.

- The probability of observing O events over At isapproximately 1-AAt.
- The probability of observing mor ethan one event over AAt isapproximately 0.

The Poisson Distribution is also based on these assumptions:
- Stationarity - The averageor total number of eventsover time stays constant.

- Independence - The occurr ence of an event in onetimeinterval hasno bearing on
theoccurrence of an event in a subsequent time (or space) interval.

Aswith other Probability Digtributions, the Poisson Distributions associates " events' X with
the probability of occurrence P(X=k) - in thiscase over intervals of time (or space) At. It has
a sngleparameter that must be specified that occursin one of twoformsa or p with:

} = the expected number of eventsover interval (of time or space) t.
A =the theexpected number of events over unit (of time or space) t.

pL=At

Example 4.33, Rosner p. 104:
For 6 month timeinterval:
INFECTIOUS DISEASE

A= 46 < 4.6 deaths per year expected rate
t:=05 0) < analyzed timeinterval 6 months= 0.5 year
=A-t pn=23 1 < total expected number of eventsover 0.5 year.
k:=0.6 2 < looking at deaths over monthly intervals 0-6.
k=1]3
k 4 0.1 )
Ppp =€ . E o-=1 0231 | <"exact" Poisson probabilities
k k! S P(X=k) for timeintervalsk
6) 0.265
i:=0.5
Ppy = | 0.203
Z PPy, =097 summing inter vals 0-¢ 0.117
i 0.054
B _ < remainder P(X > 6 0021) <"exact” Poisson prob_ability
1 Z Ppli 0.03 ( ) P(X=6) for 7th timeinterval
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Plot: 0.3 |
q
g
02~ g =
PPy,
Q
01p -
0 T
0 1 2 3 4 5 6
k
For 3 month timeinterval:
A= 46 < 4.6 deaths per year expected rate
t:= 025 0) < analyzed timeinterval 3 months= 0.25 year
pe=A-t p =115 1 < total expected number of eventsover 0.25 year
k:=0.4 k=12 < looking at deaths over monthly intervals 0-4.
K 3
P =e . E o-=1 4) 0.317) <" exact" Poison probabilities
k k! P(X=k) for timeintervalsk
0.364
i=0.3 Py = | 0.200
Z szi =097 summing intervals 0 0.08
[ 0.023) : " exact" Poisson probability
1- Z Pop — 003 <remainder P(X > 4) P(X=4) for 5th time inter val
|
i
Plot:
04 T
o}
03[ —
®
P2, 02 .
Q
01 T —
0
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Built-in Softwarefunctions:

Poisson Distribution

Exact Probabilities:

Equivalent functionsfor the Poisson Distribution appear in most softwar e packages.

A:=46 t:=05 =t
k:=0.6
Ppg, = dpois(k, )

Prototype confir med although
terminology in thehelp section of
the program confuses A and p.

Built-in Softwarefunctions:

Cumulative Probabilities:

=| 0.2033

0.1003
0.2306
0.2652

0.1169
0.0538
0.0206 )

0.1003
0.2306
0.2652
0.2033
0.1169
0.0538
0.0206 )

result of built-in function »

" explicitly calculated above

Equivalent functionsfor the Poisson Distribution appear in most softwar e packages.

Cpg, = ppois(k, )

Prototype confir med although
terminology in thehelp section of
the program confuses A and p.
Thisfunction sumsthe" exact"
probabilities as one might expect.

Built-in Softwar e functions:

=| 0.2033

0.1003
0.2306
0.2652

0.1169
0.0538
0.0206 )

0.1003)
0.3309
0.596
0.7993
0.9162
0.97
0.9906 )

result of built-in function

" explicitly calculated above

I nver se Cumulative Probabilities:

Equivalent functionsfor the Poisson Distribution appear in most softwar e packages.

pi=A-t

Ppg, = qpoiS(Cpsk,u)

Prototype confir med although
terminology in thehelp section of
the program confuses A and p.
Thisfunction r ecover sthe k
categories quitewdll...

0.1003)
0.3309
0.596
0.7993
0.9162
0.97
0.9906 )

result of built-in function

" explicitly calculated above
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Mean (Expected Value) and Variance of the Poisson Distribution:
Both mean and variance of a Poisson Distribution =p Rosner p. 107
u =23 <fromthepreviousexamples...
Generating a Pseudo-random Poisson Digtribution:

L=46 t:=05 po=A-t < parameter of the poisson digtribution

m:= 100 < number of points

R3:= rpoiim,u) ) L .
Sample R3: Poisson Digtribution (population)
mean > XparR3 := mean(R3) XparR3 = 2.04 p=23
variance > SRz = —— - var(RY)  SsiRg = 1917576 w=23
m —_

N OK

Generatinga LARGER Pseudo-random Poisson Digribution:
L=46 t:=05 wi=A-t < parameter of the poisson distribution

m:= 5000 < number of points

R4 .= rpois(m,p) ' o '
Sample R4: Poisson Digtribution (population)
mean > XparRa := mean(R4) XparRa = 2.3332 n=23
variance > SsOR4 = m T -var(R4)  Ssgrg = 2.369452 w=23
m —_

" better but gill just OK
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M or e Poisson Examples for Prototype from Rosner:

Example 4.35, p. 106: COMPARE WITH TABLE 2 IN APPENDIX
n=3 < expected number over total interval t

k:i=0.4 <events(Oupto4)

0.0498) < P(X=0) 0.0498
0.1494 0.1991
dpoisk, ) = | 0.224 ppois(k, i) = | 0.4232
0.224 0.6472
0168 ] < P(X=4) 08153) < cumulative P(X < 4)
exact cumulative

1- ppoii4,p) =0.1847 < cumulative P(X>4)

Example 4.36, p. 106: INFECTIOUS DISEASE
A:=46 <rate per year
t:=10 <interval analyzed
pe=2A-t u =46 <expected number over total interval t
k:=0.8 < events (O up to8)
o001} =0 0.0101)
0.0462 0.0563
0.1063 0.1626
0.1631 0.3257
dpoiik,p) =1 0.1875 ppoiik,p) =1 05132
0.1725 0.6858
0.1323 0.818
0.0869 0.9049
;Z:t = P(X=8) cu:f;;?i{/e < cumulative P(X < 8)

1- ppoii&p) = 00451 < cumulative P(X>8)
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Example 4.38, p. 108:

Poisson Distribution

OCCUPATIONAL HEALTH

L:=58 <rate per unit time or space
t:=10 <interval analyzed
pi=Aa-t u =58 <expected number over total interval t
k:=0..6 < events (0 upto6)
0.003 ) < P(X=0) 0.003
0.0176 0.0206
0.0509 0.0715
dpoiik,p) = | 0.0985 ppoiik,p) =| 017
0.1428 0.3127
0.1656 0.4783
0.1601) <P(X=6) 0.6384) < cumulative P(X < 6)
exact cumulative

1 - ppoid6, 1) = 0.3616

Example 4.39, p. 109:

< cumulative P(X>6)

CANCER GENETICS

=10 <rate per unit time or space

t:=10 <interval analyzed

pe=2A-t n=1 < expected number over total interval t

k:=0.3 < events (O upto4)
0.3679) < P(X=0) 0.3679)
0.3679 0.7358

dpoislk, ) = oislk. i) =

P H 0.1839 PP " 0.9197
0.0613) < P(X=3) 0.981 ) < cumulative P(X < 3)
exact cumulative

1 - ppois(3, 1) = 0.019

Example 4.40, p. 110:

A= 3.67
t:=1.0
po=A-t p = 3.67

1 - ppois(13, 1) = 3.0924 x 10

< cumulative P(X>3)

INFECTIOUS DISEASE

< rate per unit time or space - aver ager ate per month over 18 months

< interval analyzed - looking at an unusual one month

< expected number over total interval t - expected ratein that

unusual month

5 < cumulative P(X > 14)



Assignment for Week 4

The readings in our text this week and last, involve the fundamental relationship between
data we might collect (generally termed X) and the probability different values of data
might have (termed ‘P(X)’). In real world situations, of course, we don’t usually know
what the probability of X might be. In general, one usually consults one or several ‘exact
probability functions’ for discrete variables or ‘probability density functions’ for
continuous variables that have proven over the years to be very useful. For each of these
probability functions, it is important to understand the basic rationale underlying the use
of the distributions and the parameters that define specific P(X) given X from a family of
similar curves. Deciding the suitability of fit between real data with theoretical
distributions often involves comparing histograms of real data with what might be
theoretically expected of the distributions or simulated, such as through R’s ‘r’ statistical
functions. If the fit seems good, one then proceeds to use the standard probability
distributions to estimate probability of particular values of X, probability cutoffs, and
probability intervals. In essence, this is all that statistics does in the design of
confidence intervals and statistical tests.

Because associating values of X with P(X) is so important, all statistics texts include
tables like those in Rosner’s Appendix designed to simplify calculations of otherwise
complex formulae. Standard software packages, such as R, include explicit ‘d’, ‘p’ & ‘q’
functions to do the same thing, often with greater precision. To proceed with statistics, it
isessential that you understand how these tables and functions work. It is also
important to be able to use this theoretical apparatus to work boundaries in either X or
P(X).

So, this week your assignment is to complete your prototype of five important probability
distributions: Binomial, Poisson, Normal, Student’st, and Chi-square.

1. Set up a range of X’s and use the ‘d’ function to calculate P(X). To do this, you will
have to pick ‘reasonable’ values of each distribution’s parameters.

2. Plot P(X) vs X to visualize each distribution. Compare this ‘exact’ curve with a
histogram of simulated data generated by each distribution’s corresponding ‘r’
function. Notice the fit of simulated data with the theoretical P(X) vs X function
— or lack thereof.

3. Calculate the cumulative function ®(X) for each X using a corresponding ‘p’ function.
and plot ®(X) vs X. Show the relationship between P(X) and ®(X) for each X.

4. Now show how to retrieve X from ®(X) using the inverse cumulative probability ‘q’
function. Interpret in words what this function allows you to do.

5. For each plot of P(X) vs X, characterize the distribution’s shape. Note whether the
distribution is symmetrical or non symmetrical. Note its central tendency or
mode versus tail(s).

6. For each distribution, find the values of X below or above which P(X) < 5%. Annotate
your graph of P(X) vs X to show what this means.

7. For each distribution, find lower Xjower and upper Xypper bound values of X such that
P(X) is at least 95%

Welcome to the world of Confidence Intervals — Chapter 6!



Here arethe R Documentation Pagesfor thedistributionswe aretrying
to prototype:

Normal { stats} R Documentation

The Normal Distribution

Description

Density, distribution function, quantile function and random generation for the normal
distribution with mean equal to mean and standard deviation equal to sd.

Usage

dnorm(x, mean=0, sd=1, log = FALSE)

pnorm(q, mean=0, sd=1, lower.tail = TRUE, log.p = FALSE)

gnorm(p, mean=0, sd=1, lower.tail = TRUE, log.p = FALSE)

rnorm(n, mean=0, sd=1)

Arguments

X,q vector of quantiles.

P vector of probabilities.

n number of observations. If 1ength(n) > 1, the length istaken to be the
number required.

mean vector of means.

sd vector of standard deviations.

log, log.-p |ogical; if TRUE, probabilities p are given as log(p).
lower.tail |ogical; if TRUE (default), probabilities are P/X <= x/, otherwise, P/X >
x/.

Details
If mean or sd are not specified they assume the default values of 0 and 1, respectively.
The normal distribution has density
f(x) = 1/(sqri(2 pi) sigma) e~((x - mu)"2/(2 sigma’2))
where mu is the mean of the distribution and sigma the standard deviation.

gnorm is based on Wichuras agorithm AS 241 which provides precise results up to about
16 digits.



Value

dnorm gives the density, pnorm gives the distribution function, gnorm gives the quantile
function, and rnorm generates random deviates.

Source

For pnorm, based on

Cody, W. D. (1993) Algorithm 715: SPECFUN — A portable FORTRAN package of
special function routines and test drivers. ACM Transactions on Mathematical Software
19, 22-32.

For gnorm, the code is a C trandation of

Wichura, M. J. (1988) Algorithm AS 241: The Percentage Points of the Normal
Distribution. Applied Statistics, 37, 477-484.

For rnorm, see RNG for how to select the algorithm and for references to the supplied
methods.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language.
Wadsworth & Brooks/Cole.

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate
Distributions, volume 1, chapter 13. Wiley, New Y ork.

See Also

runif and .Random. seed about random number generation, and dlnorm for the
Lognormal distribution.

Examples

dnorm(0) == 1/ sqrt(2*pi)
dnorm(1l) == exp(-1/2)/ sqrt(2*pi)
dnorm(1l) == 1/ sqrt(2*pi*exp(1))

## Using "log = TRUE" for an extended range :

par(mfrow=c(2,1))

plot(function(x) dnorm(x, log=TRUE), -60, 50,
main = "log { Normal density }')

curve(log(dnorm(x)), add=TRUE, col="red", lwd=2)

mtext(*'dnorm(x, log=TRUE)", adj=0)

mtext('log(dnorm(x))", col="red", adj=1)



plot(function(x) pnorm(x, log=TRUE), -50, 10,
main = "log { Normal Cumulative }')
curve(log(pnorm(x)), add=TRUE, col="red",lwd=2)
mtext("'pnorm(x, log=TRUE)", adj=0)
mtext('log(pnorm(x))*, col="red", adj=1)

## 1f you want the so-called "error function”

erf <- function(x) 2 * pnorm(x * sqrt(2)) -1

## (see Abrahamowitz and Stegun 29.2.29)

## and the so-called "complementary error function*®

erfc <- function(x) 2 * pnorm(x * sqrt(2), lower = FALSE)



TDist { stats} R Documentation

The Student t Distribution

Description

Density, distribution function, quantile function and random generation for the t
distribution with df degrees of freedom (and optional noncentrality parameter ncp).

Usage

dt(x, df, ncp
pt(q, df, ncp
qt(p, df, ncp

0, log = FALSE)
0, lower.tail = TRUE, log.p
0, lower.tail = TRUE, log.p

FALSE)
FALSE)

rt(n, df, ncp 0)
Arguments

X, ¢ vector of quantiles.

p vector of probabilities.
n

number of observations. If Iength(n) > 1, the length istaken to be the
number required.

df degrees of freedom (> 0, maybe non-integer). df = Inf isalowed. For gt
only values of at least one are currently supported.

ncp non-centrality parameter delta; currently for pt() and dt(), only for
abs(ncp) <= 37.62.

log, log.p |ogical; if TRUE, probabilities p are given as log(p).
lower.tail |ogical; if TRUE (default), probabilities are P/X <= x], otherwise, P/X >
x/.

Details
The ¢ distribution with df = n degrees of freedom has density
f(x) = Gamma((n+1)/2) / (sqrt(n pi) Gamma(n/2)) (1 + x"2/n)-((n+1)/2)
for al real x. It hasmean 0 (for n > 1) and variance n/(n-2) (for n > 2).
The general non-central t with parameters (df,Del) = (df, ncp) isdefined asthe

distribution of 7(df, Del) := (U + Del) / (Chi(df) / sqrt(df)) where U and Chi(df) are
independent random variables, U ~ N(0, 1), and Chi(df)"2 is chi-squared, see Chisguare.



The most used applications are power calculations for ¢-tests.

Let 7= (mX - m0) / (S/sqrt(n)) where mX is the mean and S the sample standard deviation
(sd)of X 1,X 2,..X nwhicharei.i.d. N(mu,sigma”2). Then T is distributed as non-
centrally ¢ with df= n-1 degrees of freedom and non-centrality parameter ncp= (mu -
m0) * sqrt(n)/sigma.

Value

dt givesthe density, pt gives the distribution function, gt gives the quantile function,
and rt generates random deviates.

Invalid arguments will result in return value NaN, with awarning.

Source

The central dt is computed via an accurate formula provided by Catherine L oader (see
the reference in dbinom).

For the non-central case of dt, contributed by Claus Ekstrem based on the relationship
(for x /= 0) to the cumulative distribution.

For the central case of pt, anormal approximation in the tails, otherwise via pbeta.

For the non-central case of pt based on a C trandlation of

Lenth, R. V. (1989). Algorithm AS 243 — Cumulative distribution function of the non-
central ¢ distribution, Applied Statistics 38, 185-189.

For central qt, a C trandation of

Hill, G. W. (1970) Algorithm 396: Student's t-quantiles. Communications of the ACM,
13(10), 619-620.

altered to take account of

Hill, G. W. (1981) Remark on Algorithm 396, ACM Transactions on Mathematical
Software, 7, 250-1.

The non-central case is done by inversion.
References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language.
Wadsworth & Brooks/Cole. (Except non-central versions.)



Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate
Distributions, volume 2, chapters 28 and 31. Wiley, New Y ork.

See Also
df for the F distribution.

Examples

1 - pt(l:5, dF = 1)
qt(.975, df = c¢(1:10,20,50,100,1000))

tt <- seq(0,10, len=21)

ncp <- seq(0,6, len=31)

ptn <- outer(tt,ncp, function(t,d) pt(t, df = 3, ncp=d))
image(tt,ncp,ptn, zlim=c(0,1),main=t.tit <- "Non-central t -
Probabilities™)

persp(tt,ncp,ptn, zlim=0:1, r=2, phi=20, theta=200, main=t.tit,

xlab = "t'", ylab = "noncentrality parameter', zlab = "Pr(T <=

")

plot(function(x) dt(x, df = 3, ncp = 2), -3, 11, ylim = c(0, 0.32),

main="Non-central t - Density', yaxs="i"")



Chisguare { stats} R Documentation

The (non-central) Chi-Sguared Distribution

Description

Density, distribution function, quantile function and random generation for the chi-
squared (chi”2) distribution with df degrees of freedom and optional non-centrality
parameter ncp.

Usage

dchisq(x, df, ncp=0, log = FALSE)
pchisq(q, df, ncp=0, lower.tail
qchisq(p, df, ncp=0, lower.tail
rchisq(n, df, ncp=0)

TRUE, log.p
TRUE, log.-p

FALSE)
FALSE)

Arguments

X, ¢ vector of quantiles.

p vector of probabilities.

n number of observations. If 1ength(n) > 1, thelengthistaken to be the
number required.

df degrees of freedom (non-negative, but can be non-integer).

ncp non-centrality parameter (non-negative).

log, log.p |ogical; if TRUE, probabilities p are given as log(p).
lower.tail |ogical; if TRUE (default), probabilities are P/X <= x], otherwise, P/X >
x/.

Details

The chi-sguared distribution with df= n > ( degrees of freedom has density
f nkx)=1/02%n/2) Gamma(n/2)) xn/2-1) e"(-x/2)

for x > 0. The mean and variance are n and 2n.

The non-central chi-squared distribution with df= n degrees of freedom and non-
centrality parameter ncp = 4 has density

f(x) = exp(-lambda/2) SUM_{r=0}"infty ((lambda/2)"r / v!) dchisq(x, df + 2r)



for x >= (. For integer n, thisis the distribution of the sum of squares of » normals each
with variance one, / being the sum of sgquares of the normal means; further,
E(X) =n+ A, Var(X) = 2(n + 2%}), and E((X - E(X))"3) = 8(n + 3*)).

Note that the degrees of freedom df= #n, can be non-integer, and for non-centrality 1 > 0,
even n = (); see Johnson et a. (1995, chapter 29).

Note that ncp values larger than about 1e5 may give inaccurate results with many
warnings for pchisq and qgchisg.

Value

dchisq gives the density, pchisq gives the distribution function, gchisq givesthe
guantile function, and rchisq generates random deviates.

Invalid arguments will result in return value NaN, with awarning.

Source

The central cases are computed via the gamma distribution.

The non-central dchisq and rchisq are computed as a Poisson mixture central of chi-
sguares (Johnson et al, 1995, p.436).

The non-central pchisq isfor ncp < 80 computed from the Poisson mixture of central
chi-squares and for larger ncp based on a C tranglation of

Ding, C. G. (1992) Algorithm AS275: Computing the non-central chi-squared
distribution function. Appl.Statist., 41 478-482.

which computes the lower tail only (so the upper tail suffers from cancellation).
The non-central gqchisq isbased on inversion of pchisg.
References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language.
Wadsworth & Brooks/Cole.

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate
Distributions, chapters 18 (volume 1) and 29 (volume 2). Wiley, New Y ork.

See Also



A central chi-squared distribution with n degrees of freedom is the same as a Gamma
distribution with shape a = n/2 and scale s = 2. Hence, see dgamma for the Gamma
distribution.

Examples

dchisq(l, df=1:3)
pchisq(l, df= 3)
pchisq(l, df= 3, ncp = 0:4)# includes the above

X <- 1:10

## Chi-squared(df = 2) is a special exponential distribution
all._equal (dchisq(x, df=2), dexp(x, 1/2))

all.equal (pchisq(x, df=2), pexp(x, 1/2))

## non-central RNG -- df=0 is ok for ncp > 0: ZO0 has point mass at 0!
Z0 <- rchisq(100, df = 0, ncp = 2.)
graphics: :stem(zZ0)

## Not run:
## visual testing
## do P-P plots for 1000 points at various degrees of freedom
L <- 1.2; n <- 1000; pp <- ppoints(n)
op <- par(mfrow = ¢(3,3), mar= ¢(3,3,1,1)+.1, mgp= c(1.5,.6,0),
oma = c¢(0,0,3,0))
for(df in 22(4*rnorm(9))) {
plot(pp, sort(pchisq(rr <- rchisq(n,df=df, ncp=L), df=df, ncp=L)),
ylab=""pchisq(rchisq(.),-)", pch="_"")
mtext(paste("'df = ", formatC(df, digits = 4)), line= -2, adj=0.05)
abline(0,1,col=2)
}
mtext(expression("’P-P plots : Noncentral "*
chi~2 *"(n=1000, df=X, ncp= 1.2)"),
cex = 1.5, font = 2, outer=TRUE)
par(op)
## End(Not run)



Binomial { stats} R Documentation

The Binomial Distribution

Description

Density, distribution function, quantile function and random generation for the binomial
distribution with parameters size and prob.

Usage

dbinom(x, size, prob, log = FALSE)

pbinom(q, size, prob, lower.tail = TRUE, log.p
gbinom(p, size, prob, lower.tail = TRUE, log.p
rbinom(n, size, prob)

FALSE)
FALSE)

Arguments

X, ¢ vector of quantiles.

p vector of probabilities.

n number of observations. If Iength(n) > 1, the length istaken to be the
number required.

size number of trials (zero or more).

prob probability of success on each trial.

log, log.p |ogical; if TRUE, probabilities p are given as log(p).
lower.tail |ogical; if TRUE (default), probabilities are P/X <= x], otherwise, P/X >
x/.

Details

The binomial distribution with size = n and prob = p has density
p(x) = choose(n,x) p’x (1-p)(n-x)

forx=0, .., n.

If an element of x isnot integer, the result of dbinom is zero, with awarning. p(x) is
computed using Loader's algorithm, see the reference below.

The quantile is defined as the smallest value x such that F(x) >= p, where F isthe
distribution function.



Value

dbinom gives the density, pbinom gives the distribution function, gbinom gives the
guantile function and rbinom generates random deviates.

If size isnot an integer, NaN is returned.

Source

For dbinom a saddle-point expansion is used: see

Catherine Loader (2000). Fast and Accurate Computation of Binomial Probabilities;
available from http://www.herine.net/stat/software/dbinom.html.

pbinom USES pbeta.

gbinom uses the Cornish—Fisher Expansion to include a skewness correction to a normal
approximation, followed by a search.

rbinom is based on

Kachitvichyanukul, V. and Schmeiser, B. W. (1988) Binomial random variate generation.
Communications of the ACM, 31, 216-222.

See Also

dnbinom for the negative binomial, and dpois for the Poisson distribution.

Examples

# Compute P(45 < X < 55) for X Binomial(100,0.5)
sum(dbinom(46:54, 100, 0.5))

## Using "log = TRUE" for an extended range :

n <- 2000

k <- seq(0, n, by = 20)

plot (k, dbinom(k, n, pi/Z10, log=TRUE), type="1", ylab="log density",
main = "dbinom(*, log=TRUE) is better than log(dbinom(*))')

lines(k, log(dbinom(k, n, pi/10)), col="red", lwd=2)

## extreme points are omitted since dbinom gives O.

mtext(*'dbinom(k, log=TRUE)", adj=0)

mtext("'extended range', adj=0, line = -1, font=4)

mtext('log(dbinom(k))™, col="red”, adj=1)



Poisson { stats} R Documentation

The Poisson Distribution

Description

Density, distribution function, quantile function and random generation for the Poisson
distribution with parameter 1ambda.

Usage

dpois(x, lambda, log = FALSE)
ppois(g, lambda, lower._tail
gpois(p, lambda, lower.tail
rpois(n, lambda)

TRUE, log.p
TRUE, log.p

FALSE)
FALSE)

Arguments

X vector of (non-negative integer) quantiles.

q vector of quantiles.

p vector of probabilities.

n number of random values to return.

lambda vector of (non-negative) means.

log, log.p |ogica; if TRUE, probabilities p are given as log(p).

lower.tail |ogical; if TRUE (default), probabilities are P/X <= x/, otherwise, P/X >
x/.

Details
The Poisson distribution has density

p(x) = lambda’x exp(-lambda)/x!
forx =0, 1, 2, .... Themean and variance are E(X) = Var(X) = 1.

If an element of x is not integer, the result of dpois is zero, with awarning. p(x) is
computed using Loader's algorithm, see the reference in dbinom.

The quantile isleft continuous: ggeom(q, prob) isthelargest integer x such that P(X <=
x) <gq.



Setting lower.tail = FALSE alowsto get much more precise results when the default,
lower.tail = TRUE would return 1, see the example below.

Value

dpois givesthe (log) density, ppois givesthe (log) distribution function, gpois givesthe
guantile function, and rpois generates random deviates.
Invalid 1ambda will result in return value NaN, with awarning.

Source
dpois uses C code contributed by Catherine Loader (see dbinom).
ppois USES pgamma.

gpois uses the Cornish—Fisher Expansion to include a skewness correction to a normal
approximation, followed by a search.

rpois Uses

Ahrens, J. H. and Dieter, U. (1982). Computer generation of Poisson deviates from
modified normal distributions. ACM Transactions on Mathematical Software, 8, 163—
179.

See Also
dbinom for the binomial and dnbinom for the negative binomial distribution.

Examples

-log(dpois(0:7, lambda=1) * gamma(l+ 0:7)) # ==
Ni <- rpois(50, lam= 4); table(factor(Ni, O0:max(Ni)))

1 - ppois(10*(15:25), lambda=100) # becomes 0
(cancellation)
ppois(10*(15:25), lambda=100, lower=FALSE) # no cancellation

par(mfrow = c(2, 1))

X <- seq(-0.01, 5, 0.01)

plot(x, ppois(x, 1), type="s", ylab="F(x)", main="Poisson(1) CDF"™)

plot(x, pbinom(x, 100, 0.01),type="s", ylab="F(xX)",
main="Binomial (100, 0.01) CDF')
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The Normal Distribution

ORIGIN =0

The Normal Distribution, also known asthe " Gaussian Digribution” or " bel-curve", isthe
most widely employed function r elating observations X with probabilty P(X) in statistics.
Many natural populations are approximately normally distributed, as are several important
derived quantitities even when the original population is not nor mally distributed.

Properly speaking, the Nor mal Digtribution isa continuous " probability density function”
meaning that values of arandom variable X may takeon any numerical value, not just
discrete values. In addition, because thevalues of X ar einfinite the " exact" probabiliy P(X)
for any X iszero. Thus, in order todeter mine probabilities onetypically looks at inver valsof
X suchasX >2.30r 1< X <2 and soforth. It isinteresting to note that because the
probability P(X) = 0, we don't have to worry about corr ectly interpreting pesky boundaries,
asseenin discrete distributions, snce X > 2 meansthe samethingas X > 2and X < 2isthe

sameas X < 2.

Asdescribed previously, the Nor mal distribution consists of afamily of curvesthat are
specified by supplying valuesfor two par ameter s.

W = the mean of the Normal population, and

02 = the variance of the same population.

Prototyping the Normal Function using the Gaussian formula:

Makingtheplot of N(50,100) in Rosner Fig. 5.5 p. 127:

=50 < gpecifying mean (p)
o :=+/100 o2 = 100 < gpecifying variance (¢?
i:=0..100

< Defining abunch of X'srangingin value from 0to 100. Remember
that therange of X isinfinite, but we'll plot 101 point here. That should

X = give usenough pointsto give us an idea of the Gaussian function shape!
__1'(Xi_H)2 < Formula for Normal distribution. Herewe
V1 - 1 . 262 have computed P(X) for each of our X's.
5 N2 n Careful reading Definition 5.5 p. 126....

Now, let's compare with Mathcad's built-in function:

Y2:= dnorm(xi,u,c) 02: 100 < MathCad's function asks us provide

standard deviation rather than variance...
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Plotting the two setsof Y's

004 ! 2@&5 !

0.03 - S
Y1, Z g
vz, 002 g .
®
0.01 [ -
0
0 40 60 100
X

N The two approaches give the same probability function P(X) for X,
50 this prototype confir msthe built-in function.

What happenswhen p or o2 is changed:
Location of mode changes (trandation of u) and width of hump changes showing
greater or lesser variance - see Biogatistics Lecture Worksheet 04.

Cumulative Normal Distribution N(0,1):

i:=0..100
X, = % < scaling 101 X'stoa reasonable scale...
1
p=0 o:=1 02: 1 < parameters of theNormal N(0O,1) distribution...
Y§; := dnorm < P(X) for each X

(Xi,u,c)
Y4 = pnorm(xi,u,c) < Cumulative probability ®(X) for each X
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Plots of Nor mal Distribution and Cumulative Normal Distributions

06 N©O,1)

Calculating Intervals of the Cumulative Distribution Rosner, p. 129-130:
nw=0 c=1 < Normal distribution parameters (change theseif needed)

Probability that X ranges between -1 and 1:
dnorm(-1,p1,0) = 0242 dnorm(1,p,0) = 0242 < P(X)

pnorm(—l,u,c) = 0.1587 pnorm(l,u,c) =0.8413 < ®(X)

pnorm(1, 1, 5) — pnorm(~1, 11, 6) = 0.6827 < Calculating MAX cut-off - MIN cut-off
A cumulative valueat MIN of interval

0,
A cumulative valueat M AX of interval 68.27%

Probability that X ranges between -2.576 and 2.576:
dnorm(~2.576,1,5) = 0.0145 dnorm(2.576,1,5) = 0.0145 : P(X)

pnorm(-2.576,11,6) = 0.005  pnorm(2.576,1,6) = 0.995 < ®(X)

pnorm(2.576, 11,5) — pnorm(=2.576, 1, 5) = 0.99< Calculating MAX cut-off - MIN cut-off
N . .
cumulative valueat MIN of interval 99%
A cumulative valueat M AX of interval
Probability that X ranges between -1.96 and 1.96

dnorm(~1.96, 11,6) = 0.0584 dnorm(1.96,1,5) = 0.0584 < P(X)

pnorm(~1.96,1,6) = 0.025  pnorm(1.96,u,6) = 0975 < ®(X)

pnorm(1.96, 11, 5) — pnorm(—1.96,1,5) = 0.95 < Calculating MAX cut-off - MIN cut-off

n . .
cumulative valueat MIN of interval 95%

A cumulative valueat M AX of interval
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Standardizing the Normal Distribution:

In many instances, we will have a sample that wemay compar eto a Nor mal

Didgtribution, normally indicated likethis ~N(u,62). Using computer-based functionsas
above, one haslittle difficulty calculating probabilities P(X) and cumulative probabilities
®(X). However, in comparing variablesit is often useful to compare pr obabilities for
each to those expected of the Sandard Nor mal Disribution ~N(0,1).

Thisisdone by Standar dizing the Data:

Given your X's~N(p,62) you create anew variableZ ~N(0,1) by meansof a Linear
Transformation:

=50 o =+/100 02: 100 <original distribution ~N(50,100)
i:=0..100
X. =i
|
(Xi N “) .
Z:= < Z'sarenow Standar dized ~N(0,1)
(e}

Simulation of Normally Distributed Data:

2
p =50 c = \/100 c =100

X:= rnorm(lOOO, p ,c)

100

80~ * .
X 60 s, v, oc, . tH

S o % : . ° ..: .-. . S e °
407 ° . o . L *
L] ¢ ¢ °

20 L o | | [

0 20 40 60 80 100
i
Descriptive Statisticsfor X:
n := length(X) n = 1000

mean(X) = 49.4025

-var(X) = 97.0097 < both samplemeans- here ascalculated in previousworksheets

< Note: mathcad has two functions: var (X) = population variance
Var(X) = 97.0097 Var(X) = sample mean

Most computer programs have functions showing thisdiginction...
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Histogram of X:

plot := histogram(10, X)

300

pl ot< D
o

pl ot<O>

Standardizing our Sample Data:

Descriptive Statisticsfor Z:

n := length(2) n = 1000

mean(Z) = —0.0598
Var(Z) = 0.9701

plot := histogram(10, Z)

plot =

18.3
24.9
315
38.1
44.7
51.3
57.9
64.5
711
7.7

pl ot< D
o

pl ot<0>

238
252
182

22

4)
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Linear Combinationsof Variables
ORIGIN = 0

In data analysis of real-life situations, it is often the casethat data on multiple variables
are collected. Thetask of the statistical researcher isthen to construct impor tant
guegtionsthat might be asked of thedata, and then choose an appropriate Satistical
technique. Onecommon approach isto construct new variablesthat combine the original
collected variablesin a meaningful way that summarizes, and hopefully smplifies, the
issuesinvolved. Thisapproach isoften performed by congructing Linear Combinations
(also known as" linear contrasts') of theoriginal variables.

Solet'sgrab somefamiliar data:

iris:= READPRN("c:/2007BiostatsData/iris.txt" )

SL:= iris<1>
SW = iris<2>
PL = iris<3>
PW = iris<4>

n := length(SL) n = 150

A linear combination isany NEW variablewemake that consists of a constant c; (for each
original variable) times each original variableall added together. We dothisfor each of the
valuesi r epresenting instances of the original variables:

j=0.3 < index (j) of theconstants: ¢, ¢;, ¢, & ¢, because ORIGIN=0

i:=0.149 <index(i)of thevaluesin each variable SL, SW, PL,PW above

c.=1
0 1 < congantscalled " linear coeffieients”
C = N
C2 =1
N oo 1 < the values of linear coefficientscj in vector form,
3 1 often called the " contrast matrix"
1)
LCli =Cy SLi +Cy S\Ni +Cye PLi +Cg- P\Ni
025 A Thislinear combination (LC1) is made by
' adding each of the original variablestogether.
0.25
C:=
-0.25
-0.25)

LC2i =Cy SLi +Cy S\Ni +Cye PLi +Cg- P\Ni
A Thislinear combination (LC2) " contrasts'
sepals (SL+SW) ver sus petals (PL+PW).
Asyou can seemany such " contrags' are possible by
gpecifying differ ent values for the contrast matrix.
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Mean and Variance of Linear Combinations;

mean(SL) = 5.8433
mean(SW) = 3.0573
mean(PL) = 3.758

mean(PW) = 1.1993

mean(LC1) = 13.858

C

0

Linear Combinations

1)
= < contrast matrix
Var(SL) = 0.6857 €=l
Var(SW) = 0.19 1)

Var(PL) = 3.1163
Var(PW) = 0.581

< means and samplevariances for each of the
original variablesiniris...

- mean(SL) + C, mean(SW) + Cy- mean(PL) + Cy mean(PW) = 13.858

~ mean of the linear combination isthe sum of each mean timesitslinear coefficient.

Var(LC1) = 9.7579

(CO>2 -Var(SL) + (cl)z. Var(SW) + (CZ)Z. Var(PL) + (C3)2- Var(PW) = 4573

" theory for INDEPENDENT var iables saysthat thesevariances should be the same...

combin(4,2) = 6 < figuring the number of pairwisegraphs4 variablestwo at atime

5 10
— 0°°388,! !n..
W, r_ s . ';ia,.:!l!-"-
-'. °
,-.::i-llvl- s,
0 |
4 6 8
SL SL
3 T 10 T T
2~ . ...o:inf::z 0’ ] . ::i.'g' o *
PW R e PL 5[, ¢t .
e o 0 o S0 ° e 0o o -c..-l'.
1 — (1) DTN — oo °
i Y N ELIPLLHERIE
0 . oo o | 0 | |
4 6 8 2 3 4 5
SL Sw
3 3
I 2 B ..-.::0 . . N
| 1 — ".-. |
0 ow | |
5 0 2 4 6 8
PL

~ impor tant COVARIATION is noticed between some pair s of variables here!

Sothisaccountsfor why thevarianceof the Linear Combination does not match the
sum of theindividual variances...
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Using Smulated Random Data:

Linear Combinations

1)
i:=0.999 <indexofvaluesin each variable ce| 2
j=0.2 <index for threevariables 1)
X<O> := rnorm(1000, 5, 10) 0 1 2
0| 0.6103| 5.1717| 4.2218
X<1> := rnorm(1000, 2, 5)
1| -1.7941| 3.4605| 6.9156
><<2> := rnorm(1000, 3, 7) 2| 0.2671| 2.7073| -3.8088
3| -4.5147| 3.7385| 7.9945
LC, := Z Cj . (x<l>)i 4|-11.8568| 0.0829| 8.4299
i 5| 5.4353| 1.6503| 4.8077
. 6| 3.7937| -2.819| 6.8711
" thelinear contragst
X=17]| 10.5643| -0.7961| -1.4344
) 8| 26.9179| -8.2845| 13.065
Var\ X = 97.0097
9| 13.0873| 1.1709| 1.4187
Var(X<1> ) = 23.8932 10| 14.8514 2.521| 9.9579
( <2>) 11| 13.6223| 55577 5.9813
Var\X™ ] = 51.3127 12| 14.1557| -4.118| 0.5645
Var(LC) = 236.3934 13 11.73 9.679 4.251
14| -5.4431| 15269 7.7743
15| 5.6908| -2.2593| 4.2523

Var(LC) = 236.3934

Y (cj)z- var(x7) = 243.8051

j

LC=

< contrast matrix

0

6.7319

-1.7888

9.4905

-5.0321

-20.1211

3.9282

-8.7155

10.4065

-2.7163

O|loo| N[l W[N] L] O

14.0104

=
o

9.9356

[EEN
[EEN

18.7565

[EEY
N

5.3552

[EEY
w

26.837

[y
N

-10.1637

[EEY
a1

-3.0801

A variance calculated from
this SAMPLE of linear
contragsdirectly

" theoretical variancefor INDEPENDENT
POPUL ATIONS calculated by Rosner Eq 5.9 p. 141

N These are closer, although you can still see a difference. The SAMPL E of 1000
random pointsfor each variable XJ. gill has SOMe unintentional var iable dependence.

combin(3,2) = 3 <figuring the number of pairwisegraphs 3 variablestwo at atime

20 50 I
2 ok . 2 o —
-20 : -50 :
—50 0 50 -50 0 50
(o (o
50 T
@ ok = i
These graphslook random ... > X e - O
-50 |
-20 0 20
(D
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Assessing Covariance & Correlation of Variables
ORIGIN = 0

When bivariate plots or other diagnostic techniques indicate dependence between
variables, it is useful to have quantities describing this dependence. Covariance and
Corréation are two such quantitiesthat have an impor tant relationship.

Again, let'sgrab somefamiliar data:

iris:= READPRN("c:/2007BiostatsData/iris.txt" )

SL:= iris<1>
SW = iris<2>
PL = iris<3>
PW = iris<4>

n := length(SL) n =150
We havealr eady seen in pair wise graphsthat some variable pair s show dependence...

Covariance:

Aswith mean and variance, covariance may be determined in terms of the population or a
specific sample. In practical terms, we are almog always calculating valuesfor samples, so
that'swhat we will do here...

i-=0.n—-1 <indexfor valuesinthevariables

(SLi - mean(SL)) : (PLi - mean(PL))

CVsipL = Z n-1 CVg pL = 1.2743
|

N sample covariance isthe sum of " cross-products” divided by (n-1). The reason for
using (n-1) ingtead of (n) for the SAM PL E isthesamer eason used for variance.

Prototype for MathCad's built-in covariance function:

cvar(SL,PL) = 1.2658 Ll - ovar(SL,PL) = 1.2743
n -
N must cor rect built-in function for SAMPLE using (n-1)
~ built-in function calculatescovariance for POPUL ATION using (n)

Unfortunately, thereisno corr esponding built-in function for SAMPLE in MathCad. We'll
just haveto doit ourselves...

Correlation:
i:=0.n-1 <indexfor valuesinthevariables
sgL =y Var(SL) o
spL = \Va(P) < SAMPLE gtandard deviations
CORgpL = MELE CORg p. = 0.8718
SSL - SPL

N Corrédation iscalculated as the covar iance between two variables divided
by the product of their individual standard deviations.
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Prototype for MathCad's built-in correlation function:

corr(SL,PL) = 0.8718

og =y var(sL)
< POPULATION gtandar d deviations using (n)

oL 1= Var(PL)
ovar(SL,PL) = 0.8718 < POPULATION corréation using (n)
OSL " OPL
ovar(SL,PL) 0.8659 < WRONG calculation using (n) for covariance but using
sg s (n-1) for individual standar d deviations
") cvar(sL.PL) o _
n- 1) _ 08776 < WRONG calculation using (n-1) for covariance but
G - GpL e using (n) for individual standar d deviations

n )
(n— 1) - cvar(SL,PL)

SsL - SpL

=0.8718 < SAMPLE corréation using (n-1).

Note that when correctly calculated, the SAMPLE and POPUL ATION corr eations are the same!

Effect of Standardizing Data:

Sample variables are often sandardized cr eating anew variables for the POPULATION~N(0,1):

SL. — mean(SL)
Zg = mean(Zs )=0  Var(SL) = 0.6857
: SsL
PL. — mean(PL)
Zp = ——— mean(Zp) = 0 Var(PL) = 3.1163
' SPL
Zg =+ Var(SL)
< SAMPLE gtandard deviationsfor the Standardized variables
Zp =+ Var(PL)
Covariance:
(ZSLi - mean(ZSL)) . (ZpLi - mean(ZpL))
CVZg pL = Z — CVZg p = 0.8718

N same as Corr eation of the unsandardized variabled
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Effect of Variable Dependence on variance of Linear Combinations:
Wewon't spend alot of effort on thishere, but for two variables (Rosner Eq 5.11. p. 144):

75 :
C:= < contrast matrix
-15

L, =¢y- Sk + ¢ - PL < making the linear combination

1

Var(SL) = 0.6857
Var(PL) = 3.1163

n - ovar(SL.PL) = 1.2743

Var(L) = 45301 (c0>2- Var(SL) + (Cl)z_ Var(PL) + 2. ¢, ¢, - (ﬁ - cvar(SL,PL)) — 45301

" variance calculated using Rossner Eq 5.11, p. 144.
~ variance of thelinear combination calculated dir ectly

Herethedependence between variables SL and PL aretaken into account,
30 the calculations based on original variablesand Linear Combination now match
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Normal Approximationsfor Discrete Distributions
ORIGIN = 0

The Normal Distribution isvery commonly used to appr oximate discr ete Binomial and
Poisson distributionswhen calculation of the latter become problematic. To usethese

approximations it isimpor tant to see that general boundary conditionsinvolving
size of the distribution are met. Also, the approximationsare best when (1/2) modifiers
to specific cut-offs ar e used.

Approximating the Binomial Distribution:

Parameters of the Binomial Distribution:
n = total number of thingsor trials
k = number of " successes’
p = probability of " success"
g = probability of " failure' = (1-p)

Boundary condition:
To bevalid, sasmplevariance = npq > 5

Rosner Example 5.33, p. 147:
n:=25
p:=04 < Parameters of the binomal distribution

g=1-p =06
n-p-q==6 < variance boundary condition is met
n-p=10 < mean

Problem: find the Probability P(X=k) for 7 <k < 12

Binomial calculation usng cumulative binomial function:

pbinom(12,n,p) = 0.8462

pbinom(6.n. p) = 0.0736 < cumulative probabilities for each cut-off

pbinom(12,n,p) — pbinom(6,n,p) = 0.7727 < subtracting the cumulative probabilities
remembering that we want toincludek=7

Normal approximation usngthe cumulative Nor mal function:
pnorm(12.5,n- pn-p- q) = 0.8463

pnorm(6.5,n- pAn-p- q) = 0.0765
pnorm(12.5,n- pn-p- q) - pnorm(6.5,n- pAn-p- q) = 0.7698

~ aubtracting the cumulative probabilities

< cumulative probabilities for each cut-off
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Approximating the Poisson Distribution:

Parameters of the Poission disribution:

p =the expected number of eventsover an interval of timet
A =the expected number of events over unit time
p=At

Boundary condition:

To bevalid, ssmplevariance= pn > 10

Rosner Example 5.36, p. 147:
A:=01
t:= 100 <t=A here..

W= A-t pu =10 < mean = variance boundary condition is met

Problem: find the Pr obability P(X=k) for k > 20
Poisson calculation using cumulative Poisson function:
ppois(19,p) = 0.9965 < cumulative probabiliy for k < 20
1 - ppois(19, 1) = 0.0035 < cumulative probability for what'slefti.e., k > 20

Normal approximation usng cumulative Normal function:

prorm(19.5, 1./11) = 0.0987 < cumulative probabiliy for k < 20

1- pnorm(lg_sjp,\/ﬂ) — 0.0013 <cumulative probability for what'slefti.e., k > 20
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Normal Distribution - Prototyping Examplesfrom Rosner text
ORIGIN = 0

Example 5.11, p. 131:

p:=0 < mean
c=1 02 =1 < standard deviation & variance
X:=1.96 < critical valuetolook up intableor usein cumulative function

pnorm(X,u,c) = 0.975 < Note that MathCad requiresinput of Standard Deviation ¢ here.
Other dectronic functions may require Variance ¢2...

BE SURE YOU CAN DO THISFROM
TABLE 3IN THE APPENDIX AL SO!

X=1
pnorm(X,p,c) = 0.8413

Example 5.12, p. 131.

X:=-1.96
pnorm(X,p,c) = 0.025

X:= 196 < Thisshowsthat ®(-X) = 1 - ®(X)
pnorm(X,p,c) = 0.975
1- pnorm(X,p,c) = 0.025

Example 5.13, p. 132:

2
p=0 o=1 c =1

Problem: Compute P(-1<X<1.5):

pnorm(1.5, u,c) = 0.9332
pnorm(—l, i) ,c) = 0.1587

pnorm(l.s,u,c) - pnorm(—l,u,o) = 0.7745 < Remember these are cumulative probabilites

Example 5.14, p. 132:
p=0 o:=1
Problem: Compute P(X<-1.5):

prorm(-15. ) = 0.0668 < Note that theN(0,1) distribution is symmetric but the
1- pnorm(1.5,p,c) =0.0668 cumulative distribution isnot.

Example 5.15, p. 133:
W=0 o=1 o =1
Problem: Compute P(-1.5<X<1.5):
pnorm(1.5, u,c) - pnorm(—1.5,u,cs) = 0.8664
Example 5.16, p. 133:
=0 o=1 o =1
Problem: Compute P(0<X<1.45):
pnorm(1.45,p,c) - pnorm(O,u,c) = 0.4265
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Example 5.17, p. 133:
p=0 o:=1 02 =1
Problem: Compute P(X<2.824):

pnorm(2.824, 1 ,c) = 0.9976

Example 5.18, p. 134:
p=0 o:=1 02 =1
Problem: Compute Z where P(Z) = 0.975, P(Z) = 0.95, P(Z) = .5 & P(Z) = 0.025:

gnorm\0.975, ) =19 <thegnorm() function istheinverse of the cumulative

(
probability function pnor m(). Most software packages
qnormEO 9.1,0) = 16449 have these functions built in.

(

gnorm(0.5, u, 6) = However, BE SURE YOU CANREAD TABLE 3
gnorm(0.025, 1 , G) - _196 BACKWARDSWHEN NECESSARY

Example 5.19, p. 133:
n=0 o:=1 o?-1
Problem: Compute Z where P(Z) < 0.85:
gnorm(0.85, 11, &) = 1.0364

Example 5.20, p. 135-137:
n:=8 o:=1144 o=12 02:144
Problem: Compute P(90<X<100) for ~N(u,c2):
Evaluated directly:
pnorm(90, 1, ) = 0.7977
pnorm(lOO, 1) ,c) = 0.9522
pnorm(100, 1, 5) — pnorm(90, 1, &) = 0.1545

Evaluated ~N(0,1) following sandardization:

pnorm( 0~ u ,0,1\ = 0.7977 < Note that standardization allows

c ) use of Table 3 whereasdirect
computation must be done with
a computer-based function...

1 —
pnorm( e

(¢

_/\__/

1 —
pnorm( 00— u ,0,1

(¢

pnorm(90 2o 1\ = 0.1545

o )

N—

Example 5.21, p. 137:
p=8 o=2 c=2 02:4
Problem: Compute P(12<X) for ~N(8,4):

pnorm( 12— ,0,1\ = 0.9772 < for the cumulative probabily after sandar dization
(e}

)

12 -
1- pnorm( = 0,1\ = 0.0228

o )

< for theremainder X > 12

Also directly:
1- pnorm(lz,p ,c) = 0.0228
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Example 5.22, p. 137:
p=7 o:=17 c =17 022289
Problem: Compute P(X<40) for ~N(75,289):

pnorm(d'o_ a ,0,1\ = 0.0198 < for the cumulative probabily after standar dization

o )

1- pnorm(“ — 40,0,1\ = 0.0198 < Lookingat the other tail of the distribution,
o ) i.e, P(-X) = 1-P(X)

Also directly:
pnorm(40, 1, 5) = 0.0198

Example 5.23, p. 138:
p:==16 o:=3 c=3 0229
Problem: Compute P(12<X<20) for ~N(16,9):

20 - 12— . .
pnorm( K ,0,1\ - pnorm(—”,o,l\ - 08176 < draight calculation
(e}

o ) )

pnorm(zo's—_“,o,l\ - pnorm( 15— u ,0,1\ = 0.8664 < with modification to
o ) c ) incorporate " continuity
correction” indicating
Also directly: uncertainty in measuring...

pnorm(20,p ,c) - pnorm(12,p ,c) = 0.8176

pnorm(20.5,u,c) - pnorm(11.5,p,c) = 0.8664

Example 5.24, p. 139:
p =80 G::\/m c=12 022144
Problem: Compute X where P(X) = 0.05, and X where P(X) = 0.95:
Zos = gnorm(0.05,0,1)

< . : N
Zes = qnorm(0.95.0.1) calculating percentiles based on ~N(0,1)

Xo5:= 0 205+ 1 Xo5= 602618 . 3iculating X from standar dized Z:
Xg5:=0-Zg5+ 1 Xg5 = 99.7382 X, =cZ,+p
Also directly:

anorm(0.05. 1, 0) = 60.2618 < letting the built-in function do all thewor k.
qnorm(0.95, u ,(5) = 99.7382 Note, however, that this must bedone on
the computer as T able 3 doesn't apply...



Assignment for Week 5

This week we can begin statistical data analysis more-or-less for real. In our reading, we
have seen how to construct confidence intervals for the parameters of populations
assuming, of course, that our data sample comes from the distribution characterizing that
population. In lab, let’s concentrate on how to do this with the iris dataset.

The famous data set on the genus Irisinvolves four measurements (columns) for 150
individuals that the author (Anderson) originally thought to belong to three species (last
column). We can use these measurements to assess whether the species he identified can
be distinguished morphometrically (i.e., by differences in the mean of their
measurements). Of course, individuals in a population such as a species naturally show
variance, so mean values of each variable for each species must be judged accordingly.
Constructing confidence intervals allows us to circumscribe the location of the population
mean for each of the four variables and to see if the species differ in some way or
completely overlap.

So, this week, fire up R and try the following tasks. Note also that I have posted R
documentation for you and some helpful hints on our website.

1. Find the iris data set in R and print out a copy for reference as you work on this
problem.

2. Construct X, Y plots of the variables to see how they are distributed. Look for breaks
in the data and interpret what you see.

3. For each species, construct a histogram of each variable to assess normality of the data.
Again, interpret what you see.

4. Now, for each species, construct Q-Q plots and compare. Are the data Normally
distributed? How can you tell?

5. For Sepal.Length of Species Iris setosa, construct a 95% confidence interval of the
mean. Compare your results with 2007 Biostatistics 18 and confirm your
prototype.

6. Now construct a 99% confidence interval for the same data using your calculations.
How does this change in a affect the width of the confidence interval?

7. Finally, use R’s built-in t.test() function to calculate 95% and 99% confidence
intervals for each species over all four variables.

8. Given these confidence intervals, what evidence can you cite supporting or rejecting
the presence of multiple species?



ggmath {lattice} R Documentation

Q-Q Plot with Theoretical Distribution

Description
Quantile-Quantile plot of a sample and atheoretical distribution

Usage
qgmath(x, data, ...)

## S3 method for class "formula“:
qgmath(x,
data,
allow.multiple = is.null(groups) || outer,
outer = lis.null(groups),
distribution = gnorm,
f.value = NULL,
auto.key = FALSE,
aspect = "fill",
panel = "panel_qgmath',
prepanel = NULL,
scales, strip, groups,
xlab, xlim, ylab, ylim,
drop.unused. levels = lattice.getOption("drop.unused.levels™),

default.scales = list(),
subscripts,
subset)
## S3 method for class "numeric”:
qgmath(x, data, ylab, ...)

Arguments

X The object on which method dispatch is carried out.
For the "formula’™ method, aformula of the form ~
x | g1 * g2 * ..., wherex must beanumeric.
For the ""numeric" method, a numeric vector.

data For the formula method, an optional dataframein

which variablesin the formula (as well as groups
and subset, if any) are to be evaluated. Usualll
ignored with awarning in other methods.

distribution aquantile function that takes a vector of probabilities
as argument and produces the corresponding
quantiles. Possible values are gnorm, qunif €etc.
Distributions with other required arguments need to
be passed in as user defined functions.



f.value

panel

allow.multiple, outer, auto.key,
aspect, prepanel, scales, strip,
groups, xlab, xlim, ylab, ylim,
drop.-unused. levels,
default.scales, subscripts, subset

Details

optional numeric vector of probabilities, quantiles
corresponding to which should be plotted. Can aso
be afunction of asingle integer (representing sample
size) that returns such a numeric vector. The typical
value for this argument is the function ppoints,
which isalso the S-PLUS default. If specified, the
probabilities generated by this function is used for
the plotted quantiles, using the quanti le function for
the sample, and the function specified as the
distribution argument for the theoretical
distribution.

f_value defaultsto NULL, which has the effect of
using ppoints for the quantiles of the theoretical
distribution, but the exact data values for the sample.
Thisis similar to what happens for ggnorm, but
different from the S-PLUS default of
f.value=ppoints.

For large x, this argument can be useful in plotting a
smaller set of quantiles, which isusually enough to
capture the pattern.

The panel function to be used. Unlike in older
versions, the default panel function does most of the
actual computations and has support for grouping.
See panel .qgmath for details.

See xyplot

Further arguments. See corresponding entry in
xyplot for non-trivial details.

qgmath produces a Q-Q plot of the given sample and a theoretical distribution. The default
behaviour of ggmath is different from the corresponding S-PLUS function, but is similar to
ggnorm. See the entry for f.value for specifics.

The implementation details are also different from S-PLUS. In particular, all the important
calculations are done by the panel (and prepanel function) and not qgmath itself. In fact, both the
argumentsdistribution and f.value are passed unchanged to the panel and prepanel function.
This allows, among other things, display of grouped Q-Q plots, which are often useful. See the
help page for panel .qgmath for further details.



Thisand all other high level Trellis functions have several argumentsin common. These are
extensively documented only in the help page for xyplot, which should be consulted to learn
more detailed usage.

Value
An object of class"trellis". The update method can be used to update components of the

object and the print method (usually called by default) will plot it on an appropriate plotting
device.

Author (s)

Deepayan Sarkar Deepayan.Sarkar @R-project.org

See Also

xyplot, panel _qgmath, panel _.qgmathline, prepanel _.qgmathline, Lattice, quantile

Examples

ggmath(~ rnorm(100), distribution = function(p) qt(p, df = 10))
qgmath(~ height | voice.part, aspect = "xy", data = singer,
prepanel = prepanel_qgmathline,
panel = function(x, -..) {
panel .qgmathline(x, ...)
panel .qgmath(x, ...)

b
vp.comb <-
factor(sapply(strsplit(as.character(singer$voice.part), split = " '),
levels = c(""Bass", "Tenor'™, "Alto", '"Soprano'™))
vp.group <-
factor(sapply(strsplit(as.character(singer$voice.part), split = "),

" 2))
qgmath(~ height | vp.comb, data = singer,
groups = vp.group, auto.key = list(space = "right"),

aspect = "'xy",
prepanel = prepanel_qgmathline,
panel = function(x, -..) {

panel .qgmathline(x, ...)
panel .qgmath(x, ...)

1))



summary { base} R Documentation

Object Summaries

Description

summary is ageneric function used to produce result summaries of the results of various model
fitting functions. The function invokes particular methods which depend on the class of the first
argument.

Usage
summary(object, ...)

## Default S3 method:
summary(object, ..., digits = max(3, getOption('digits')-3))
## S3 method for class "data.frame”:
summary(object, maxsum = 7,
digits = max(3, getOption(''digits™)-3), ...)

## S3 method for class "factor”:
summary(object, maxsum = 100, ...)

## S3 method for class "matrix”:
summary(object, ...)

Arguments

object an object for which asummary is desired.
maxsum jnteger, indicating how many levels should be shown for factors.

digits jnteger, used for number formatting with signif() (for summary .default) or format()
(for summary .data. frame).

additional arguments affecting the summary produced.

Details

For factors, the frequency of the first maxsum - 1 most frequent levelsis shown, where the less
frequent levels are summarized in ** (Others)™ (resulting in maxsum frequencies).

The functions summary . Im and summary .glIm are examples of particular methods which
summarise the results produced by Im and glm.

Value



The form of the value returned by summary depends on the class of its argument. See the
documentation of the particular methods for details of what is produced by that method.

References
Chambers, J. M. and Hastie, T. J. (1992) Satistical Modelsin S. Wadsworth & Brooks/Cole.
See Also

anova, summary.glm, summary.lm.

Examples

summary(attenu, digits = 4) #-> summary.data.frame(...), default precision
summary(attenu $ station, maxsum = 20) #-> summary.factor(...)

Ist <- unclass(attenu$station) > 20 # logical with NAs

## summary.default() for logicals -- different from *._factor:
summary(lIst)

summary(as.factor(lst))



ggnorm { stats} R Documentation

Quantile-Quantile Plots
Description

gagnorm is ageneric function the default method of which produces a normal QQ plot of the
valuesiny. qqline adds aline to anormal quantile-quantile plot which passes through the first
and third quartiles.

qgplot produces a QQ plot of two datasets.
Graphical parameters may be given as argumentsto ggnorm, ggplot and ggline.
Usage

qgnorm(y, --.)
## Default S3 method:

qgnorm(y, ylim, main = "Normal Q-Q Plot",
xlab = "Theoretical Quantiles'™, ylab = "Sample Quantiles",
plot.it = TRUE, datax = FALSE, ...)

qqline(y, datax = FALSE, ...)

qgplot(x, y, plot.it = TRUE, xlab = deparse(substitute(x)),
ylab = deparse(substitute(y)), --.)

Arguments

X Thefirst sample for qgplot.

y The second or only data sample.

xlab, ylab, plot labels. The x1ab and ylab refer to they and x axes respectively if datax
main = TRUE.

plot.it logical. Should the result be plotted?

datax logical. Should data values be on the x-axis?

yhim, ... graphical parameters.

Value

For ggnorm and ggplot, alist with components

X The x coordinates of the points that were/would be plotted
Y Theoriginal y vector, i.e., the corresponding y coordinates including NAS.



References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

ppoints, used by ggnorm to generate approximations to expected order statistics for a normal
distribution.

Examples

y <- rt(200, df = 5)

qgnorm(y); qqline(y, col = 2)
qgplot(y, rt(300, df = 5))

qgnorm(precip, ylab = "Precipitation [in/yr] for 70 US cities")



t.test { stats} R Documentation

Student'st-Test

Description
Performs one and two sampl e t-tests on vectors of data.

Usage
t.test(X, -..)

## Default S3 method:

t.test(X, y = NULL,
alternative = c("two.sided”, "less', '‘greater™),
mu = 0, paired = FALSE, var.equal = FALSE,
conf_level = 0.95, ...)

## S3 method for class "formula“:
t.test(formula, data, subset, na.action, ...)

Arguments

X a (non-empty) numeric vector of datavalues.
y an optional (non-empty) numeric vector of data values.

alternative gcharacter string specifying the alternative hypothesis, must be one of
"two.sided" (default), "greater™ or ""less". Y ou can specify just theinitial

letter.

mu anumber indicating the true value of the mean (or difference in meansif you are
performing atwo sample test).

paired alogical indicating whether you want a paired t-test.

var.equal  g|ogica variable indicating whether to treat the two variances as being equal. If
TRUE then the pooled variance is used to estimate the variance otherwise the
Welch (or Satterthwaite) approximation to the degrees of freedom is used.

conf.level confidenceleve of theinterval.

formula aformulaof theform Ihs ~ rhs where Ihs isanumeric variable giving the data
values and rhs afactor with two levels giving the corresponding groups.
data an optional matrix or data frame (or similar: see model.frame) containing the

variablesin the formula formula. By default the variables are taken from
environment(formula).

subset an optional vector specifying a subset of observationsto be used.
na.action  gfunction which indicates what should happen when the data contain NAS.



Defaultsto getOption(*'na.action™).
further arguments to be passed to or from methods.

Details
The formulainterface is only applicable for the 2-sample tests.
alternative = "greater" iSthe aternative that x has alarger mean thany.

If paired is TRUE then both x and y must be specified and they must be the same length. Missing
values are removed (in pairsif paired is TRUE). If var.equal is TRUE then the pooled estimate
of the variance is used. By default, if var._equal isFALSE then the variance is estimated
separately for both groups and the Welch modification to the degrees of freedom is used.

If the input data are effectively constant (compared to the larger of the two means) an error is
generated.

Value

A list with class "htest" containing the following components:

statistic thevaue of thet-statistic.
parameter  the degrees of freedom for the t-statistic.
p.value the p-value for the test.

conf.int a confidence interval for the mean appropriate to the specified alternative
hypothesis.

estimate the estimated mean or difference in means depending on whether it was a one-
sample test or atwo-sample test.

null.value the specified hypothesized value of the mean or mean difference depending on
whether it was a one-sample test or atwo-sample test.

alternative gcharacter string describing the alternative hypothesis.
method acharacter string indicating what type of t-test was performed.
data.name g character string giving the name(s) of the data.

See Also

prop.test

Examples

t.test(1:10,y=c(7:20))
t.test(1:10,y=c(7:20, 200))

-00001855

# P
# P -1245 -- NOT significant anymore



## Classical example: Student"s sleep data

plot(extra ~ group, data = sleep)

## Traditional interface

with(sleep, t.test(extra[group == 1], extra[group == 2]))
## Formula interface

t.test(extra ~ group, data = sleep)
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Point and I nterval Estimation for the Normal Distribution
ORIGIN = 0

Given the general setup in statistics between random variable X and the probability P(X)
gover ned by a Probability Density Function such asthe Normal Distribution, Binomial
Digribution, etc., one typically uses specific random samplesto estimate the population
parameters. Estimation of thissort takeson additional error over direct knowledge of the
population parameters. However, onerarey knowsthem.

For the Normal Digtribution, the population parametersare:

i) = population mean
62 = population variance

From our sample, wehave the analogous calculations termed point estimates:

X = sample mean

bar

2 = samplevariance

Different kinds of statigtical theory underliesthese estimates generally allowing them to
be categorized in oneof two ways

-"minimum variance", also known as" least squares minimum"
"unbiased" or " Normal theory" estimators, and

-"maximum liklihood" estimators.

How to calculate estimators of these two typesis generally beyond the scope of
introductory gtatistics courses, although Rosner can't resst showing you an example of
one derivation using " maximum liklihood" estimatorsfor p in the binomal distribution on
p. 203. It isnicetoseeit, but don't wor ry too much about details at this point.

Theimportant thing to remember isthat thetwo methods of estimation sometimes but not
alwaysyield the same point estimators. The point estimators, then feed into specific
gdatistical techniques. Thus, it issometimesimportant to know which estimator is
associated with a particular technique so asnot mix approaches. Generally, maximum
liklihood estimators, based on newer theory, are gecifically indicated as such (often using
'hat' notation).

In the caseegtimating parametersfor the Normal Distribution, X, isthe point estimate
for p under both estimation theories. However s2 sum of squareswith (n-1) asdivisor is
the point estimate using " unbiased" theory whereas 2, with samesum of sgares but
using (n) asdivisor isthe point esimate usng " maximum liklihood" theory. Confusing,
yes, but now that you know thedifference not all that bad...

Estimating error on point estimates of the mean:

Although X, isour Normal theory estimateof population par ameter p based on a sngle
sample, one might readily expect X, to differ from sampleto sample, and it does. Wethus
need to estimate how far X, will vary from sampleto sample. Multiply collected means
differ from each other much lessthan individual sasmplevalues X will. Thereationshipis

called the" sStandard variance of the mean" :

Standard Variance of the Mean = sample variance/n
or
Standard Error of the Mean = sample sandar d deviation /4/n
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Central Limit Theorem:

Thisresult is one of the reasons why Normal theory, and the Nor mal Digribution underlie
much of " parametric’ datistics See Rosner Eq. 6.3 p. 184 for a formal definition. It says
that although the populations fr om which random variable X are drawn may not necessarily
be nor mally distributed, the population of means derived by replicate ssmpling will be
normally digtributed. Thisresult allowsusto use the Normal Distribution with parameters
u, o2 estimated respectively by X, and £ (or occasionally ¢2,,;) to estimate pr obabilities of
means P(X) for various values of X.

Statistics evaluating location of the mean:

Rosner Eq. 6.4 p. 187 givestheusual appr oach to esimating thedifference between X,,,,, of a
sample and p of a population. It involves gandardizing the random variable Xpg — 1 which

measur es the difference between sampleand population means:

Xbar — . . .
Z = Jbar — 1 < Note use of sandar dization of the variable
o by o/y/n
Vyn

If somehow we know the population parameter ¢ then wecan resort directly to the
standardized Nor mal Digribution ~N(0,1) to calculate probabilities P(Z). However, inreal life
Stuations, ¢ isnot known and we must estimate ¢ by s When we do this, the analogous

variablet:
. Xpar — H
t= S < Same standardizing approach but
= using singead of
v ° °

isnolonger Normally distributed. Instead, weresort toa new probability density function,
known as" Student'st" tocalculate P(t) given t. Student'st isa commonly employed
statistical function ranking high in impor tance along with the chi-square distribution (x2)
and the F digribution.

Confidence Intervals:

Confidence intervals are are statements of ranges of X around X5, within which p is
expected to reside over a certain fraction of samples. Thisfraction is set by specifying a
confidencelimit a.

Let's calculate this from a pseudo-random example:
X := rnorm(100,50,4/100) < herein fact we know p=50 and ¢2 = 100
n:= length(X) n= 100

p =50 c = \/ 100

< we can also pretend that we don't know the
Xpar = mean(X)  Xpg = 48.4955 P

population parametersand must use sample
2 mean and var ianceinstead as oneusually
S:= \/Var X S = 96.4487 .
) would with real data.

Calculation of Confidencel nter vals;

o = 0.05 < We choose a limit probability allowing u to reside outsdethe
1- o =095 rangeof X around X, (1-a) X 100 percent of thetime...

A dncetheNor mal Digribution and thet distribution are both symmetrical, there
are equal- sized tailsfor each distribution above or below which p will fall half
of thetime. Each tail therefore has o/2 probability.

Thisis commonly known asthe Two-T ail case...
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To calculate probabilities, we employ the commonly implemented cumulative 'p* and '’
functionsfor theNor mal distribution seen in satistical software:

o = 0.05 < confidencelimit that wemust set explicitly each time

If uand o are known:

p =250 c =10

L= qnorm(%,oJ) L=-196 % = 0.025 < lower limit of N(0,1) for a/2

U:= qnorm(l - %,0,1) U=19% 1- % = 0.975 < upper limit of N(0,1) for a/2

ol c-L c-U) < calculating Confidence I nter val using population
s Jn * Jn ) p and o seeRosner Eq. 6.4. p. 187 Note here

that | calculated each tail explicitly so | added

Cl = (4804 51.96) both L and U to deter mine the CI.

If uwand o mus be estimated by sample X, .. and s

bar

Xpar = 48.4955 s= 9.8208

< dngle parameter of Sudent'st digribution
called " degrees of freedom”

dgf =n-1 df =99

L = -1.9842

L= qt(%,df)

U= qt(l - %,df) U= 1.9842 1-

Ol e (X + L Xpgr+ U= )
7

Vn)

2 0025
2

= 0.975

N

< calculating Confidence I nterval. See Rosner
Eq. 6.6, p. 190. Note herethat | calculated
each tail explicitly sol added both L and U to
determinetheCl. Also note SE of mean

Cl = (465468 50.4441)

" Occasionally we may be unlucky her ewhen our
pseudo-random number gener ator givesusadeviant
sample with confidenceinterval that doesn't includepu =50
in asample of 100 X's, but that'sthe breaks!

i:=0.n

100
80~ y 7
Xj 60~ & o . ° . e

WoF - . PR

20
0 20 40 60 80 100

~ note outlier pointsinfluencing X, . here!

measured by the sample quantity S

n

0

45.6103

43.2059

45.2671

40.4853

33.1432

50.4353

48.7937

55.5643

71.9179

O|loo| N[l B W[N] FL]|O

58.0873

[EEY
o

59.8514

[EEN
[EEN

58.6223

[EEY
N

59.1557

[EEY
W

56.73

(=Y
i

39.5569

[EEY
a1

50.6908
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Confidence Intervalsfor Mean and Variance of a Normal Distribution
ORIGIN = 0

Calculating confidence intervals on the sample mean and sample variance are impor tant
gatigtical functions. Thisworksheet showsthecalculation of both using our familiar Iris data:

iris:= READPRN("c:/2007BiostatsData/iris.txt" )

SL = iris<1> PL .= iris<3>
SW = iris<2> PW = iris<4>
n := length(SL) n =150
Xbarg := mean(SL) Xbarg = 5.8433
Xbargyy := mean(SW)  Xbargy = 3.0573
< calculating sample means
Xbarp := mean(PL) Xbarp = 3.758 g P

Xbarpyy := mean(PW)

Xbarpy = 1.1993

SDg :=+/Var(SL) SDg = 0.8281
SDgyw = v/ Var(SW) SDgyy = 0.4359
< calculating sample sandar d deviations

SDp; = \/Var(PL) SDp; = 1.7653 g s|amp
SDpyy = \/Var(PW) SDpyy = 0.7622

SDs.
SEg = \/_ SEg = 0.0676

n

SDgw

SEgw = \/_ SEg = 0.0356
n

SDpL
SEp| = SEp| = 0.1441 < gtandard error of the mean based on sample

Vn standard deviation

SDpw
SEpw = Jn SEpw = 0.0622 NOTE: Cl's assume underlying Normal

Confidence Intervalsfor mean:

digribution for each variable, but
Central Limit Theorem provides
robus outcome anyway...

o = 0.05 < We choose a limit probability...
1- % - 0975 < upper limit for tail of the symmetrical t distribution
df =n-1 df = 149 < single parameter of thet distribution
called " degrees of freedom”

Clmg, = (Xbarg_ - qt(l - g,df\ . SEg. Xbarg, + qt(l - g,df\ : SESL\

2" ) 2" ) )
Cimgy = [Xbarsw - qt(l - %,df) - SEgqy Xbargy + qt(l - %,df) : SESW)
Clmp = (XbarpL - qt(l - %,df) - SEp. Xbarp_ + qt(l - %,df) . SEPL)

o o )
Clmpyy = [Xbarpw—qt(l——,df - SEpwy Xbarpyy + qt(l——,df - SEpwy
2") 2") Y

)

A confidenceintervals calculated using upper tail of thet distribution only.
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Prototype for Confidence Interval of the mean:

Clmg_ = (5.7097 5.9769)
Clmgyy = (2.987 3.1277) < Evaluation of above CI calculations

Clmp = (34732 4.0428)
Clmpy = (1.0764 1.3223)

SYSTAT Output confirms calculations:

SEPALLEN SEPALWID PETALLEN PETALWID

N of cases 150 150 150 150

Minimum 4.3000000 2.0000000 1.0000000 0.1000000

Maximum 7.9000000 4.4000000 6.9000000 2.5000000

Mean 5.8433333 3.0573333 3.7580000 1.1993333

95% CI Upper 5.9769342 3.1276563 4.0428146 1.3223134

95% CI Lower 5.7097325 2.9870103 3.4731854 1.0763533

Std. Error 0.0676113 0.0355883 0.1441360 0.0622364

Standard Dev 0.8280661 0.4358663 1.7652982 0.7622377
Confidence Interval for Variance: NOTE: Cl's assume underlying Normal

disribution for each variable...
Var(SL) = 0.6857

Var(SW) = 0.19
Var(PL) = 3.1163
Var(PW) = 0.581

_ For variance, this assumption is
< sample variances crucial & sensitive

a = 0.05 < We choose a limit probability...

1-2_-0975 2 _ 0025 < upper and lower limits of
2 2 asymmetrical x2 digribution
Clve | (N=D-Va(Sl) (n-1) Var(Sl)
S a ) o ) Clvg = (05532 0.8725)
chisgl 1 — —,df chisg| —, df
! Sq( 2%) Sq( 2%
Clvan | (0= 1 - Var(SW) (n-1)- Va(sw)
S a ) a ) Clvgy = (01533 0.2417)
chisgl 1 — —,df chisg| —, df
qchisq > ) gcnisq > )
(n-1)-Va(PL) (n-1)-Var(PL)
Clvp =
_ a df\ chise & df\ Clvp, = (25141 3.9653)
chisg 1 - —, -,
qcnisg > ) q > )
(n-1)-Va(PW) (n-1)-Va(PW)
Clvpy =

Clvpy = (0.4687 0.7393)
qchisq(l - %,df) qchisq(%,df} P

" | haven't yet found an automated procedurein Systat or another canned statistical
package for dir ect comparison as Prototype. The R program will allow hand calculation
in the same way.
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Point and I nterval Estimation of Discrete Distributions Parameters
ORIGIN = 0

Estimates of expected values and confidence intervals for parameter p of the Binomial
Digribution and p of Poisson Distribution can be made in a way analogousto that seen

for p and o2 in the Normal Distribution.

Binomial Distribution:
Making some a samplederived from theBinomial Distribution:

n:= 30 p:=03 m:= 100
Rp := rbinom(m,n, p) length(Rg) = 100
0
Point estimatefor p:  Remember pisdefined asthe 0|12
i~ 0.99 probability of " success" at each trial, 1110
T asin theprobability of " heads' in the > 10
1 coin flip problem...
— z B 3| s
Phat = — Phat = 0.3067 < point estimate of fraction p 4113
n isthe mean number of heads 510
over sample of sizem divided 6
total possblenumber of heads Rp=|7
(1 -
SEp = /phat— [phatj SEp= 00842 < Standard error of p 8|12
n remember q=(1-p) = 10
10
~ Compare this calculation with Rosner p. 202. On following 11
pages, Rosner shows how the p,,, utilized hereisthe 12110
Maximum Liklihood point esimate of p. 13|11
Note that p,,,, isdependent on m = the number of replicates. i;’

If m=1, then p, ,, becomesthe single observation X that you have.

Interval estimatefor p:

Confidence Interval using Normal Theory Methods:
Rossner p. 205 givesarational for theuseof thismethod aslong as n- ppa - ghat = 5

n=30 Phat = 0.3067  Qpat:= 1 — Phat Ohat = 0.6933

N- Phat - dhat = 6.3787 < OK to proceed!

a = 0.05 < Specify confidencelimit

1- % = 0.975 < upper limit on symmetric Standardized Nor mal Digribution

Clnp = (phat - qnorm(l - %’O’lj .\/@ Phat + qnorm(l 3 %’0’1) phatr-]qhatj

Clnyp = (01417 04717) < Confidence I nter val for p based on Normal Theory Methods.

~ Compare thisinterval with p, . - the point estimate for p above.
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Confidence Interval using Exact Methods:

See Rosner p. 208-209 for his example of calculating Confidence Intervalsindirectly with the
Cumulative Binomial Probability function. The key to using this method cor rectly istofirst
find py,, = the mean value of thesample. Then set cutoffsin the cumulative pr obability
digribution @y (i.e., the 'p' Binomial function in Mathcad & R) that surround theobserved
mean. Then choose arangeof X valuesthat bracket theprobability a/2 above and below.
Values (X) areread from the same posgtion in matrices X1 & X2 asthe ®1(X) and ®2(X) at
a/2 cutoff - i.e., valuesof X arerecovered at appropriate cumulative cutoff probabilities @5 (X).

N=30  pha=03067  Onha:=1- Pha Ohat = 0.6933

o= 0.05 < Specify confidencelimit
% = 0.025 < upper limit on symmetric Standardized Nor mal Digribution
Clgp:= (0.15 051) <using Table7 a=0.05 for p, ,, =0.3123
values (X):
n=30 men(Rg)=92  <meanofBinomial 0.05) 0.42)
, distribution Rg
1:=0..9 01 0.44
— (i > 0.15 0.46
XLj=(+1)-005 < | picked a range of values
0.2 0.48
X2 = (i + 1) 0,02+ 04 around where | expected
i ' ' the CI limitsin X to fall X1 - 0.25 o - 05
from table above. 0.3 0.52
. ; 0.35 0.54
®1i:=1- pbmom(9,n,X1i) < calculating cumulative
e . 04 0.56
®2: = pbinom(10. 1. X2 probabilitieswith
=P ( 7 i) cutoff around mean(R;) 0.45 0.58
05 ) 0.6 )

lower limit ~  upper limit »

Cumulative Probabilities ®g(X):

11615 % 107 °) 02201
0.0005 0.1604
0.0097 < lower probability cutoff for ClI 0.1126
0.0611 Find cor responding valuein X1 0.0761

0.0494
oL 0.1966 o2 =
0.4112 0.0307
0.6425 upper probability cutoff fqr Cl > 0.0183
08037 Find corresponding value in X2 0.0104
0.9306 0.0056
09786 0.0029 )

A 1t would be useful to compar ethis pr ototype with confidence inter vals for p provided by a
canned statistical procedure. Sofar, | haven't found aprogram that doesthis... No doubt,
R would allow me to make similar calculations, but that would not suffice as a check on
procedure.
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Prototype using Exact Binomial Test Function in R:

>RB=c(12,10,10,8,13,10,8,7,12,10,9,6,10,11,9,6,11,8,10,8,6,9,10,12,11,4,13,12,9,11,9,9,5,9,9,8,9,8, -
13,8,11,9,9,10,10,9,8,9,8,12,10,9,13,8,12,4,5,6,9,7,12,11,12,8,8,9,5,11,10,10,10,9,10,7,9,7,6,9,6,12, -
13,12,9,10,13,10,9,10,11,6,8,9,8,10,14,6,12,7,9,3)

~ values of Ry above cut and pasted into variableRB in R
> binom.test(9,30,p=(mean(RB)/30),alter native="two.sded" ,conf.level=0.95)
~ binom.test function used...

Exact binomial test

data: 9 and 30
number of successes= 9, number of trials= 30, p-value=1
alternative hypothesis trueprobability of successisnot equal to 0.3066667
95 percent confidence interval:
0.1473452 0.4939590 < compare with cutoffsin ®1 & ®2 above...
sample estimates;
probability of success
0.3

binom.test {gtats} R Documentation
Exact Binomial Test
Description

Performsan exact tes of a Smplenull hypothesis about the probability of successin a
Bernoulli experiment.
Usage

binom.test(x, n, p = 0.5,
alternative = ¢("two.g9ded" , " less’, " greater "),
conf.level = 0.95)

Arguments

X number of successes, or avector of length 2 giving the number s of successes and
failur es, respectively.

n number of trials, ignored if x haslength 2.

p hypothesized probability of success.

alternative indicatesthe alter native hypothesis and must be one of " two.sided"
"greater" or "less'. You can ecify just theinitial letter.

conf.level confidenceleve for thereturned confidenceinterval.

Details

Confidence intervals are obtained by a procedurefirst given in Clopper and Pearson (1934).
Thisguaranteesthat the confidence level is at least conf.level, but in general does not give
the
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. L . 0
Poisson Distribution: e
Making some a samplederived from thePoisson Digribution: 1| 4
2| 6

A=4 m:= 100
3| 3
Rp:= rpois(m,k) 41 4
. . 5| 8
Point Estimatefor a: 5T
)par = mean(Rp) Apar = 4.24 < mean occurrence Rp=17] 4
8| 5
Exact Interval Estimate for A: ol 4
10| 6
o:=005 < Specify confidencelimit 11| 6
12| 2
1- a =095 <a defines the confidence interval 13| 3
14| 2
Aswith the Binomial Distribution, the Confidencel nter val 15| 8

isdifficult to calculate explicitly. See Rosner Table 8in
Appendix p. 835. Thetablerequires specifying (1-a) leve
and observed X for asingletrial. Onethenreadsupper and
lower boundsdirectly.

So hereusing 95% CI and an observed X of 4 nearest A, of 4.15
Clp:= (109 10.24) <thisisthe95% CI for p =2 becausetimeT =1

~ In our example, we pecified A. If timeinterval T other than unity (i.e., 1), then
A =wT and Cl for A = (W/T,WT)

It isinteresting to note that had we been dealing with r eal data, we might have obser ved
an X value different than closeto the mean of Ay, = 4.15. For ingtance, in a replicate of
Ry above we might have observed something different, for example X = 10. The ClI now

changesa little:

Clp:= (4.80 18.39) < 95% CI for p =A given that weobserved X=10 in our data.

Note that indir ect calculation bypassing Table 8 can be donein away smilar to use of
pbinom function shown above. See Rosner p. 213.
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General Strategiesfor Sampling a Population
ORIGIN = 0

Rosner pp. 169-177 provides an excdlent survey of the research designsemployed in obtaining
"unbiased" and " representative” samplesthat may beviewed asfairly representing the
population from which they come. Although satistical calculations ar egenerally silent about
issues of sampling, of course, the believability of statistical results obtained are often critically
dependent on them. Rosner highlightsthe use of pseudo-random number tablesin setting up
different kinds of gudies, and provides some impor tant terminology, summarized here...

Random Sel ection - Useof random numbersto select uniquely identified individuals from
a population, usually without replacement.

Random Assignment - Useof random numbersto a assign fixed numbers of individuals
toeach treatment or analysis category, usually without replacement.

Randomized Trial - In comparing the effect of different levels of " treatment" (clinical
or otherwisg), individuals from a population are assigned at random to specific tr eatment
classes (or categories). Thishopefully guar ds against some other factor biasing the sample
and being responsble for observed difference in outcome between the classes, rather than the
treatment themselves.

Block Randomi zati on - Random selection placing individualsinto tr eatment classes
often involves replicate blocks - each essentially arandomized trial.

Stratified Design - Treatment classes are set up explicitly regar ding valuesobserved in
individualsfor one or more" accessory" or " covariate' variables. Thedifferent classes defined
by these variables ar ecalled srata (sngl. gratum). Within strata, random selection, random
assignment, or block ransomization may be employed.

Blind Designs - When knowiedge on the part of r esearcher, subject, or both ("double
blind') might influence behavior within strataor blocks, careistaken insulatethe sudy from
this knowledge.

Standard Satistical packages, such as SY STAT, SAS, or SPSSoffer theability to partition
data into grataand sub-blockswith ease. Thus, once prototyped, they can offer a significant
time advantage in analysis of large data sets having a complex design.
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ORIGIN =0 One Samplet-Test

Thistest with associated descriptivive satisticsis designed to test hypotheses about
the mean of apopulation with unknown variance.

Assumptions:
- Observed values X |, X,,, X, ... X are arandom sample from ~N(p,69).

- Variance o2 of the popopulation ¢2 is unknown.

Hypotheses:
Ho B =po < Y, is a gecified value for p
Hyp<pg < Onesided test
Test Statistic:
Xpar = 1O

t= ———— < tisthe normalized distance between means Xbar and p,,
S

Jn
Critical Valueof the Test:
o = 0.05 < Probability of Typel error must be explicitly set

< o impliesCisthe'Critical Value' (in X) specified by
cumulative probability ®(X) = a
found by the'q' function of thet Digtribution.

C:= inversed)t(a) C:= qt(a,n - 1)

Sampling Distribution:

If Assumptionshold and H, istrue, thent ~t )
Decision Rule:

IF t <C, THEN REJECT H,

OTHERWISE ACCEPT H,

Probability Value:
P=dyt) < probability of finding normalized disgancet given the assumptions.
Common attributionsfor P:

IF 0.001 <P then the results ar edtatistically very highly sgnificant.
IF 0.001 <P< 0.01 thentheresaultsaredatistically highly significant.

IF 001 <P< 0.05 thentheresultsaredatisticallysignifcant.

IF 005 <P then the resulst ar e NOT statistically Sgnifcant.
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Example:
iris:= READPRN("c:/2007BiostatsData/iris.txt" )
i:=0.49
(D
SLi = (ms )i
n := length(SL) n =50
Xbarg := mean(SL) Xbarg = 5.006
SDg =y Var(SL) SDg = 0.3525
SDs
SEg = SEg = 0.0498
Jn
Assumptions:

One Sample t-Test

< Assembling Sepal Length datafor the first speciesonly

< n = number of observations X
< mean of X

< sample sandar d deviation of X

< gandard error of the sample mean of X

- Observed values X, X,,, X,, ... X arearandom sample from ~N(u,6?).

- Variance o2 of the popopulation ¢2 is unknown.

Var(SL) = 0.1242

" our sample estimate
of population variance

Hypotheses:

no:=51 <Setp,for thetes:

< Y, is a gecified value for p
<Onesided test

Ho =1
Hin<mg
Test Statistic:

(o Xbarg — o
. SEg

t=-1.8857

plot := histogram(15, SL)

10
ool s |
n .|
o, O
4 45 5 55 6
pl ot<0>

Critical Valueof theTest and Distribution of t:
a = 0.05 < Probability of Typel error must be explicitly set

c:= qtla,n— 1) C = -16766

Decision Rule;

IFt<C, THENREJECT H,OTHERWISE ACCEPT H,

t=-1.8857

Probability Value:

C=-1.6766

pt(t,n — 1) = 0.0326 P =d(t)

Protoype using R:

Commands.

>attach iris

>SL =Sepal_L ength[ Species==setosa]
>t.tet(SL,alternative="less' ,mu=>5.1,
conf.level = 0.95)

Results: OneSamplet-test
data: SL
t =-1.8857, df = 49, p-value = 0.03264
alternative hypothesis truemean islessthan 5.1
95 percent confidence interval:
-Inf 5.089575
sample estimates;
mean of X
5.006
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One Samplet-Test
Other One Way case:
Assumptions:

- Observed values X, X,, X, ... X arearandom sample from ~N(p,09).

- Variance 62 of the popopulation o2 is unknown.
Hypotheses:
Ho m=py < Y, isa ecified value for p

Hyp>pg < Other One sided test
Test Statistic: Critical Valueof the Test:
Xpar = KO o = 0.05 < Probability of Typel error must be explicitly set

t:=
s C:=inversed(1 - o) C:= qtf{1 - a,n— 1)

n
vn " o impliesC the'Critical Value' (in X) specified by

Samoli St P cumulative probability ®(X) = 1-o for the other
pling Distribution: tail of the'q' function of thet Digtribution.

If Assumptionshold and Hy istrue, thent ~t, )
Decision Rule:
IFt>C, THENREJECT H,OTHERWISE ACCEPT H,

Probability Value:
P=®,(X) at 1-o < Rosner p 237

Example Other One Way case:
Xbarg = 5.006 SDg = 0.3525 SEg = 0.0498 < same descriptive gatigics as above
Assumptions:
- Observed values X, X,, X, ... X arearandom sample from ~N(p,09).

- Variance 62 of the popopulation o2 is unknown.

Hypotheses: Test Statistic:
= < : Xbarg —

po:= 49 Set p, for the test . SL — HO { < 21264
Ho m=pg <M, isaspecified value for p SEsL

Hip>p, <Other Onesided test
Critical Valueof theTest and Distribution of t:
o = 0.05 < Probability of Typel error must be explicitly set

C=q(1-a,n-1) c=16766 < Critical Oneway test on the other
tail of thet Digribution

Probability Value:
1 - pt(t,n - 1) = 0.0193

Decision Rule;
IF [t| >C, THEN REJECT H,OTHERWISE ACCEPT H,

[t| = 2.1264 C= 16766

Command:
t.test(SL,alternative="greater " ,mu=4.9,conf.level = 0.95)

OneSamplet-test data: SL
t = 2.1264, df = 49, p-value = 0.01927
alternative hypothesis truemean isgreater than 4.9
95 percent confidenceinterval: 4.922425  Inf
sample estimates:;
mean of X

5.006

Prototype with R:
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Two Way Case:

Assumptions:
- Observed values X, X,, X, ... X arearandom sample from ~N(p,6?).
- Variance o2 of the popopulation ¢2 is unknown.
Hypotheses:
Ho p=py <y, is a gecified value for p
Hiuw#pro  <TWO sided test
Test Statistic:
Xpar = KO
S

\/_n

Critical Valueof the Test:
o = 0.05 < Probability of Typel error must be explicitly set

Cq:= inverseé{g\ Co:= inversed>t(1 - E\
2) 2) < qimpliesCthe'Critical Value
(in X) specified by cumulative
Cp qt(g,n _ 1\ Cp i qt(l 3 g’n B 1\ probability ®,(X) = a/2 for each
2 ) ) tail of the'q' function of thet
Distribution.

Sampling Distribution:

If Assumptionshold and Hj istrue, thent ~t, )

Decision Rule;

IF |t| >C, THEN REJECT H,
OTHERWISE ACCEPT H,

Probability Value:
P =minimum(2 @(t),1-2 ®,(t) < Rosner Eq 7.11 p. 241

P:=min[2-pt(t,n—1),2- (1 - ptt,n - 1))]

Confidence Interval for the mean:

s s )
(Xba” C1- Jn Xpar + C2- ) < Notethat C, and C, are explicitly evaluated

above 0 C, isalr eady negativein value. Soit
isadded to X hereto find theL ower Bound
of theCl.
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Example Two Way case:
Xbarg = 5.006 SDg = 0.3525 SEg = 0.0498 < same decriptive gatigics as above
Assumptions:
- Observed values X, X,, X, ... X arearandom sample from ~N(p,6?).

- Variance o2 of the popopulation ¢2 is unknown.

Test Statistic:
Xbarg —
t:= ZEsL T Ro t = 2.1263975
SEg
Hypotheses:
no:= 4.9 < Set p, for the tedt:
Ho p=py < Y, is a secified value for p

Hiw=uo <TWO sided test
Critical Valueof theTest and Distribution of t:

o = 0.05 < Probability of Typel error must be explicitly set

Cy:= qt(%,n g Cy = —2.0096 Coi= qt(l - %,n g C, = 2.0096

) )

Decision Rule: IF |t| >C, THEN REJECT H,OTHERWISE ACCEPT H,
t=21264 C = 1.6766
Probability Value:
P:=min[2-pt(t,n—1),2- (1 - pt(t,n—-1))] P=0.0385322

Confidence Interval for the mean:

Cl:= (Xbarg_ + C1- SEg. Xbarg_ + Cp- SEg ) Cl = (4.9058235 5.1061765)

Prototype for Two Way Case:
Prototype with Systat:
SYSTAT Rectangular file C:\Program Files\SYSTAT 9\Data\lris.syd,

created Wed M ay 20, 1987 at 12:41:12,
containsvariables

SPECIES  SEPALLEN SEPALWID PETALLEN PETALWID

Thefollowing resultsarefor:
SPECIES = 1.0000000

One-samplet test of SEPALLEN with 50 cases, Ho: Mean = 4.9000000
Mean = 5.0060000 95.00% CI = 4.9058235to 5.1061765

D = 0.3524897 t= 21263975
df= 49 Prob= 0.0385322
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25 |

20

15

Count

o0
OO
00
0O
o O
0O
OO
QO

4.0 4.5 5.0 5.5 6.0
SEPALLEN

Sydat'st-test isonly of the Two Way variety!
Prototype with R:

Command:
>t.test(SL,alternative="two.sded" ,mu=4.9,conf.level = 0.95)

One Samplet-test

data: SL
t = 2.1264, df = 49, p-value = 0.03853
alternative hypothesis truemean isnot equal to 4.9
95 percent confidence interval:
4.905824 5.106176
sample esimates:
mean of X
5.006
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ORIGIN =0 One Sampley?2 Test of Variance for a Normal Distribution

Thistest isdesigned totest hypotheses about whether the variance of a population is
satistically equivalent to specified values.

Assumptions:

- Observed values X |, X,,, X, ... X are arandom sample from ~N(p,69).
Note that thisrequirement iscritical and not robugt, thuslimiting thistest's usefulness.
- Variance 62 of the popopulation ¢2 is unknown.

Hypotheses:
Hy 62 =0,2 < 0,2 isa Pecified value for ¢2
H:o?<>c,2 <TwoSided Case
Test Statistic:
2
Xsq = (-D-s population cor rected ratio of observed sample
50 variance and hypothesized variance

Critical Valueof the Test:
o = 0.05 < Probability of Typel error must be explicitly set

o)

Cy1:= inversed)xz(%j Co:= inversecbxz(l Py )

- (a ) _ o )
C1:=qchisg —,n-1 Co:=qchisg1-—,n-1
1=4q Sq[z ) 2= SQ[ 2 )
a implieslower limit C, and upper limit C,'Critical Values (in X) specified by
cumulativeprobability ®y%(X) = o found by the'q' fuhiction of the 2 Digtribution.

Sampling Distribution:

If Assumptionshold and H ;istrue, then Xsq ~ Xz(n-l)

Decision Rule:

IF 42<C, or y2<C,, THENREJECT H,
OTHERWISE ACCEPT H,

Probability Value:

P=2®y2 . or 20y?

n-la n-11-o/2

Common attributionsfor P;

IF 0.001 <P then the results ar edtatistically very highly sgnificant.
IF 0.001 <P< 0.01 thentheresultsaredatistically highly significant.

IF 001 <P< 0.05 thentheresltsaredatisticallysignifcant.

IF 005 <P then the resulst ar e NOT statistically Sgnifcant.

Confidence Interval for o2

B (n—1)~s2 (n—1)'s2
C2 C1

Cl:
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Example:
iris:= READPRN("c:/2007BiostatsData/iris.txt" )
i:=0.49
SL = (iris<1>)i < Assambling Sepal Length datafor the first speciesonly
n := length(SL) n=50 < n =number of observations X
Xbarg := mean(SL) Xbarg = 5.006 < mean of X
SDg =y Var(SL) SDg = 0.3525 < sample sandar d deviation of X
SDs.
SEg = SEg = 0.0498 < gandard error of the sample mean of X
Jn
Assumptions:

- Observed values X, X,, X, ... X arearandom sample from ~N(p,09).
Note that thisrequirement iscritical and not robug, thuslimiting thistest's usefulness.
- Variance 62 of the popopulation o2 is unknown.

Hypotheses:
co:=04 002 =016 <variancetobetesed
Hy 62=0 < o2 isa pecified value for 2
Hio®<>0" < Two Sided Case

Test Statistic:

(n-1)-SDg >

2
S0

Critical Valueof theTest and Distribution of t:
a = 0.05 < Probability of Typel error must be explicitly set

Xsq = 38.0512 <ratioof variances

C1:= qchisq(%,n - 1\ C1= 315549 Co:= qchisq(l - %,n - 1\ Co = 70.2224

) )

Decision Rule;

IF x2<C, or y2<C,, THENREJECT H,OTHERWISE ACCEPT H,
Xsq=380512 Cp=315549  Cp=70.2224

Probability Value:
2 - pchisg(Xsg,n — 1) = 0.2575

Confidence Interval for o2

oo | oD SDg ® (n-1) SDg °
; C2 C1

Cl = (0.0867 0.1929)
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—6\

Prototype for 2 Test of Variance: 3

Rosner Example 7.46 p. 268 2

Rosner T able 6.6 Differences: 3

dpgr == mean(d) dpgr = ~0.2 d:=

s:= JVa(d) s* - 81778 -1

n := length(d) n=10 1

: 3
Assumptions: 2)

- Observed values X, X,, X, ... X arearandom sample from ~N(p,09).

- Variance 62 of the popopulation o2 is unknown.

Hypotheses:
60:=1/35 002 =35 < varianceto be tesed, Rosner p. 267
Hy 62=0 < o2 isa specified value for o2
Hio® <o’ < Two Sided Case
Test Statistic:
2
Xsq = % Xsq = 2.1029 < confirmed Rosner p. 268
G0

Critical Valueof the Test and Distribution of t:
o = 0.05 < Probability of Typel error must be explicitly set

Cp:= qchisq(%,n - 1) Cy = 2.7004 Coi= qchisq(l - %,n - 1) C, = 19.0228

" values confirmed Rosner p. 268
Decision Rule:
IF 2 < C,or x? < C,, THENREJECT H,OTHERWISE ACCEPT H,
Xsq = 2.1029 Cq = 2.7004 Co = 19.0228
Probability Value:
2 - pchisg(Xsg,n — 1) = 0.0205 < confirmed Rosner p. 269

Confidence Interval for o2

3 (n—1)-s2 (n—l)-s2
C2 C1

Cl:

Cl = (3.869 27.2553) <interval confirmed Rosner p. 201
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ORIGIN =0 One Sample Tests of Discrete distribution Parameters

Hypothesistestsfor parameters of Binomial and Poisson Distibution are handled in ways
cor responding to constr uction of confidence limits shown in Biostatistics Worksheet 19.

Binomial Distribution test for p - the probability of " success" in each trial:
Assumptions:
-Let X}, X, X5, ..., X, bearandom sample from a population ~ Binomial(n,p) i.e., with
Binomial Digribution with parameters n=number of trialsand p=probability of success.
Given sample parametersn, py .. Apa = (1- Pra)

-1F n- phat - ghat > 5 then useNormal Theory Approximation
OTHERWISE use Exact M ethods.

Hypotheses:

HOZ p = p, <must specify hypothesized value p,
Hi: p<p, <TwoSided Test

Normal Theory Approximation:
It isasssumed that: Phar ~N(Pg: Pody/N)
Normal Theory Test Statistic:

Phat — PO
Po- (do
n
Critical Valuesof the Test:
o= 0.05 < probability of Typel error must be explicitly set

< Standardized distance between p, , and p,

a impliesC, & C, - upper and lower 'Critical Values (in p)

Cy1:= inversecDN[g\ Co:= inversecDN[l - %\

2)

Cq:= qnorm[%,o,l) Co:= qnorm[l - %,0
Sampling Distribution:

If Assumptionshold and H istrue, then z ~N(0,1)
Decision Rule:

IF z< C, or z> C, THEN REJECT H,

OTHERWISE ACCEPT H,,

Probability Valuefor z:

)
1) <theresaultsof 'q' functionsof N(0,1)

P = minimum(2®,(2),2(1-®,(2)))
P:=min[2- (1 - pnorm(z,0,1)),2- (pnorm(z,0,1))]

Confidence Interval: < Notethat C, & C, are

Phat - Yhat Phat - Ghat ) explicitly calculated above
Cl=|Prat+ C1- | == Pha+C2- [———— ) 0 added to p;,, here
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Prototype of Normal Theory Approximation of Binomial Distribution:
usng Rosner Examples 6.48-649 p. 205-206 & 7.47-7.48 p. 268-270.
n:= 10000 < sample size 10,000 women assessed for cancer
Phat = 0040  ghg:=1- pha < estimated incidence of cancer in sample
N- Phat - Ghat = 384 < problem qualifiesfor Normal Theory Approximation
po:= 0020 qg:=1-pg <P,isthehypothesistobe tested

Normal Theory Approximation:
It isasssumed that: Phar ~N(Pg: Pody/N)
Hypotheses:

Ho: p=p,
Hi: p<p, <TwoSided Test

Normal Theory Test Statistic:

Phat - P
7= —2_ 0 7= 142857
Po- (do
n

Critical Valuesof the Test:
o= 0.05 < probability of Typel error must be explicitly set

Cy:= gnorm 3,0,1\ Cy=-1.96 2 0025
2°77) 2
Cyi= qnorm[l - %,0,1) Co= 196 1- % - 0975

Sampling Distribution:
If Assumptionshold and H istrue, then z ~N(0,1)

Decision Rule;
IF z< C, or 2> C, THEN REJECT H,OTHERWISE ACCEPT H,

z = 14.2857 C1=-196 Co=196

Probability Valuefor z:
P=2.®(2) ifpy<Py OR P=2.(1-d(2) if phy>po

Phat = 0.04 po = 0.02 pnorm(z,0,1) = 1

P:=2.(1-pnorm(z,0,1)) P=0

P= 2. (pnorm(z.0.1)) < confirmed p.272

P=2
Confidence Interval:

oo oo [Praaba [Phadna)
= | Pha+C1 T Pha+ &2 n ) Cl = (0.0362 0.0438)

A confirmed p. 206
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Binomial Distribution test for p - the probability of " success' in each trial:
Assumptions:
-Let X, X, X5, ..., X, be arandom sample from a population ~ Binomial(n,p) i.e., with
Binomial Digribution with parameters n=number of trialsand p=probability of success.
Given sample parametersn, .., Ppat nat = (1- Pra)
-IF nhat - Phat - 9hat > S then useNormal Theory Approximation
OTHERWISE use Exact Methods
Hypotheses:
Ho: P =p,
Hi: p<p, <TwoSded Test
Exact Methods Probabilities:
Pi=2-®O(X<k) or P:=2-®(k = X)
Critical Valuesof the Test:
o= 0.05 < probability of Typel error must be explicitly set

Decision Rule;

IF P<o THEN REJECT H,
OTHERWISE ACCEPT H,,

Prototype of Exact Methods:
Rosner Example 7.49 p. 274

n:= 13 po:=020 qgo:=1-pg gqo= 0.8 < hypothesized value

n-po- qo= 2.08 < failscriterion for Normal Theory Approximation

Phat == % Phat = 0.3846 < sample point estimate of p
1

Hypotheses:

Ho: P =p,
Hi p<>p, <TwoSided Test

Exact M ethods Probabilities:

i=0.4 0.055 0.055
D, := dbinom(i.n, po) 0.1787 0.2336
®; := pbinom(i,n,pg) D= 0.268 ® = | 05017
0.2457 0.7473
0.1535 ) 0.9009
P:=2®q4 P = 1.8017

P=2-(1-®4 P=01983 < P must be lessthan one Isit lessthan o?
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Prototype of Above Binomial examples using R's Exact Binomial test:

Rossner Example 7.49 p. 274:

>n=13

> p=0.2

> x=b5

> binom.test(x,n,p=0.2,alternative="two.sded" ,conf.level=0.95)

Exact binomial test

data: x and n
number of successes = 5, number of trials= 13, p-value = 0.1541
alternative hypothesis. trueprobability of successisnot equal to 0.2
95 percent confidence interval:
0.1385793 0.6842224
sample esimates:
probability of success
0.3846154

Results are match for p,,5; and are close for p-value, but not exactly thesame. Thus, the
methodsfor calculating P must be subtly differ ent...

Rossner Examples 6.48-649 p. 205-206 & 7.47-7.48 p. 268-270.

> n=10000
> p=0.020
> x=0.040
> binom.test(400,10000,p=0.2,alternative="two.sided" ,conf.level=0.95)

Exact binomial test

data: 400 and 10000
number of successes = 400, number of trials = 10000, p-value < 2.2e-16
alternative hypothesis. trueprobability of successisnot equal to 0.2
95 percent confidenceinterval:
0.03624378 0.04402702
sample estimates;
probability of success
0.04

Again, Smilar results, but not the same...
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Poisson Distribution test for u:

Assumptions:

-Let X}, X, X5, ..., X, be arandom sample from a population ~ Poisson(p) i.e., with
Poisson Digtribution with parameter p events per time interval.

Hypotheses:

Ho:  » =
Hi: n<>p, <TwoSided Test

Remainder of this section not worked out at thistime... See Rosner p. 277
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ORIGIN =0 Egtimating Power and Sample Size for a One Sample t-Test

Pilot studiesar eoften run in advanceof collecting data for major statistical analyses.
These sudies ar eused to determinethe POWER of an analysis- i.e., the ability of the
analyssto satisfactorily lead to re ection of the Null Hypothesis and deter mining
aufficient Sample Szeto support sufficient power .

Assumptions:
- Observed values X |, X,,, X, ... X are arandom sample from ~N(p,69).

- Variance o2 of the popopulation ¢2 is unknown.

Hypotheses:
Ho 1 =p, < Y, isa gecified value for p
Hip=m <Ky <Onesided test - herea specificalter native p, must be chosen
OR

Hip=p, <>p, <Twosided test - herea specificalter native p, must be chosen
Hypothesis Distance:

~ [ro-
- S

Jn
Critical Valueof the Test:

o = 0.05 < Probability of Typel error must be explicitly set

Approximating POWER of the Test:

Note that Rosner's entire presentation of thistopicis predicated on known population
variance ¢2 allowing him to estimate probabilities using the sandardized normal
distribution N(0,1). In general, however, 62 must be estimated by sample variance s2.
Thusthe calculations must be considered only approximate...

D: < tisthe normalized distance between alter nates p, and p,

Z: inversed)z(a) Z:= qnorm(oc,O,l)

< ONE SIDED approximately!

Z:

_ a o)
mversecbz(a) Z:= qnorm[l - ?0»1 ) < TWO SIDED approximately!

Power of the Test: <POWER = (1-B) theinverse probability of Typell error, Rosner p. 229
POWER := ®,4(z + D) POWER := pnorm(z + D,0,1)

Estimated Sample Size Needed:
B:=01 1-Bp=09 < Typell error rate (B) or POWER (1-B) must be explicitly set

a:=005 1-a=09 <Typel erorrate (o) must be explicitly set
ONE WAY:

2 . . 2
N c - (lnverse<1>z(1 - B) + |nversecDZ(1 - a)) N L. (qnorm(l - [3,0,1) + qnorm(l - a,O,l))z
. 2 . 2
(no-n1) (mo-n1)
TWO WAY:

2 2

02~ (inversed)z(l - B) + inverseqbz(l - g“ 52- (qnorm(l - B,O,l) + qnorm(l - 2,0,1\“

N:= 2)) N:= 2 }}

(10— 11)? (10— 11)?
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Example:
Rosner Eample 7.27-7.28 p. 248-249

Assumptions:
- Obser ved values X, X,,, X, ... X arearandom sample from ~N(p,6?).
- Variance 62 of the popopulation 2 is known.
s:= 50 n:= 10

Hypotheses:
Ho p=po no:= 175
Hiip=py <pg = 190

Hypothesis Distance:

_ lwo-wal

S

Jn
Critical Valueof the Test:
a = 0.01 < Probability of Typel error must be explicitly set

D: D = 0.9487

Approximating POWER of the Test:

Z:= qnorm(a,o,l) z=-2.3263 < approximately!
Power of the Test:
POWER := pnorm(z + D,0,1) POWER = 0.0842 1 - 0.9158 = 0.0842

A calculation confirmed p. 249

Example:
Rosner Eample 7.35 p. 255
s:=50 pug:=175 p1:=190

Estimated Sample Size Needed for One Way Analysis:
B:=01 1-B=09 < Typell error rate () or POWER (1-B) must be explicitly set

a:=005 1-a=09 <Typel erorrate (o) must be explicitly set
sZ = 2500

gnorm(1 - B,0,1) = 1.2816
qnorm(l - a,O,l) = 1.6449

32- (qnorm(l — [3,0,1) + qnorm(l - oc,O,l))z

N := 5
(uo— ul)

(128 + 1.645)° — 85556
N = 95,1539

2
o (o~ n1)* = 225
A calculation confirmed p. 255
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Example:
Rosner Eample 7.37 p. 257-258
s=10  |po-pi =5

Estimated Sample Size Needed for One Way Analysis:
B:=0.2 1-p=08 < Typell error rate () or POWER (1-B) must be explicitly set

a:=005 1-0=095 <Typelerorrate(a)mus beexplicitly set

2
2 (gnorm(1 - p.0,1) (1-a.01) o

N S\gnormil - B0, +2q”°rm b gnorm(1 — B,0,1) = 0.8416

(5) gnorm(1 - «,0,1) = 1.6449

N = 24.7302 < calculation confirmed p. 258 (5)2 =25
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ORIGIN = 1 Constructing Q-Q Plots

Assessing Nor mality of sample dataisan essential part of statistical analysis. Q-Q Plots are one way easy
todo this. They are also inter esting at thispoint in our course since the demonstr ate theuseof the
inver se cumulative probability function for the Normal Distribution.

So loading some familiar data to assess:
iris := READPRN("c:/2007BiostatsData/iris.txt" )

i:=1.50

SL, = (iris<2>)i < Assembling Sepal Length datafor the first speciesonly

n = length(SL) n=50 < n = number of observations X

Xbarg := mean(SL) Xbarg = 5.006 < mean of X

SDg = +Var(SL) SDg = 0.352 < sample gtandar d deviation of X

SEg = P SEg = 0.05 < gtandard error of the sample mean of X

n

Calculating Cumultive Probability levels @, (X):

Wewill look at variableSL here

1 1 Now we treat each 1
1(51 1(23| [ndexofSLasa 1001
guantile:
2149 Firgwesort SL: 2|44 2|0.03
347 3|44 (i_l\ 3]0.05
4]46] Sksort:=sort(Sh) alaa|l o 2) 41007
5| 5 5|45 ! n 5| 0.09
6 5.4 6[a6] ._, 60.11
746 7|46 7013
SL=|8]| 5 Sleort=|8|4.6 f\the1/2hgre P=[8|0.15
isacorrection
9|44 9|46 factor 9017
10[ 4.9 10 4.7 10[ 0.19
11|5.4 11| 4.7 11| 0.21
12| 4.8 12| 4.8 12] 0.23
13] 4.8 13[ 4.8 13 0.25
14| 4.3 14| 4.8 14] 0.27
15 5.8 15[ 4.8 15[ 0.29
16[ 5.7 16] 4.8 16] 0.31

From the values of P = @ (X), we now convert back to X

Q= qnorm(Pi ,0, 1)
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1
1|-2.326
2|-1.881
3|-1.645
4|-1.476
5|-1.341
6 | -1.227
7|-1.126

Q=|8/(-1.036
9 |-0.954
10| -0.878
11| -0.806
12| -0.739
13| -0.674
14| -0.613
15| -0.553
16| -0.496

If the sampledataar edistributed closeto the Normal distribution, the Q-Q plot should be mostly a

Q-Q Plots
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draight linein the center with an over all S-shaped curve towar ds each end.

Output from R:

Normal Q-Q Plot
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Systat output showing graphsfor species1,2 & 3:
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Assignment for Week 7

This week we begin the task of prototyping some of the most important standard
statistical tests. Our object is to not only to understand how calculations are done by
hand as exemplified, for example, by the various Biostatistics worksheets. We also need
to be able to identify appropriate data for each test, and to conduct analyses on a routine
basis.

So, this week use both R and SPSS and try the following tasks. Note also that I have
posted R documentation for you on our website.

1. Single population t-test. Devise a small dataset of your own consisting of only a few
objects (say around five). State your assumptions, as well as null and alternative
hypotheses. Then calculate the t statistic, critical values (for a given a)) and
probability. State the decision rule and results. Finally calculate the associated
(1-a)) confidence interval for p.

Now find a realistic set of data and perform the single population t-test using both
R and SPSS and compare the results. Example datasets are posted on our website
and others may be found in online files associated with each program. You may
have to ‘prep’ the data using Word or Excel, before inputting into each program,
but that’s a normal part of the process.

2. Paired t-test. Devise a small dataset of your own consisting of only a few object pairs
(say around five). State your assumptions, as well as null and alternative
hypotheses. Then calculate the t statistic, critical values (for a given a)) and
probability. State the decision rule and results. Finally calculate the associated
(1-a)) confidence interval for pg.

Now find a realistic set of data and perform a paired t-test using both R and SPSS
and compare the results.

3. Two population t-tests with equal and unequal variances. Devise a small dataset of
your own consisting of only a few objects (say around five) for each group. State
your assumptions, as well as null and alternative hypotheses. Then calculate the t
statistic, critical values (for a given o) and probability. State the decision rule and
results. Finally calculate the associated (1-0) confidence interval for p;- p,. Note
that here you will be working with two different tests, so it will be useful to
compare these results.

Now find a realistic set of data and perform both two population t-tests using both
R and SPSS and compare.

4. F-test for equality of variance between two populations. Now use the small dataset
in 3 for this test. State your assumptions, as well as null and alternative
hypotheses. Then calculate the F statistic, critical values (for a given a) and
probability. State the decision rule and results.

Using your realistic data from 3, perform this test and interpret the results. Based
on your F-test, which two-population t-test should be performed?



t.test { stats} R Documentation

Student'st-Test

Description
Performs one and two sampl e t-tests on vectors of data.

Usage
t.test(x, ...)

## Default S3 method:

t.test(X, y = NULL,
alternative = c("two.sided", "less', ''greater'),
mu = 0, paired = FALSE, var.equal = FALSE,
conf_level = 0.95, ...)

## S3 method for class "formula“:
t.test(formula, data, subset, na.action, ...)

Arguments

X a (non-empty) numeric vector of data values.
y an optional (non-empty) numeric vector of datavalues.

alternative gcharacter string specifying the alternative hypothesis, must be one of
"two.sided" (default), ""greater™ or "less™. Y ou can specify just the

initial letter.

mu anumber indicating the true value of the mean (or difference in means if
you are performing atwo sample test).

paired alogical indicating whether you want a paired t-test.

var.equal  alogical variable indicating whether to treat the two variances as being
equal. If TRUE then the pooled variance is used to estimate the variance
otherwise the Welch (or Satterthwaite) approximation to the degrees of

freedomis used.

conf.level confidencelevel of theinterval.

formula aformulaof theform Ihs ~ rhs where Ihs isanumeric variable giving
the data values and rhs afactor with two levels giving the corresponding
groups.

data an optional matrix or data frame (or similar: see model . frame) containing

the variables in the formula formula. By default the variables are taken
from environment(formula).

subset an optional vector specifying a subset of observations to be used.



na.action g function which indicates what should happen when the data contain NAs.
Defaultsto getOption(*'na.action™).

further arguments to be passed to or from methods.

Details
The formulainterface is only applicable for the 2-sample tests.
alternative = "greater" isthe aternative that x has alarger mean than y.

If paired is TRUE then both x and y must be specified and they must be the same length.
Missing values are removed (in pairsif paired iSTRUE). If var.equal is TRUE then the
pooled estimate of the variance is used. By default, if var.equal iSFALSE then the
variance is estimated separately for both groups and the Welch modification to the
degrees of freedom is used.

If the input data are effectively constant (compared to the larger of the two means) an
error is generated.

Value

A list with class "htest" containing the following components:

statistic  thevaue of thet-statistic.
parameter  the degrees of freedom for the t-statistic.
p.value the p-value for the test.

conf.int aconfidence interval for the mean appropriate to the specified alternative
hypothesis.

estimate the estimated mean or difference in means depending on whether it was a
one-sampl e test or a two-sampl e test.

null.value the specified hypothesized value of the mean or mean difference
depending on whether it was a one-sample test or a two-sample test.

alternative gcharacter string describing the alternative hypothesis.
method acharacter string indicating what type of t-test was performed.
data.name g character string giving the name(s) of the data.

See Also

prop.test

Examples



-00001855
.1245 -— NOT significant anymore

t.test(1:10,y=c(7:20)) # P
t.test(1:10,y=c(7:20, 200)) # P

## Classical example: Student"s sleep data

plot(extra ~ group, data = sleep)

## Traditional interface

with(sleep, t.test(extra[group == 1], extra[group == 2]))
## Formula interface

t.test(extra ~ group, data = sleep)
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F Test to Compare Two Variances

Description
Performs an F test to compare the variances of two samples from normal populations.

Usage
var.test(Xx, ...)

## Default S3 method:

var.test(x, y, ratio 1,
alternative c(C'two.sided", "less', 'greater™),
conf.level = 0.95, ...)

## S3 method for class "formula-“:
var .test(formula, data, subset, na.action, ...)

Arguments

X,y numeric vectors of datavalues, or fitted linear model objects (inheriting
from class " Im").

ratio the hypothesized ratio of the population variances of x and y.

alternative gcharacter string specifying the alternative hypothesis, must be one of
"two.sided" (default), "greater™ or "less". Y ou can specify just the
initial letter.

conf.level confidencelevel for the returned confidence interval.

formula aformulaof theform Ihs ~ rhs where Ihs isanumeric variable giving
the data values and rhs afactor with two levels giving the corresponding
groups.

data an optional matrix or data frame (or similar: see model . frame) containing

the variablesin the formula formula. By default the variables are taken
from environment(formula).

subset an optional vector specifying a subset of observationsto be used.

na.action  gfunction which indicates what should happen when the data contain NAs.
Defaultsto getOption(*'na.action™).

further arguments to be passed to or from methods.

Details



The null hypothesisis that the ratio of the variances of the populations from which x and
y were drawn, or in the data to which the linear models x and y were fitted, is equal to
ratio.

Value

A list with class "htest" containing the following components:

statistic thevalue of the F test statistic.

parameter  the degrees of the freedom of the F distribtion of the test statistic.
p.value the p-value of the test.

conf.int aconfidence interval for the ratio of the population variances.
estimate the ratio of the sample variances of x and y.

null.value theratio of population variances under the null.

alternative gcharacter string describing the alternative hypothesis.

method the character string "F test to compare two variances".
data.name g character string giving the names of the data.

See Also

bartlett. test for testing homogeneity of variances in more than two samples from
normal distributions; ansari . test and mood. test for two rank based (nonparametric)
two-sampletests for differencein scale.

Examples
X <- rnorm(50, mean = 0, sd = 2)
y <- rnorm(30, mean = 1, sd = 1)

var.test(Xx, y) # Do x and y have the same variance?
var.test(Im(x ~ 1), Im(y ~ 1)) # The same.



power.t.test { stats} R Documentation

Power calculationsfor one and two samplet tests

Description
Compute power of test, or determine parameters to obtain target power.

Usage

power.t.test(n = NULL, delta = NULL, sd = 1, sig-level = 0.05,
power = NULL,
type = c(""two.sample', "one.sample', "paired™),
alternative = c("two.sided", "one.sided™),
strict = FALSE)

Arguments

n Number of observations (per group)

delta True difference in means

sd Standard deviation

sig.level  Ggnificance level (Type error probability)
power Power of test (1 minus Type |l error probability)
type Type of t test

alternative One- or two-sided test

strict Use strict interpretation in two-sided case
Details

Exactly one of the parameters n, delta, power, sd, and sig. level must be passed as
NULL, and that parameter is determined from the others. Notice that the last two have
non-NULL defaults so NULL must be explicitly passed if you want to compute them.

If strict = TRUE isused, the power will include the probability of rejection in the
opposite direction of the true effect, in the two-sided case. Without this the power will be
half the significance level if the true differenceis zero.

Value

Object of class ""power_htest", alist of the arguments (including the computed one)
augmented with method and note elements.



Note

uniroot is used to solve power equation for unknowns, so you may see errors fromit,
notably about inability to bracket the root when invalid arguments are given.

Author(s)

Peter Dalgaard. Based on previous work by Claus Ekstrgm
See Also

t.test, uniroot

Examples

power.t._test(n = 20, delta = 1)
power .t.test(power .90, delta
power .t.test(power .90, delta

1

1, alt = "one.sided"™)



2007 Biostatistics 26 Paired t-Test
ORIGIN =0 Paired t-Test

The Pair ed t-test isemployed in cases, such as alongitudinal study, where two sets of
measurements are exactly matched for each individual of a population.

Assumptions:

- Observed values X 4, X, 5, Xy 5, ... X1, @rearandom sample exactly matched with
Observed values X, 1, X, 5, X, 3, .. X, @crossindividuals 1,2,3, ... ,n.

-Letd, = X2,i —lei for each individual i are arandom sample from ~N(ud,cd2).

- Variance ¢, of the popopulation 6?2 is unknown.

Hypotheses:
Ho pg =0 < No difference in mean between populations X, & X,
Hing<>0  <Twosided test
Test Statistic:
= oo < tisthe normalized mean X bar - X bar
% < s, isthe sample standard deviation of d,
n

Critical Valueof the Test:
o = 0.05 < Probability of Typel error must be explicitly set

o)
2)

C1:= inversecbt( Co:= inversecbt(l - g\
2) <q implies C the'Critical Value'
(in X) specified by cumulative

probability ®,(X) = a/2 for each

tail of the'q' function of thet
Distribution.

a ) a )
Ci=qtl —,n-1 Co=qt|1-—,n-1
1 q[zn ) 2 q[ 2n )

Sampling Distribution:
If Assumptionshold and H, istrue, thent ~t )
Decision Rule:

IF |t| >C, THEN REJECT H,
OTHERWISE ACCEPT H,,

Probability Value:

P = minimum(2 @(t),1-2 ®,(t) < Rosner Eq 7.11 p. 241
P:=min[2-pt(t,n - 1),2- (1 - pt(t,n - 1))]

Confidence Interval for the mean:

(dbaf“L C1- % Apar + C2- %) < Note that C, and C, are explicitly evaluated
above 0 C, isalr eady negativein value. Soit
isadded to X . hereto find theL ower Bound
of theCl.
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Example:
Blood Pressur edata Rosner Table8.2 p. 301:

115 128 . 13
) Subtracting values )
112 115 | in second column 3
107 106 from valuesin first -1
column;
119 128 9 Descriptivestatisticsfor d:
115 122 7
X:= d:= X<1>—X<O> d=
138 145 7
126 132 5 n := length(d) n=10
105 109 4 dpar = mean(d)  dpg = 4.8
104 102 -2
115 117) 2 ) sd= Var(d) g = 4.5656

Assumptions: ~ values confirmed p. 301

- Observed values X 4, X, 5, Xy 5, ... X1, arearandom sample exactly matched with
Observed values X, 3, X5, X, 3, .. Xy @crossindividuals 1,2,3, ... ,n.

-Letd, = X2,i —Xl’i for each individual i are arandom sample from ~N(ud,cd2).

- Variance ¢, of the popopulation 62 is unknown.

Test Statistic:
dpar . .
=— < tisthe normalized mean X bar - X bar
Sl < s, isthe sample standard deviation of d,
Jn
Hypotheses:
Ho png =0 < No difference in mean between populations X, & X,

Hiipg<>0  <Twosided test
Critical Valueof the Test:
o = 0.05 < Probability of Typel error must be explicitly set

o ) « )
Ci=qtl —,n-1 Co=qt|1-—,n-1
A
(C1 C2)=(-22622 2.2622) < confirmed p. 301

o IF |t| >C, THEN REJECT H,OTHERWISE ACCEPT H,
Decision Rule;

(C1 C2)=(-22622 2.2622) t = 3.3247 < confirmed p. 301
Probability Value:

P =minimum(2 @(t),1-2 ®(t)
P:= min[2- pt(t,n — 1),2- (1 - pt(t,n— 1))] P = 0.0088743369 < confirmed p. 301

Confidence Interval for the mean:

s S )
Cl:= (dbar+ Ce1- ﬁ dpar + C2- ﬁ) Cl = (1.534 8.066) < confirmed p. 303
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Prototype of Example in Systat: calculationsfrom above:

mean(X<O>) = 115.6
Paired samples t test on X1 vs X2 with 10 cases o
mean(X ) = 1204

Mean X1 115.6000000

Mean X2 = 120.4000000 mean(d) = 4.8
Mean Difference = -4.8000000 95.00% CI =-8.0660132 to -1.5339868 sy = 45656
SD Difference = 4.5655716 t= -3.3246511 '
df= 9 Prob= 0.0088743 (= 33047
n-1=9
P = 0.0089

Cl = (1.534 8.066)

N Note that thediffer ence (d) in Systat involved subtracting X1 from X2, thusall numbersare
reversed but theresultsarethe same. SD Differenceisdightly off from MathCad's
calculation. Thisistheresault, | guessof roundingin takingthesquar er oot of variance.

Prototype of Examplein R:

COMMANDS

> X1=c(115,112,107,119,115,138,126,105,104,115)
> X2=c(128,115,106,128,122,145,132,109,102,117)
> t.test(X1,X2,paired=TRUE,alternative="two.sded" )

Paired t-test

data: X1 and X2

t =-3.3247, df = 9, p-value = 0.008874

alternative hypothesis truedifference in meansisnot equal to O
95 percent confidence interval:

-8.066013 -1.533987

sample estimates;

mean of the differences 0 1 0
-4.8 0|80.7|80.2 ol o5
N Sameresultsas SYSTAT 1]894]801 8 93
2| 91.8]86.4 2| 54
Example: 3| 74|863 3[-12.3
X := READPRN("C:/2007BiostatsData/AnorexiaAL L .txt" ) 4178.1|76.1 4 2
NN, 5|88.3|78.1 5| 10.2
di=X" - X 6[87.3[75.1 6| 12.2
e Iength(X<O>) N 72 X=[7]751][86.7 d=[7]-116
© W 8 | 806|735 g| 71
mean(X ):82.4083 mean(X ):85.1722 o|78.4|84.6 9| -6.2
e - 10| 77.6| 77.4 10| 0.2

Descriptivestatigticsfor d:

11| 88.7| 79.5 11| 9.2
n:=length(d) ~ n=72 12| 81.3] 89.6 12| -83
dper = mean(d)  dpgr = —2.7639 13| 78.1| 81.4 13| -3.3
14| 705 81.8 14]-11.3
sq:= Y Var(d) sy = 7.9836 15| 77.3|77.3 15 0
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Assumptions:

- Observed values X 5, Xy 5, Xy 5, ... X;; arearandom sample exactly matched with
Observed values X, 3, X5, Xy, .. X, @crossindividuals 1,2,3, ... ,n.

-Letd =X, -X,, for each individual i are arandom sample from ~N(ud,cd2).

- Variance cdz of the popopulation 62 is unknown.

Test Statistic:
d
to= bar < tisthenormalized mean X bar - X bar t = -2.9376
il < s, isthe sample standard deviation of d,
Jn
Hypotheses:
Ho pg =0 < No difference in mean between populations X, & X,

Hipg<>0  <Twosided test
Critical Valueof the Test:
o = 0.05 < Probability of Typel error must be explicitly set

1\ 1\

a a
Ci=0qf —,n— Co=qt|1-—,n-

(C1 Cp)=(-1.9939 1.9939)

o IF [t| >C, THEN REJECT H,OTHERWISE ACCEPT H,
Decision Rule;

(C1 Cp)=(-1.9939 1.9939) t = -2.9376

Probability Value:

P =minimum(2 @(t),1-2 ®,(t)
P:=min[2- pt(t,n— 1),2- (1 - pt(t,n - 1))] P = 0.0044577181

Confidence Interval for the mean:

s g )
Cl:= (dba” C1- Jn dpar + C2- ) Cl = (-4.6399 —0.8878)

Prototype with SYSTAT:

Paired samples t test on BEFORE vs AFTER with 72 cases

Mean BEFORE = 82.4083333
Mean AFTER = 851722222
Mean Difference = -2.7638889 95.00% Cl| =-4.6399424 to -0.8878353
SD Difference = 7.9835977 t= -2.9375697

df= 71 Prob = 0.0044577

Comparethisresult with that those usng nonparametric Sign and Signed-Rank Teds.
See 2007 Biostatistics Worksheets 30 & 31.
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ORIGIN =0 Two Samplet-Test with Equal Variances

Thistes isemployed where two sets of measurements ar ederived from samples with
approximately equal varainces.

Assumptions:
- Obser ved values X |, X, ,, X, 4, .. X, ,, @rearandom sample from ~N(u,.6,9)
- Obser ved values X, ;, X, ,, X, 5, .. X, ., are arandom sample from ~N(y,,5,?)

- Variances¢,? & o,? are approximately equal but unknown.
- Samples X, ,; and X, ,, are independent.

Hypotheses:
Ho py =1y < No difference in mean between populations X, & X,
Hiw <>u,  <Twosided test

Pooled SampleVariance:

(nl _ 1) ) Sl2 + (n2 _ 1) ] 522 <varianceispooled from thetwo samples and
S adjusted for each sampl€'ssizen; & n,.
ni+np—2
Test Statistic:
X -X
i A T2 < tisthe normalized mean X,bar - X bar
1 1 . . .
22 = < s 2isthe pooled samplevariance defined above
n ny) P

Critical Valueof the Test:
o = 0.05 < Probability of Typel error must be explicitly set

Cyi:= inverseq)t(g\

2)

Cp:= inverseq)t(]_ - 3\ < o implies C the'Critical Value'
2) (in X) specified by cumulative
probability ®,(X) = a/2 for each

Cqi= qt[g,n1+ no — 2\ Cp = qt[l - ﬁ’n1+ ny— 2 tail of the'q' function of thet
2 ) 2 ) Distribution.

Sampling Distribution:
If Assumptionshold and H, istrue, thent ~t ;. .,
Decision Rule:

IF |t| >C, THEN REJECT H,
OTHERWISE ACCEPT H,,

Probability Value:
P = minimum(2 @(t),1-2 ®,(t)
P:=mi{ 2. pt(t,ny + np - 2),2- (1 - pt(t.ng + np - 2))]

Confidence Interval for the mean:

2 (1 1 2 (1 1
X1bar = Xobar + C1- [Sp - | — + — | Xipar — Xopar + C2- [sp | — + —
ng ng) N np)

~ Notethat C, and C, are explicitly evaluated above so C, is alr eady negative in value.
Soitisadded to X, .. - X, .. hereto find theL ower Bound of the CI.
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Example (BWT difference between Females and M al es):
cats:= READPRN("c:/2007BiostatsData/cats.txt" )

Females: Males:
i:=0.46 ji=47.143
(v (D
FBWT, = (Cats )i MBWTJ.f o= (CalS ) j
2 2
FHwWT, = (Cats )i MHWTJ. = (CalS ) j
ny:= Iength(FBWT) nq = 47 no = Iength(M BWT) no = 97
X 1ar := mean(FewT) X1bar = 2.3596 X obar := mean(MpwT) Xopar = 2.9
5= (Va(Fawr) 51> = 0.0751 5= [Va(Mewr ° = 0.2185
Assumptions:

- Obser ved values X, ;, X, 5, X 4, .. X, ., arearandom sample from ~N(u,.6,9)
- Obser ved values Ko Xy Kyg o Xy p e arandom sample from ~N(u2,c522)

- Variancesc,? & o, are approximately equal but unknown.
- Samples X, ,; and X, , are independent.

Hypotheses:
Ho my =1y < No difference in mean between populations X, & X,
Hiw <>u,  <Twosided test

Pooled SampleVariance:

n—1~sz+n—1- 2
Sp::j( ! >n11+ nz(—22 ) 2 sp2:0.1721
Test Statistic:
. X1bar — X2bar
' 5> 1 1 t=-7.3307
np nz)

Critical Valueof the Test:
o = 0.05 < Probability of Typel error must be explicitly set

5)

Cp:= qt(%,nl +n2-2 Cyi= qt[l - %,nl L np— 2) (C1 Cp)=(-19768 19768)
Decision Rule:
IF |t| >C, THEN REJECT H,OTHERWISE ACCEPT H,
(C1 C2)=(-19768 1.9768) t = —7.3307
Probability Value:
P =minimum(2 @(t),1-2 ®(t)
P:=mif 2. pt(t,ny + np - 2),2- (1 - pt(t.ng + np - 2))] P = 1.5904499939 x 10

Confidence Interval for the mean:

2 (1 1 2 (1 1
Cl:=| Xabar = X2bar + C1- [ | — +—  Xibar — Xopbar + C2- [ | — +—
ng nz) ng nz)

Cl = (-0.6861584 —0.39469266)

11
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Prototype of Example in Systat:

Females. Males:
nq = 47 no = 97
X1par = 2.3596 Xopar = 2.9
< Valuesfrom above
sy = 0.274 sp = 0.4675
sp= 04148 s = 01721

daf =ng+np-2 df =142
t = —7.33066683
X1bar — Xopar = —0.5404255 Cl = (—0.6861584 —0.39469266)

Two-sample t test on BWT grouped by SEX$

Group N Mean SD
F 47 2.3595745 0.2739879
M 97 2.9000000 0.4674844

SeparateVariancet = -8.7094885 df = 136.8 Prob = 0.000000
Differencein Means= -0.5404255 95.00% CI = -0.6631268 t0-0.4177242

Pooled Variancet = -7.3306668 df = 142 Prob = 0.0000000
Differencein Means= -0.5404255 95.00% CI = -0.6861584 t0-0.3946

N Same as" Pooled Variancet" resultsin SYSTAT

4 T T T
3 - -
|_
=
m
2L oo _
SEX
o F
1 | | | | | | X M

40 30 20 10 O 10 20 30 40
Count Count
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Prototype of Examplein R:

COMMANDS

> cats=read.table(" c:/2007BiostatsData/cats.txt")

> attach(cats)

> X1=Bwt[Sex=="F"]

> X2=Bwt[Sex=="M"]

> t.test(X1,X2,alternative="two.sded" ,var.equal=TRUE)

~ note specification of equal variances here

Two Sample t-test

data: X1 and X2

t =-7.3307, df = 142, p-value = 1.590e-11

alternative hypothesis truedifference in meansisnot equal to 0
95 percent confidence interval:

-0.6861584 -0.3946927

sample esimates:

mean of X mean of y

2.359574 2.900000

N Results confirmed.
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ORIGIN =0 Two Samplet-Test with Unequal Variances

Thistes isemployed where two sets of measurements ar eder ived from samples
failing the F test for equal varainces.

Assumptions:
- Obser ved values X |, X, ,, X, 4, .. X, ,, @rearandom sample from ~N(u,.6,9)
- Obser ved values X, ;, X, ,, X, 5, .. X, ., are arandom sample from ~N(y,,5,?)

- Variances 6,2 & o,? are unequal and unknown.
- Samples X, ,; and X, , are independent.
Hypotheses:
Ho py =1y < No difference in mean between populations X, & X,
Him <>, <Twosided test

Test Statistic:
X -X
o Rar” 72bar < tisthe normalized mean X,bar - X bar
2 2
A, 2
nio Ny

Satterthwaite's Method Degr ees of Freedom:
2
L )
— +

n  ny)

512\ 2 322\ 2
[n_u . (n_z)

(n-1) (n2-1)

Critical Valueof the Test:
o = 0.05 < Probability of Typel error must be explicitly set

Cy:= inversed)t(g\ Cy:= inversed)t(l - a) < o implies C the'Critical Value'
2) 2) (in X) specified by cumulative
\ \ probability ®,(X) = a/2 for each
% o . . .
Cp:= qt[—,d Co= qt[l -—=.d tail of the'q' function of thet
2"") 2" Distribution.

Sampling Distribution:
If Assumptionshold and H, istrue, thent ~t
Decision Rule:

IF |t| >C, THEN REJECT H,
OTHERWISE ACCEPT H,,

Probability Value:
P =minimum(2 @(t),1-2 ®,(t)
P:=mif 2. pt(t,dp).2- (1 - pt(t.dp))]
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Confidence Interval for the mean:

S12 522 S12 522\
X1bar = Xopar + C1+ |— + — Xipar — X2par + C2+ |— + —
ng n2 n  ny)

~ Notethat C, and C, are explicitly evaluated above so C, is alr eady negative in value.
Soitisadded to X, .. - X, .. hereto find theL ower Bound of the CI.

Example (BWT difference between Females and M al es):
cats:= READPRN("c:/2007BiostatsData/cats.txt" )

Females Males:
i=0.46 ji=47.143
(v &
FBWT, = (Cats )i MBWTJ.f o= (CalS ) j
2 2
FHwWT, = (Cats )i MHWTJ. = (CalS ) j
ny:= Iength(FBWT) nq =47 no = Iength(M BWT) no = 97
X 1ar := mean(FewT) X1bar = 2.3596 X 2bar := mean(MpwT) Xopar = 2.9
5= (Va(Fawr) s1° = 0.0751 5= [Va(Mewr ° = 0.2185
Assumptions:

- Obser ved values X, ;, X, ,, X 4, ... X, ,, arearandom sample from ~N(,,5,?)
- Observed values X, |, X, X5, ... X, ., arearandom sample from ~N(u,,6,9)
- Variancesc,? & o,? are unequal and unknown.
- Samples X, ,; and X, ,, are independent.
Hypotheses:
Ho my =1y < No difference in mean between populations X, & X,
Him <>p,  <Twosided test
Test Statistic:
. X1bar = X2bar

2 2
ST 2
—_ —
ng n2

Satterthwaite's Method Degr ees of Freedom:
[ 2 2\2
TR
— +

ni n2
dp:= J dp = 136.8379

812\2 822\2
{n_l) . (n_z)
(nl - 1) (n2 - 1)

Critical Valueof the Test:
o = 0.05 < Probability of Typel error must be explicitly set

) \

Cy:= qt(%,dp ) Co:= qt(l - %,dp ) (C1 Cp)=(-19775 1.9775)

t = -8.7095




2007 Biostatistics 28 2 Sample t-Test Unequal var

Decision Rule:
IF |t| >C, THEN REJECT H,OTHERWISE ACCEPT H,
(C1 C2)=(-19775 1.9775) t = -8.7095
Probability Value:
P=minimum(2 @(t),1-2 ®,(t)
P:= mir{ 2 pi(t,dp),2 - (1 - pt(t.dp))] P=88818x 10 =

Confidence Interval for the mean:

S12 522 S12 522\
Cl:=| X1par = X2par + C1- [— + — Xipar — Xopar + C2- [— + —
ni no ni no )

Cl = (~0.66312684 —-0.41772423)
Prototype of Example in Systat:

Females Males:

nq = 47 no = 97

X1bar = 2.3596 Xopar = 2.9

s = 0274 sy = 04675 < Valuesfrom above

dp = 136.8379

t = —8.7094885

X1bar — X2par = —0.5404255 Cl = (-0.66312684 —0.41772423)

Two-sample t test on BWT grouped by SEX$

Group N Mean SD
F 47 2.3595745 0.2739879
M 97 2.9000000 0.4674844

Separ ate Variancet = -8.7094885 df = 136.8 Prob = 0.0000000
Differencein Means= -0.5404255 95.00% CI| = -0.6631268 t0-0.4177242

Pooled Variancet = -7.3306668 df = 142 Prob = 0.0000000
Differencein Means= -0.5404255 95.00% CI| = -0.6861584 to -0.3946927

N Samereault as” SeparateVariance' report above.

BWT
@
\\M
L T §

SEX

1 Il Il Il Il Il Il
40 30 20 10 O 10 20 30 40
Count Count
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Prototype of Examplein R:

COMMANDS

> cats=read.table(" c:/2007BiostatsData/cats.txt")

> attach(cats)

> X1=Bwt[Sex=="F"]

> X2=Bwt[Sex=="M"]

> t.test(X1,X2,alternative="two.sded" ,var.equal=FAL SE)
OR

n A :
> t.test (X1, X2,alternative="two.sided" ) note specification of unequal variances here.

Thisisthe default settingin R

Welch Two Sample t-test

data: X1 and X2

t = -8.7095, df = 136.838, p-value = 8.831e-15

alternative hypothesis truedifference in meansisnot equal to O
95 percent confidence interval:

-0.6631268 -0.4177242

sample esimates:

mean of X mean of y

2.359574 2.900000

N Results confirmed.
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ORIGIN =0 F-Test for Equal Variancesin Two Samples
Thistest testsfor equal variances between two samples as a way of deciding which
t-test to use.
Assumptions:
- Obser ved values X, ;, X, 5, X, 4, .. X, ., @rearandom sample from ~N(p,,6,?)
- Observed values X5, X, ,, X, 5, ... X,, ., are arandom sample from ~N(p.,,.,%)

- Samples from the two samplesare independent.

Hypotheses:
Hy, 0,2=0,> < Nodifferencein variancebetween populations X; & X,
Hjic,2<>c,2 <Twosided test

Test Statistic:
Sl2 < Fistheratio of samplevariances
F=—
2
2

Sampling Distribution:
If Assumptionshold and H, istrue, then F ~F ., 1,015

Critical Valueof the Test:
o = 0.05 < Probability of Typel error must be explicitly set

Cp:= inversed),:(g\ Co:= inversed),:(l - g\ < a implies C the'Critical Value'
2) 2) (in X) specified by cumulative
C1:= qF(g»nl -1,np- 1\ Co:= qF(l - g,n1 -1,np— 1\ probability ®¢(X) = a/2 for each
2 ) 2 ) tail of the'q' function of the F
Decision Rule: Distribution with (n,-1)/(n,-1)

degrees of freesom.
IF |F|>C, THENREJECT H,

OTHERWISE ACCEPT H,,

Probability Value:
P = minimum(2 ®(F),1-2 ®(F)
P:=mif 2- pF(F.ny - 1,np - 1),2- (1 - pF(F.ny - 1,np - 1))]
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Example (BWT difference between Females and M al es):
cats:= READPRN("c:/2007BiostatsData/cats.txt" )

Females: Males:
i:=0.46 ji=47.143
(v (D
FBWT, = (Cats )i MBWTJ.f o= (CalS ) j
2 (2
FHwWT, = (Cats )i MHWTJ. = (CalS ) j
ny:= Iength(FBWT) nq =47 no = Iength(M BWT) no = 97
X 1ar := mean(FewT) X1bar = 2.3596 X obar := mean(MpwT) Xopar = 2.9
5= (Va(Fawr) s1° = 0.0751 5= [Va(Mewr ° = 0.2185

Assumptions:

- Obser ved values X, ;, X, 5, X 4, .. X, ., arearandom sample from ~N(u,.6,9)

- Observed values X, |, X, X5, ... X, ., arearandom sample from ~N(u2,c522)
- Samples from the two samplesare independent.

Hypotheses:

22
Ho.cyl =0,

< No difference in variance between populations X; & X,
Hye,2<>c2 <Twosided test

Test Statistic:
2
S1
Eo = F=0.3435
573

Sampling Distribution:

If Assumptionshold and H, istrue, then F ~F ., 1,015

Critical Valueof the Test:
o = 0.05 < Probability of Typel error must be explicitly set

Cp:= qF(%,nl— 1,0y ) Cyi= qF(l— %,nl— 1.np— )

) )
(C1 C2)=(05919 1.6155)
Decision Rule:

IF |F| >C, THEN REJECT H,OTHERWISE ACCEPT H,
(C1 C2)=(05919 1.6155) F=03435
Probability Value:
P = minimum(2 ®(F),1-2 ®(F)
P:=minf 2- pF(F.ny - 1,np - 1),2- (1 - pF(F.ny - 1,np - 1))] P = 0.0001
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Prototype of Examplein R:

Females. Males:
nq = 47 no = 97
X1par = 2.3596 Xopar = 2.9
) ) < Valuesfrom above
s1” = 0.0751 5" = 0.2185
F=0.3435 dfi:=ny—1 df{ =46
P = 0.0001 dfp=no—1 dfp=96
COMMANDS

> cats=read.table(" c:/2007BiostatsData/cats.txt")

> attach(cats)

> X1=Bwt[Sex=="F"]

> X2=Bwt[Sex=="M"]

> var.test(X1,X2,alternative="two.sided" ,conf.level=0.95)

F test to compare two variances

data: X1 and X2
F = 0.3435, num df = 46, denom df = 96, p-value = 0.0001157
alternative hypothesis truer atio of variancesisnot equal to 1
95 percent confidence interval:
0.2126277 0.5803475
sample estimates;
ratio of variances
0.3435015

" calculation confirmed. Note that we do not have aformulafor calculating the
Confidence Interval of theratioreported here by R.
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ORIGIN = 0 POWER & Sample Sizein t-Tests for Two Samples

Estimatesfor sample size (N) and power (1-B) on thispage are amilar to that seen in
Biostatistics Worksheet 24, but here for comparingtwo samples. The methods
assume knowledge of 542 and ¢,2 which, of cour se we do not know, and the Nor mal
digribution N(0,1). Thus, valuesobtained can only be consider ed approximate.

Two Samplesof Equal Size:

Assumptions:
- Obser ved values X |, X, ,, X, 5 .. X, , arearandom sample from ~N(p,.6,2)
- Obser ved values X, ;, X, , X23, . X, arearandom sample from ~N(p,,5,%)

- Samples from the two samplesare independent
- Population variances 6,2 = o2

Estimated Sample Size:
a = 0.05 < Typel error rate mus be explicitly st
B :=0.10 < Typell error rate must be explicitly set

A=p,-p, <dedreddisance between means must beexplicitly set

(c 12 ¥ 022> : {(qnorm(l B,0,1) + qnorm( =.,0 1)) }

2
A

n:=

Estimated POWER:

Z:= qnorm[2 o, 1\

)

< heren, =n, =n, but thisPower calculation also
appliesto samples of unequal size. See below.

POWER := pnorm(z + D,0,1)

Example:  Cardiovascular Disease - Rosner Ex. 8.29 p. 332:

Sample Size:
X1per = 132.86 s1:= 1534 <wewill use X, & sfrom the samplesas point
X2bar = 127.44 sp:=18.23 etimatesfor ¢ & p of the populations

A = X1bar — X2bar A =542

a = 0.05 B:=02 < parameters must be explicitly set to estimate N

(le + 522> : {(qnorm(l B,0,1) + qnorm(l -=,0 1)) }

n:= 5 n = 151.6661
A ~ sample size confir med p. 332
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Power:
nqp := 100 ny := 100 A=5
@ o)
z:=gnorm —,0,1 z=-196
27")
A
D= ————
7 > D = 2.0986
1 R
— + —
ng N2
POWER := pnorm(z + D, 0,1) POWER = 0.5551 < confirmed p. 334
Prototype Ir_] R Note from R documentation:
Sample Size:
Exactly oneof the parametersn,
COMMANDS deta, power, sd, and sig.level must
be passed asNULL, and that
> X1bar=132.86 parameter isdeter mined from the
> X2bar=127.44 others.
> del=X1bar-X2bar
>s1=15.34
> 2=18.23

> SD=mean(c(sl,s2))
> power.t.test(n=NUL L ,ddta=del,sd=SD,s g.level=0.05,power=0.8,
type="two.sample" ,alternative="two.sded" )

Two-samplet test power calculation

Sample size calculation approximately confirmed > n = 151.5167
ddta=5.42
sd = 16.785
sig.levedl = 0.05
power = 0.8
alternative=two.sided

Power : NOTE: nisnumber in *each* group

COMMANDS

> s1=15.34

> 2=18.23

> SD=mean(c(sl,s2))

> power.t.test(n=100,delta=5,50=16.785,sg.level=0.05,power=NUL L,
type="two.sample" ,alternative="two.sded" )

Two-samplet test power calculation

n =100
ddta=5
s = 16.785
sig.levedl = 0.05

power calculation appr oximately confir med > power = 0.5541596
alternative= two.sded

NOTE: nisnumber in *each* group
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Two Samplesof Unequal Size:

Assumptions:
- Obser ved values Xip Xig Xyg oo Xy, are arandom sample from ~N(u1,clz)
- Obser ved values le, Xzz, X23, Xz,nz are arandom sample from ~N(u2,022)

- Samplesfrom the two samplesar e independent
- Population variances ,? = 5,2

Estimated Sample Size:
o := 0.05 < Typel error rate must be explicitly set
B := 0.10 < Typell error rate mug be explicitly set
A=p,-pn, <dedred digance between means must beset

n
ny:= 2 <k mug be set to determinerelativeszeof n, & n,

2)
(612 + 672) .{(qnorm(l - $,0,1) + qnorm(l =.,0 1)) }

ni:=

2
A
(k . 012 + 022) . {(qnorm(l - B,O,l) + qnorm(l —,0 1)) }
no =
2 2
A
Estimated POWER:
Same as above...
Example:  Rosner Ex8.30 p. 333
X bar = 132.86 S= 1534 < wewill use X, ,, & sfrom the samples as point
X2bar = 127.44 sp:= 1823 etimatesfor ¢ & p of the populations
A= lear - Xzbar A= 542
o = 0.05 B =02 gnorm(1 - B,0,1) = 0.8416
k:=2
qnorm(l 2 0,1\ - 19
27")
A2 = 29.3764
2
) &) 1V
S1 + T} qnorm(l— B,O,l) + gnorm l— —.,0, l))
ny = ” nq = 107.2692
A
(k . 512 + 322) . {(qnorm(l - B,O,l) + qnorm(l —.,0 1)) }
Ny := ” ny = 2145385
A

values approximately confirmed p. 333
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Two Sampleswith Paired Design:
Assumptions:

- Observed values X 5, Xy 5, Xy 5, ... X;; arearandom sample exactly matched with
Observed values X, 3, X5, Xy, .. X, @crossindividuals 1,2,3, ... ,n.

-Letd =X, -X,, for each individual i are arandom sample from ~N(ud,cd2).

- Variance cdz of the popopulation 62 is unknown.

Variance of the differences (d;) given correlation of the observations:
p = COfI’(X]__,Xz_)

cd2 = 012 + 022 ~-2-p-01-02 < variance of di in terms of variance for each

population and corr elation coefficient p
Estimated Sample Size:
o := 0.05 < Typel error rate must be explicitly set
B:=0.10 < Typell error rate must be explicitly set
d=py -y < dedred digtance between means must be set

(2 : cdz) .{(qnorm(l - [3,0,1) + qnorm(l 3 %’O,l))z}

n:= :
)

Estimated POWER:
A

Z:= gnorm 2 0
. 2 b 9 )
D= m
od-V2
POWER := pnorm(z + D,0,1)
Example: Hypertension Rosner Ex 8.33 p. 334-336

s1:=15 sp:=15 p:=.7 6=5
Sd:=J812+522—2-p-81~32 s = 135
o = 0.05 B :=0.20

Estimated Sample Size:

2 a o )
(2 s ) : [qnorm(l ~B,0,1) + qnorm(l - —,0,1))
n:= 5 2 n = 84.7679

0 A confirmed p. 336

Estimated POWER:
ni=75 0:=005 P:=020 &:=5 sd2: 135

Z:= gnorm 2,0,1\ z=-196
2°77)
D:= Vn-s D = 2.6352
sdV2
POWER := pnorm(z + D,0,1) POWER = 0.7502

~ confirmed p. 336
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Prototype InR: Note from R documentation:

Sample Size:
Exactly oneof the parametersn,
COMMANDS delta, power, sd, and sig.level must
be passed asNULL, and that
> s1=15 parameter isdeter mined from the
>2=15 others.
> del=5
>rho=0.7

> SD=gqrt (sl 2+2/ 2-2*rho* s1* 2)
> power.t.test(n=NUL L ,delta=del ,sd=SD,sg.level=0.05,power=0.8,
type="paired" ,alternative="two.sded")

Paired t test power calculation

half of what | expected > n = 44.34303
deta=5
sd = 11.61895
sig.level = 0.05
power = 0.8
alternative=two.sded

NOTE: nisnumber of *pairs®, sd isstd.dev. of *differencest within
pairs

> power.t.test(n=NUL L ,delta=del,sd=SD,sg.level=0.05,power=0.8,
type="two.sample€" ,alternative="two.sded" )
Two-samplet test power calculation

approximately what | expected > n = 85.73891
ddta=5
sd = 11.61895
sig.levedl = 0.05
power = 0.8
alternative=two.sded

Power : NOTE: nisnumber in *each* group

COMMANDS'

> power.t.test(n=75,delta=del,sd=SD,sg.level=0.05,power=NUL L,
type="two.sampl€" ,alternative="two.sded" )

Two-samplet test power calculation

n=75
ddta=5
sd =11.61895
sig.levedl = 0.05

approximately what | expected > power = 0.7447735
alternative=two.sded

NOTE: nisnumber in *each* group
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> power.t.test(n=75,delta=del,sd=SD,sg.level=0.05,power=NUL L,
\ type="paired" ,alternative="two.sded")

Paired t test power calculation

n=75
ddta=5
sd =11.61895

not what | expected! > sig.level = 0.05
power = 0.9571042

alternative= two.sded

NOTE: nisnumber of *pairs*, s is std.dev. of
*differences* within pairs



Assignment for Week 8

Today we extend our survey of the standard two-population tests into the realm of
nonparametric statistics. Given the number of testsin this course (and there are many in
addition we will not cover), it isimportant to begin placing all statistical tests within an
analytic framework. In general, for each strategy of data collection and analysis
represented by paired and separate population t-test designs, there are corresponding
nonparametric tests that cover much the same ground. Although less powerful because
they consult less information derived from the data, they are often employed when
parametric or other nonparametric tests “fail” dueto violation of one or more underlying
assumptions. The question of failure of tests due to lack of normality or samplesizeis
often not a clear-cut decision, but ajudgment call where degree, amount or importance of
failure relative to the conclusion reached by the test should also be considered.
Generdly, | advise analyzing problems using multiple tests to compare results. If al the
tests say the same thing, then it hardly matters which test to use. In publishing, |
generally report the most conservative test, or occasionaly all of them, to avoid
complications with reviewers who may have a personal preference for one over another.
When the different tests give importantly different probability levels then analysis
becomes much more interesting and, in my opinion, stops being a strictly statistical
problem. At issueiswhether the extrainformation embedded in a*“flawed” parametric
test versus “ correct” nonparametric test has meaning and value. If it does, then every
effort must be made to utilizeit. Sometimes a“variance stabilizing” or other kind of
non-linear transformation corrects aflaw sufficiently to allow the parametric test. The
results can then be back-transformed (using the transformation inverse) to obtain results
in the “space” of the original variables. Other times, another test having “weird poisson”
(or whatever) distribution and the exact design parameters that you need is already sitting
in literature just waiting for you. When in doubt, | consult a“real” statistician.
Occasiondly it helps.

So, thisweek use both R and SPSS and try the following tasks. Note also that | have
posted R documentation for you on our website. For each below, check the course
website, R, or SPSS, for a suitable dataset. Y ou may have to manipulate your datain
Excel or Notepad or Word to get it in aform you can use. Thisisdefinitely part of the
game of analyzing statistics using a computer, so work on your skills here. For each item
in the list below, run the same dataset using the parametric and non-parametric anal ogs,
and compare your results.

1. Paired t-test and non-parametric analogs.

2. Two population t-tests with equal and unequal variances and
non-parametric analog.



Exact Binomial Test
Description

Performs an exact test of asimple null hypothesis about the probability of successin a
Bernoulli experiment.

Usage

binom.test(x, n, p = 0.5,
alternative = c("two.sided”, "less', ''greater'),
conf._.level = 0.95)

Arguments

X number of successes, or avector of length 2 giving the numbers of
successes and failures, respectively.

n number of trials; ignored if x has length 2.

P hypothesized probability of success.

alternative ndicates the alternative hypothesis and must be one of ""two.sided",
""greater" Or "less". You can specify just theinitial letter.

conf.level confidencelevel for the returned confidence interval.

Details

Confidence intervals are obtained by a procedure first given in Clopper and Pearson
(1934). This guarantees that the confidence level is at least conf. 1evel, but in general
does not give the shortest-length confidence intervals.

Value

A list with class ""htest" containing the following components:

statistic  the number of successes.

parameter  the number of trials.

p.value the p-value of the test.

conf.int  aconfidenceinterval for the probability of success.
estimate  the estimated probability of success.

null.value the probability of success under the null, p.
alternative gcharacter string describing the alternative hypothesis.
method the character string "Exact binomial test".



data.name g character string giving the names of the data.

References

Clopper, C. J. & Pearson, E. S. (1934). The use of confidence or fiducial limitsillustrated
in the case of the binomial. Biometrika, 26, 404—413.

William J. Conover (1971), Practical nonparametric statistics. New Y ork: John Wiley &
Sons. Pages 97-104.

Myles Hollander & Douglas A. Wolfe (1973), Nonparametric statistical inference. New
York: John Wiley & Sons. Pages 15-22.

See Also
prop.test for ageneral (approximate) test for equal or given proportions.

Examples

## Conover (1971), p. 97F.

## Under (the assumption of) simple Mendelian inheritance, a cross

## between plants of two particular genotypes produces progeny 1/4 of
## which are "dwarf" and 3/4 of which are "giant", respectively.

## In an experiment to determine if this assumption is reasonable, a
## cross results in progeny having 243 dwarf and 682 giant plants.
## IFf "giant” iIs taken as success, the null hypothesis is that p =
## 3/4 and the alternative that p '= 3/4.

binom.test(c(682, 243), p = 3/4)

binom.test(682, 682 + 243, p = 3/4) # The same.

## => Data are iIn agreement with the null hypothesis.

[Package stats version 2.4.1 Index]



pairwise.wilcox.test { stats} R Documentation

Pairwise Wilcoxon rank sum tests

Description

Calculate pairwise comparisons between group levels with corrections for multiple
testing.

Usage

pairwise.wilcox.test(x, g, p-adjust.method = p.adjust.methods, ...)
Arguments

X Response vector

g Grouping vector or factor

p-adjust.method \Method for adjusting p values (see p.adjust)
Additional arguments to pass to wi Icox. test.

Value
Object of class ""pairwise.htest"

See Also

wi lcox.test, p-adjust

Examples

attach(airquality)

Month <- factor(Month, labels = month.abb[5:9])
## These give warnings because of ties :
pairwise.wilcox.test(Ozone, Month)
pairwise.wilcox.test(Ozone, Month, p.adj = "bonf")
detach(Q)

[Package stats version 2.4.1 Index]
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Power calculationstwo sampletest for proportions
Description
Compute power of test, or determine parameters to obtain target power.

Usage

power.prop.-test(n = NULL, pl1 = NULL, p2 = NULL, sig-level = 0.05,
power = NULL,
alternative = c("two.sided", "one.sided™),
strict = FALSE)

Arguments

n Number of observations (per group)

pl probability in one group

p2 probability in other group

sig.level  Gignificancelevel (Type| error probability)
power Power of test (1 minus Type |l error probability)
alternative One- or two-sided test

strict Use strict interpretation in two-sided case
Details

Exactly one of the parametersn, p1, p2, power, and sig. level must be passed as NULL,
and that parameter is determined from the others. Notice that sig. level has anon-
NULL default so NULL must be explicitly passed if you want it computed.

If strict = TRUE isused, the power will include the probability of rejection in the
opposite direction of the true effect, in the two-sided case. Without this the power will be
half the significance level if the true differenceis zero.

Value

Object of class ""power.htest", alist of the arguments (including the computed one)
augmented with method and note elements.

Note



uniroot is used to solve power equation for unknowns, so you may see errors fromit,
notably about inability to bracket the root when invalid arguments are given. If one of
themis computed p1 < p2 will hold, although thisis not enforced when both are
specified.

Author (s)

Peter Dalgaard. Based on previous work by Claus Ekstrem

See Also

prop.test, uniroot

Examples

power .prop.test(n = 50, pl
power .prop.test(pl = .50, p
power .prop.-test(n = 50, pl

.50, p2 = .75)
= .75, power = .90)
-5, power = .90)

1Nl

[Package stats version 2.4.1 Index]
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Wilcoxon Rank Sum and Signed Rank Tests

Description

Performs one and two sample Wilcoxon tests on vectors of data; the latter is also known
as‘Mann-Whitney’ test.

Usage
wilcox.test(x, ...)

## Default S3 method:

wilcox.test(x, y = NULL,
alternative = c(""two.sided", "less', ''greater'),
mu = 0, paired = FALSE, exact = NULL, correct = TRUE,
conf_int = FALSE, conf_.level = 0.95, ...)

## S3 method for class "formula“:
wilcox.test(formula, data, subset, na.action, ...)

Arguments

X numeric vector of data values. Non-finite (e.g. infinite or missing) values
will be omitted.

y an optional numeric vector of data values.

alternative gcharacter string specifying the alternative hypothesis, must be one of
"two.sided" (default), ""greater™ or "less". Y ou can specify just the

initial letter.
mu anumber specifying an optional parameter used to form the null
hypothesis. See Details.
paired alogical indicating whether you want a paired test.
exact alogical indicating whether an exact p-value should be computed.
correct alogical indicating whether to apply continuity correction in the normal

approximation for the p-value.
conf.int  a|ogical indicating whether a confidence interval should be computed.
conf.level confidencelevel of theinterval.

formula aformulaof theform Ihs ~ rhs where Ihs isanumeric variable giving
the data values and rhs afactor with two levels giving the corresponding
groups.

data an optional matrix or data frame (or similar: see model . frame) containing



the variablesin the formula formula. By default the variables are taken
from environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action  gfunction which indicates what should happen when the data contain NAS.
Defaultsto getOption(*'na.action™).

further arguments to be passed to or from methods.

Details
The formulainterface is only applicable for the 2-sample tests.

If only x isgiven, or if both x and y are given and paired is TRUE, a Wilcoxon signed
rank test of the null that the distribution of x (in the one sample case) or of x - y (inthe
paired two sample case) is symmetric about mu is performed.

Otherwise, if both x and y are given and paired is FALSE, a Wilcoxon rank sum test
(equivalent to the Mann-Whitney test: see the Note) is carried out. In this case, the null
hypothesisis that the distributions of x and y differ by alocation shift of mu and the
aternative isthat they differ by some other location shift (and the one-sided alternative
"greater" isthat x is shifted to the right of y).

By default (if exact isnot specified), an exact p-value is computed if the samples contain
less than 50 finite values and there are no ties. Otherwise, anormal approximation is
used.

Optionally (if argument conf_int istrue), a nonparametric confidence interval and an
estimator for the pseudomedian (one-sample case) or for the difference of the location
parameters x-y is computed. (The pseudomedian of a distribution F is the median of the
distribution of (u+v)/2, where u and v are independent, each with distribution F. If F is
symmetric, then the pseudomedian and median coincide. See Hollander & Wolfe (1973),
page 34.) If exact p-values are available, an exact confidence interval is obtained by the
algorithm described in Bauer (1972), and the Hodges-L ehmann estimator is employed.
Otherwise, the returned confidence interval and point estimate are based on normal
approximations.

With small samplesit may not be possible to achieve very high confidence interval
coverages. If this happens a warning will be given and an interval with lower coverage
will be substituted.

Value

A list with class "htest" containing the following components:

statistic thevalue of the test statistic with a name describing it.



parameter  the parameter(s) for the exact distribution of the test statistic.
p.value the p-value for the test.

null.value the|ocation parameter mu.

alternative gcharacter string describing the alternative hypothesis.
method the type of test applied.

data.name g character string giving the names of the data.

conf.int a confidence interval for the location parameter. (Only present if argument
conf.int = TRUE.)

estimate  gn estimate of the location parameter. (Only present if argument conf. int
= TRUE.)

Warning

This function can use large amounts of memory and stack (and even crash R if the stack
limit is exceeded) if exact = TRUE and one sampleislarge (several thousands or more).

Note

The literature is not unanimous about the definitions of the Wilcoxon rank sum and
Mann-Whitney tests. The two most common definitions correspond to the sum of the
ranks of the first sample with the minimum value subtracted or not: R subtractsand S
PLUS does not, giving avaue which islarger by m(m+1)/2 for afirst sample of sizem.
(It seems Wilcoxon's original paper used the unadjusted sum of the ranks but subsequent
tables subtracted the minimum.)

R's value can also be computed as the number of al pairs (x[i], y[i]1) for whichy[j]
isnot greater than x[i], the most common definition of the Mann-Whitney test.

References

David F. Bauer (1972), Constructing confidence sets using rank statistics. Journal of the
American Statistical Association 67, 687—690.

Myles Hollander & Douglas A. Wolfe (1973), Nonparametric statistical inference. New
Y ork: John Wiley & Sons. Pages 27-33 (one-sample), 68—75 (two-sample).
Or second edition (1999).

See Also

psignrank, pwi lcox.

wi lcox.exact in exactRank Tests covers much of the same ground, but also produces
exact p-valuesin the presence of ties.




wi lcox_test in package coin for exact and approximate conditional p-values for the
Wilcoxon tests.

kruskal . test for testing homogeneity in location parameters in the case of two or more
samples; t. test for an aternative under normality assumptions [or large samples]

Examples

## One-sample test.

## Hollander & Wolfe (1973), 29F.

## Hamilton depression scale factor measurements iIn 9 patients with
## mixed anxiety and depression, taken at the first (x) and second
## (y) visit after initiation of a therapy (administration of a
## tranquilizer).

X <- c¢(1.83, 0.50, 1.62, 2.48, 1.68, 1.88, 1.55, 3.06, 1.30)

y <- ¢(0.878, 0.647, 0.598, 2.05, 1.06, 1.29, 1.06, 3.14, 1.29)

wilcox.test(x, y, paired = TRUE, alternative = "greater')
wilcox.test(y - x, alternative = "less™) # The same.
wilcox.test(y - x, alternative = "less",

exact = FALSE, correct = FALSE) # H&W large sample
# approximation

## Two-sample test.
## Hollander & Wolfe (1973), 69fF.
## Permeability constants of the human chorioamnion (a placental
## membrane) at term (x) and between 12 to 26 weeks gestational
## age (y)-. The alternative of interest is greater permeability
## of the human chorioamnion for the term pregnancy.
X <- c¢(0.80, 0.83, 1.89, 1.04, 1.45, 1.38, 1.91, 1.64, 0.73, 1.46)
y <- c(1.15, 0.88, 0.90, 0.74, 1.21)
wilcox.test(x, y, alternative = "g"") # greater
wilcox.test(x, y, alternative = ''greater",

exact = FALSE, correct = FALSE) # H&W large sample

# approximation

wi lcox.test(rnorm(10), rnorm(10, 2), conf.int = TRUE)
## Formula interface.
boxplot(Ozone ~ Month, data = airquality)

wi lcox.test(0Ozone ~ Month, data = airquality,
subset = Month %in% c(5, 8))

[Package stats version 2.4.1 Index]
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ORIGIN =0 S|gn Test

The Sign Test isa nonparametric analog tothepaired t Test. It requiresthe use of ordinal
data - data that can be ordered but has no specific numerical values. Of course, ordinal
data can be constructed from cardinal data- metricdatato which sandard arithmetic and
measuring distances apply. Conversion istypically donewhen aparametric tes violates
the underlying assumption of normality. However, doing so involvesloss of information
and, asa resault, lessens power of the test.

Assumptions:

- Observed values X 4, X, 5, Xy 5, ... X1, arearandom sample exactly matched with
Observed values X, 1, X, 5, X, 3, .. X, acrossindividuals 1,2,3, ... ,n.
- Let thevalued, = X,; -X,; for each individual i be assessed as|d;| = rank or der of single

observations or discrete classes of observations with observed frequency.
- The d;'s are independent.

- The under lying ditribution of the d;'sis continuous & symmetric but not necessarily a

Normal Disgtribution.
- All d;'s have the same median

Hypotheses:
HoyA=0 < No population ordinal differencein median
HiA<>0  <Twosided test

Criterion for Normal Approximation:

- IF number of non-zerod; <20 THEN use Exact Method
OTHERWISE Normal Approximation may be used

Normal Approximation:
Test Statistic:
C = number of d,'swhered; is+

D = number of d'swhered, is- < used only for simplified calculation of Probability below

Critical Valueof the Test:
o = 0.05 < Probability of Typel error must be explicitly set

c1::£+1+ E-inversreCDN 1—3,0,1\ Co:= E—E\— D~inverse<l>N 1—3,0,1\
2" 2 {4 2°7) 2 2) (a4 2°77)
1

=2+ =+ |2 gnorm 1—3,0,1\ Cp:= L = . gnorm 1—230»1\
2 2 4 2°77) 2 2) (4 2777)

Decision Rule:

IF Coutsdeinterval CV = (c;,c,) THEN REJECT H,
OTHERWISE ACCEPT H,,
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Probability Value:

P::Z-(l—d)N(wm < for C <> D OTHERWISE P= 1.0

Vo))

P.=2. (1 - pnorm(w,o,l\\

Vn J)
Example:
Der matology Example Rosner Ex. 9.8 p. 364:
ArmA>B=22
ArmB<A =18 B .
ArmA=B=5 n:=22+ 18 n= 40

Paired SampleAssumptions:

- Observed values X 4, X, 5, Xy 5, ... X1, arearandom sample exactly matched with
Observed values X, 1, X5, X, 3, .. Xy @crossindividuals 1,2,3, ... ,n.
- Let thevalued, = X,; -X,; for each individual i only beassessed as +, -, or =.

Hypotheses:
HoA=0 < No population ordinal difference
HiA<>0  <Twosided test

Criterion for Normal Approximation:

- IF number of non-zerod; <20 THEN use Exact Method
OTHERWISE Normal Approximation may be used n=40  <qualifies!

Normal Approximation:
Test Statistic:
C:=18 D= 22

Critical Valueof the Test:
o = 0.05 < Probability of Typel error must be explicitly set

c1::E+i+ 2 gnorm 1—3,0,1\ Coi= n_1)_ 2. gnorm 1—230»1\
2 2 {4 27) 2 2) |4 2777)

c1 = 26.698 cp = 13.302 CV = (c1 c2)
Decision Rule:
IF C outsideinterval CV = (¢;, ¢,) THEN REJECT H,OTHERWISE ACCEPT H,
C=18 CV = (26.698 13.302) < confirmed p. 364
Probability Value:
|c-D| -1

P=2. (1 - pnorm(—,o,l\\ P = 0.6353
Vn )) A confirmed p. 364
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Exact Method:
Test Statistic:

C = number of d'swhered; is+

Probability Value:

n n
IFC>n/2 , 1)
P=2. combin(n,k) - | —
> combinn-(3)
k=C
IF C<n/2 c 1\n
P=2. combin(n,k) - | —
S combinn - (3)
k=0
OTHERWISE C=n/2and P=1.0
Example:
Ophthalmology Example Rosner Ex. 9.9 p. 365-366:
Drug A better than B =8
Drug B better than A =2

DrugsA & Bequal =5

Paired SampleAssumptions:

- Observed values X 5, Xy 5, Xy 5, ... X;, arearandom sample exactly matched with

Observed values X, ., X, ,, X

211 XKoo Xpg, - Xppacrossindividuals 1,2,3, ... ,n.
- Let thevalued, = X,; -Xy; for each individual i only beassessed as +, -, or

Hypotheses:
HoA=0 < No population ordinal difference
HiA<>0  <Twosided test

Criterion for Normal Approximation:

- IF number of non-zerod, <20 THEN use Exact Method
OTHERWISE Normal Approximation may be used

Binomial Exact Calculation:
Test Statistic:

CcC=8
Probability Value:

n n
: 1)
P=2- combin(n,k) - | = <forC>n/2
3 comoo- ()
=C

n:=8+2

confirmed p. 366 *

n=10

<NOT
qualified!

P = 0.1094

Note that if o =0.05 then P > 0.05

and wedonot reject H,

Be sureyou can use Table 1 in the Appendix todo thid
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Prototypein Systat & R:

0|1 0
X := READPRN("C:/2007BiostatsData/AnorexiaAL L .txt" ) 0 |80.7(80.2 0]-215
© 1(89.4|80.1 1|-20.9
n:= 'ength(x ) n=12 2918|864 2 [171
. sort(x@ - X<1>) 3| 74|s6.3 3[-15.9
4(78.1|76.1 4|-15.4
C:==42 n:=71 D=n-C D=29
5|88.3|78.1 5|-14.9
6|87.3|75.1 6 |-13.6
X=|7|75.1]|86.7 d=[7|-134
8806|735 8|-13.1
9784|846 9|-12.6
10| 77.6| 77.4 10| -12.3
11| 88.7| 79.5 11| -11.7
12| 81.3| 89.6 12| -11.6
13| 78.1| 81.4 13| -11.4
14| 70.5| 81.8 14| -11.3
Paired SampIeAssumptions: 15| 77.3| 77.3 15| -11
- Observed values X 5, Xy 5, Xy 5, ... X;, arearandom sample exactly matched with
Observed values X, 3, X5, Xy, .. X, @crossindividuals 1,2,3, ... ,n.
- Let thevalued, = X,; -Xy; for each individual i only beassessed as +, -, or =.
Hypotheses:
HoA=0 < No population ordinal difference
HiA<>0  <Twosided test
Criterion for Normal Approximation:
- IF number of non-zerod, <20 THEN use Exact Method
OTHERWISE Normal Approximation may be used n=71  <qualified!

Normal Approximation:
Test Statistic:

C=42 D=29

Critical Valueof the Test:
o = 0.05 < Probability of Typel error must be explicitly set

01::£+£+ E-Clnorm 1—3,0,1\ Co = E—i\— ﬂ~qnorm 1—2’0’1\
2 2 |4 2°77) 2 2) 4 2777)

c1 = 44.2575 Co = 26.7425 CV = (c1 cp)

Decision Rule;
IF C outsideinterval CV = (¢, ¢,) THEN REJECT H,OTHERWISE ACCEPT H,

C=42 CV = (44.2575 26.7425)
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Probability Value:

P=2. (1 - pnorm(w,o,m P=0.1544
Vn ))
Binomial Exact Calculation:
Test Statistic:
C=42

Probability Value:

n n
P=2. Z combin(n, k) - (%} <for C>n/2 P = 0.1539
k=C
Systat Results:
0

x<1> < after Counts of differences (row variable greater than column)

Sign test results
< before g

BEFORE AFTER
BEFORE O 29
AFTER 42 0

Two-sded probabilities for each pair of variables

BEFORE AFTER
BEFORE 1.0000000
AFTER 0.1544065 1.0000000

N My guessisthe SYSTAT usesthe Normal Approximation here!
R Results:

COMMANDS

> X=read.table(" C:/2007BiostatsData/anorexia.txt" )

> X

> binom.test(42,71,p=0.5,alternative="two.sded" ,conf.level=0.95)

Exact binomial test

data: 42 and 71
number of successes = 42, number of trials= 71, p-value = 0.1539
alternative hypothesis: trueprobability of successisnot equal to 0.5
95 percent confidence interval:
0.4684018 0.7068122
sample estimates:
probability of success
0.5915493

N Herel had tocount by hand C = number of + or " successes' out of n trialswithout tie.

Theresultsare a sraight-forward binomial tes for binomial par ameter p = 0.
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ORIGIN =0 Wilcoxon Signed-Rank Test

The Signed-Rank Test isa nonparametric analogtothe pairedt Test utilizing more

infor mation than availablein the Sign Test. The Signed-Rank test requires use of ordinal
data that can be ordered, or ranked, according to amount of effect. However, amount of
effect need not have meaning beyond or der of classes of data.

Assumptions:
- Observed values X 4, X, 5, Xy 5, ... X1, arearandom sample exactly matched with
Observed values X, 1, X, 5, X, 3, .. X, acrossindividuals 1,2,3, ... ,n.
- Let thevalued, = X,; -X,; for each individual i be assessed as|d;| = rank or der of single

observations or discrete classes of observations with observed frequency.
- The d;'s are independent.

- The under lying ditribution of the d;'sis continuous & symmetric but not necessarily a
Normal Distribution.

- All d;'s have the same median
Hypotheses:
HoyA=0 < No population ordinal differencein median
HiA<>0  <Twosided test

Criterion for Normal Approximation:

- IF number of non-zerod; <16 THEN use Special Tablese.g., Rosner Table 11 in Appendix
OTHERWISE Normal Approximation may be used

Normal Approximation:
Rank Data and Sum:
-Ignoreall d's=0-Don'tincludethem in therankings.
- The|d,|'sareranked (R; = rank(|d;[) according to their absolute value
with smalledt |d;| = 1 and largedt |d| = n.
- Giveall d'swith same absolute value the same average rank.
- Count number of ties(tj) for each group (g) of tiesfor the d;'s
- Compute the Rank Sum [RSpOS] of positivedi's.

Test Statistic:
IF RS, <> n(n+1)/4 AND thereareNO ties THEN:

n-(n+1) 1}
RSpos ————| - =
T:= H 4 2
n-n+1)-(2-n+1)
j 24

IF RSpOS <>n(n+1)/4 AND there ARE tiesTHEN:

HRspos— e 1)‘ - ﬂ

3 t) wheret isthenumber (count)
of members of each class

T:=

n-(n+1)-(2-n+1) Z(
24 - 48
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IF RSpOS =n(n+1)/4 THEN:
T:=0

GENERAL ALTERNATIVE TO THE ABOVE:
j==1.9

o224

T:= where AR representstheaverage

b, . (ARj)ZJ rank of each class]

Z J
- 4
J
Critical Valueof the Test:
o = 0.05 < Probability of Typel error must be explicitly set

C:= inverseCDN(l - %\ C:= qnorm(l - %,0,1\

) )

Decision Rule;
IF T>C THENREJECT H,
OTHERWISE ACCEPT H,

Probability Value:

P:=2-(1- oN(T) P:= 2. (1- pnorm(T,0,1))
-8 1 8 0
Example: ) ) )
-7 3 7 0
Der matology Example 6 5 6 0
Rosner Ex 9.12, p. 370
d - t 2 d > t 0
= COUNtpeq = = COUNtpog =
R = dpos neg 4 neg 1 pos 4 pos 0
count := countpeg + COUNtpog -3 5 3 2
i=0.length(R) — 1 -2 4 2 6
-1) 4) 1) 10)
n:= z count, n=40
i
) 3 0 < aver agerank: (40+40)/2
1 4
. 3 a8 < averagerank: (37-39)/2
5 5 355 < averager ank: (35+36)/2
5 > 335 < averagerank: (33-34)/2
R=1,| count=4 AR=1 o < aver ager ank: (32+32)/2
3 7 28 < aver ager ank: (25+31)/2
2 10 195 < aver ager ank:(15+24)/2
1) 14) 75 ) < aver ager ank: (1+14)/2
RSpos:= 10- 7.5+ 6195+ 228 RSpps = 248 < sum of theranksfor postived;'s
A verified p. 370
n-(n+1)

410 <criterion for test satistic T < expected rank sum verified p. 370
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Criterion for Normal Approximation:

- IF number of non-zerod, <16 THEN use Special Tablese.g., Rosner Table 11 in Appendix
OTHERWISE Normal Approximation may be used

1) 1)
n= 40 < qualifiesfor Normal Approximation 27 3
8 2
t := count
8 2
Sti= Z(t —t) St = 4092 1 1
343 7
" note use of vector sum function here that adds 1000 10
all ementsof avector together...
2744 ) 14)

Test Statistic:

IF RSpOS <>n(n+1)/4 AND there ARE tiesTHEN:
n-(n+1)-(2-n+1)

n+1| 1 24 = 35%
n-(n+
e
. N
T: - T < 21877 verified p. 370
S(e -
n-(n+1)-(2-n+1) Z(ts_t)
24 48 n-(n+1)-(2-n+1)_ 544975
24 48
N
GENERAL ALTERNATIVE TO THE ABOVE: verified p. 370
j = 0. length(AR) — 1 HRspOS— %‘ - ﬂ - 1615
n-(n+1 1
HRSpos— %‘ - ﬂ A verified p. 370
T= T = 21877
2
Lt. : (AR.) J A verified p. 370 |:t. : (AR.ﬂ
> L - LIV VI san975
. 4 Z 4 '
J j
" verified p. 370

Critical Valueof the Test:
o = 0.05 < Probability of Typel error must be explicitly set

C= qnorm(l - %,0,1\ C=196

)

Decision Rule;
IF T>C THEN REJECT H,OTHERWISE ACCEPT H,

T = 21877 C=19%
Probability Value:

P:=2-(1- pnorm(T,0,1)) P = 0.0287 <verified p. 371
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-8 1 40
Example: _7\ 3\ - )
Der matology Example
Rosner Ex 9.13, p. 371 6 2 35.5
Using R, instead of R, ¢ q -5 2 335
= CoUNtpeq == AR :=

_ T 4 " 2
i:=0. Iength(dneg) -1 3 5 08

-1) 4) 75 )
RSneg = ‘Z Rnegl  RSneg= 572

" verified p. 371

Criterion for Normal Approximation:

- IF number of non-zerod;, <16 THEN use Special Tablese.g., Rosner Table 11 in Appendix
OTHERWISE Normal Approximation may be used

n =40 < qualifiesfor Normal Approximation
Test Statistic:

IF R§,,s <>n(n+1)/4 AND thereARE tiesTHEN:

n-(n+1 1
|
T:= T = 21877 < verified p. 371
Z(ts—t)
n-(n+1)-(2-n+1)

24 48

GENERAL ALTERNATIVE TO THE ABOVE: Note Same valuesfor T asabove..

j:= 0. length(AR) — 1

T:= T = 21877 <verified p. 371
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SYSTAT Prototype:

From above:
W1 coxon Signed Ranks Test Results
Counts of differences (row variable greater Zcountpos= 18
t han col um)
BEFORE AFTER
BEFCRE 0 18 D countneg = 22
AFTER 22 0
Z = (Sum of signed ranks)/square root (sum of
squar ed ranks)
BEFORE AFTER
BEFORE 0. 0000000 < GENERAL
AFTER 2.1944551 0. 0000000 AL TERNATIVE
T valuehere
Two- si ded probabilities using normal
appr oxi mati on
BEFORE AFTER
BEFORE 1. 0000000
AFTER 0. 0282027 1. 0000000
P = 0.0287
~ Probability approximately matches
R Prototype:
COMMANDS
> Cooked=read.table(" c:\2007BiostatsData\Rosner Ex 9.12 Cooked.txt")
> Cooked
> attach(cooked)
> wilcox.test(Befor e After,alternative="two.sded" ,paired=T)
From above:
Wilcoxon signed rank test with continuity correction
data: Beforeand After RSpos = 248
V = 248, p-value = 0.02869
alternative hypothesis: truelocation shift is not equal to 0 P=0.0287

Warning message:
cannot compute exact p-value with tiesin:
wilcox.test.default(Befor e, After, alternative = "two.sded" ,
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Example:

Signed-Rank Test

X := READPRN("C:/2007BiostatsData/AnorexiaAL L .txt" )

n:= Iength(X<0>) n=72

NCRING)

d:= sort( X

Criterion for Normal Approximation:

- IF number of non-zerod; <16 THEN use X =
Special Tablese.g., Rosner Table 11 in

Appendix OTHERWI SE Normal

Approximation may be used

n=72 <qualifiesfor Normal Approximation
i:=43.71
RSpOS = (71 - 42) RSpOS =29

SYSTAT Reaults:

Wilcoxon Signed Ranks Test Results

80.7

80.2

89.4

80.1

91.8

86.4

74

86.3

78.1

76.1

88.3

78.1

87.3

75.1

75.1

86.7

80.6

73.5

Ol N[O B W|IN|FL]O

78.4

84.6

=
o

77.6

77.4

[N
[

88.7

79.5

[EEY
N

81.3

89.6

[EEY
w

78.1

814

[y
i

70.5

81.8

[EEN
o1

77.3

77.3

Counts of differences (row variable greater than column)

BEFORE AFTER
BEFORE 0 29
AFTER 42 0

Z = (Sum of sgned ranks)/square root(sum of squared r anks)

BEFORE AFTER
BEFORE 0.0000000
AFTER 2.5612838 0.0000000

Two-sded probabilities usng normal approximation

BEFORE AFTER
BEFORE 1.0000000
AFTER 0.0104286 1.0000000

-21.5

-20.9

-17.1

-15.9

-15.4

-14.9

-13.6

-13.4

-13.1

Ol N|o|O| | W[N] O

-12.6

[EnY
(=]

-12.3

[N
[N

-11.7

[EEY
N

-11.6

[EEN
w

-11.4

[EEY
N

-11.3

[EEN
o1

-11
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ORIGIN =0 Wilcoxon Rank-Sum Test
Mann-Whitney Test

These fully equivalent procedures are the nonparametric analog to the two-samplet Test.

They are applied when analyzing independent samples fr om two populations without assuming
an underlying Nor mal distribution for each. Thusthey may be applied to mog/all situations
one might normally apply a parametric solution, but with fewer assumptions and less power.

Assumptions:

- Observed values X 4, X, 5, Xy 5, ... X1, @rearandom sample
Observed values X, 1, X5, X, 3, .. X, pp @rearandom sample.
- Variables X,'sand X, areindependent.

- Underlying digributions are continuous.
- Measurement scaleis at least or dinal - i.e, data can be ranked.

Hypotheses:

HoyA=0 < No population ordinal differencein median
HiA<>0  <Twosided test

Criterion for Normal Approximation:
-IF (n1 > 10) A (n2 > 10) THEN Normal Approximation may be used
OTHERWISE use Special Tablese.g., Rosner Table 11 in Appendix

Normal Approximation:
Rank Data and Sum:

- Pool Data and Rank observations.
- Compute Rank Sum (RS, or RS;) of one population (doesn't matter which).

Test Statistic:
IF RS, <>n,(n;+n,+1)/2 AND thereareNO tiesTHEN:

i 3

e

IF RS, <> n,(n,+n,+1)/2 AND there ARE ties THEN:

nl-(n1+ no + 1)
2

RSy —

where:
( 1) t = number of tied
[ S L ) 1} individualsin each
_ 2 2 classor group.
2
n1-np) 1 b Uti) B 1J i =isused tosum

dnp+np+1-

12 ) 1T Z (n1+ nz) . (n1+ no — 1) across all classes or

|

groups.

IF RS, =n,(n;+n,+1)/2 THEN:

T:=0
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Critical Valueof the Test:
o = 0.05 < Probability of Typel error must be explicitly set

C := inversedp 1—2\ C:= gnorm 1—3,0,1\
2) 2°77)

Decision Rule;
IF T>C THENREJECT H,
OTHERWISE ACCEPT H,

Probability Value:

P:= 2. (1- on(T)) P:= 2. (1 - pnorm(T,0,1)) 5 1)
95
Example: 6 4
Ophthalmology Example X o 34
Rosner Ex 9.17, p. 375 “l2 8
ny = Zx<0> ny=25 05
6) 35) 02
np:= ZX<1> ng = 30 14 135 01)
10 25.5
o 0 (D 7 30| 1+2+3+4+5+6 .
t= AR = 6
10 425
i:=0.length(t) - 1
500 j:=7.20
(0 2 53.5
Ry = (x )i - AR, .
! 1) 55.0) D
Ry = (XY) . AR L _135
i ool 175 35 ) 20- 6
RS;:=3'Ri RS =479 1215 67.5
153 102
— _ 102 136
RS, := ZRZ RS, = 1061 Ry = Ry =
85 340
ng+np+1
ny- (—\ = 700 0 250
) 0 107
ny+ np+ 1\ ) %5 )
Ny | ————— =840
2 )

Criterion for Normal Approximation:
-IF (ng > 10) A (n2 > 10) THEN Normal Approximation may be used
OTHERWISE use Special Tablese.g., Rosner Table 12 in Appendix

np=25 np = 30 < qualifiesfor Normal Approximation
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Test Statistic:
6)
IF RS, <>n,(n;+n,+1)/2 AND there ARE ties THEN: 14
10
ni-(np+np+1
2 2 10

2 Jop

12 ) n1+n2+1_z (n1+ nz)-(n1+ n2—1)
|

T = 3.7889 <verified p. 375

IF RS, <>n,(n;+n,+1)/2 AND there ARE ties THEN:

|
(”1- n2) i L(ti)z B lJ

12 ) n1+n2+1_z (n1+ nz)-(n1+ n2—1)
|

RS —

nz-(n1+n2+1)‘ 1:|
2

. =

T = 3.7889 <same

Critical Valueof the Test:
o = 0.05 < Probability of Typel error must be explicitly set

C= qnorm(l - 3,0,1\ C=196
2°77)
Decision Rule:
IF T>C THEN REJECT H,OTHERWISE ACCEPT H,

T = 3.7889 C=196

Probability Value:
P:=2-(1- pnorm(T,0,1)) P = 0.0002 <verified p. 376

SYSTAT Prototype:

Categorical values encountered during processing are:
GROUP (2 levels)
Mann-Whitney Test is 1, 2
found asa subset under

the Kruskal-Wallis Dependent variable is CLASS

nonpar ametricANOVA Grouping variable is GROUP
analog.
ny=25 RS = 479 Group Count Rank Sum
n = 30 RS = 1061 1 25 479.0000000
2 30 1.06100E+03
) Mann-Whitney U test statistic = 154.0000000
P=0.0002 < approximately the same > Probability is 0.0001461

Chi-square approximation = 14.4212324 with 1 df
Note that Mann-Whitney U is not
explicitly calculated here...

Kruskal-Wallis One-Way Analysis of Variance for 55 cases
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R Prototype:

COMMANDS

> X=read.table(" c:/2007BiostatsData/Rosner Ex 9.17 Cooked.txt")

> X

> attach(X)

> wilcox.test(Dominant,SexLinked,paired=F,mu=0,alternative=" two.sded" )

Wilcoxon rank sum test with continuity corr ection

data: Dominant and SexLinked
W = 154, p-value = 9.62e-06
alternative hypothesis: truelocation shift isnot equal to 0

Warning message:
cannot compute exact p-value with tiesin: wilcox.test.default(Dominant, SexLinked,
paired=F, mu=0,

" according to the documentation for wilcox.test() explicit calculation of the test statistic
W ismade if the samples contain lessthan 50 values and there are no ties.

Results show asmall (but not the same) P value as expected, and statistic W doesn't
match! See R's documentation about this... and below

W= 154 <W from R & SYSTAT'sMann-Whitney U above

np- (nl + 1) < correction factor indicated in documentation

cf : cf =325
2

W + cf =479 RS; = 479 <W + cf isthesameasour RS,



Assignment for Week 9
Today there will be no formal assignment. Enjoy your week off!
On Tuesday after the break, however, there will be an
unannounced-pop-take-home quiz

covering all material you might expect to see on the second exam the following week.
So, if you have alittle time, take alook at the parametric and non-parametric tests. A
good way to be sure you can work exam problemsisto set yourself the task of
performing an analysis by hand. Given the datain Quiz 4, or anything similar, you
should be able to distinguish the tests and perform the following:

- one sample t-test of mean

- paired t-test of mean

- two-sampl e t-test of mean on populations with equal variances

- two-sample t-test of mean on populations with unequal variances
- F test for equal variances in two populations

- estimate power and sample size in both single population and two population
tests

- one sample test of parameter p (probability of “heads’) in a binomial population
using the Normal Approximation

- Sign test for paired non-Normal populations design

For the following tests, devise a simple contingency chart and seeif you can perform:
- Wilcoxon signed-rank test for paired non-Normal populations design
- Wilcoxon Rank-sum = Mann-Wittney Test for mean of two populations
- 2X2 Contingency test
- McNemar’s Test for Paired data
- Chi-sguare Test for Association in RXC Contingency Tables
- Chi-sguare Goodness of Fit test

For all of the above tests, be sure you can state clearly all of the formal structure of
each test such as Assumptions, Model, Hypotheses, Criterion for Nor mal
Approximation, Decision Rule, and Result.



binom.test { stats} R Documentation

Exact Binomial Test
Description

Performs an exact test of asimple null hypothesis about the probability of successin a
Bernoulli experiment.

Usage

binom.test(x, n, p = 0.5,
alternative = c("two.sided", "less'", ''greater'),
conf._level = 0.95)

Arguments

X number of successes, or avector of length 2 giving the numbers of
successes and failures, respectively.

n number of trials; ignored if x has length 2.

P hypothesized probability of success.

alternative jndjcates the aternative hypothesis and must be one of "'two.sided",
"greater" Or "less". You can specify just theinitial letter.

conf.level confidencelevel for the returned confidence interval.

Details

Confidence intervals are obtained by a procedure first given in Clopper and Pearson
(1934). This guarantees that the confidence level is at least conf. level, but in general
does not give the shortest-length confidence intervals.

Value

A list with class ""htest" containing the following components:

statistic  the number of successes.

parameter  the number of trials.

p.value the p-value of the test.

conf.int  gconfidence interval for the probability of success.
estimate  the estimated probability of success.

null.value the probability of success under the null, p.



alternative gcharacter string describing the alternative hypothesis.
method the character string "Exact binomial test".
data.name g character string giving the names of the data.

References

Clopper, C. J. & Pearson, E. S. (1934). The use of confidence or fiducia limitsillustrated
in the case of the binomial. Biometrika, 26, 404-413.

William J. Conover (1971), Practical nonparametric statistics. New Y ork: John Wiley &
Sons. Pages 97-104.

Myles Hollander & Douglas A. Wolfe (1973), Nonparametric statistical inference. New
Y ork: John Wiley & Sons. Pages 15-22.

See Also
prop.test for ageneral (approximate) test for equal or given proportions.

Examples

## Conover (1971), p. 97F.

## Under (the assumption of) simple Mendelian inheritance, a cross

## between plants of two particular genotypes produces progeny 1/4 of
## which are "dwarf" and 3/4 of which are "giant", respectively.

## In an experiment to determine if this assumption is reasonable, a
## cross results in progeny having 243 dwarf and 682 giant plants.
## IFf "giant™ is taken as success, the null hypothesis is that p =
## 3/4 and the alternative that p '= 3/4.

binom.test(c(682, 243), p = 3/4)

binom.test(682, 682 + 243, p = 3/4) # The same.

## => Data are iIn agreement with the null hypothesis.



wilcox.test { stats} R Documentation

Wilcoxon Rank Sum and Signed Rank Tests

Description

Performs one and two sample Wilcoxon tests on vectors of data; the latter is also known
as‘Mann-Whitney’ test.

Usage
wilcox.test(x, ...)

## Default S3 method:

wilcox.test(x, y = NULL,
alternative = c(""two.sided", "less', ''greater'),
mu = 0, paired = FALSE, exact = NULL, correct = TRUE,
conf_int = FALSE, conf_.level = 0.95, ...)

## S3 method for class "formula“:
wilcox.test(formula, data, subset, na.action, ...)

Arguments

X numeric vector of data values. Non-finite (e.g. infinite or missing) values
will be omitted.

y an optional numeric vector of data values.

alternative gcharacter string specifying the alternative hypothesis, must be one of
"two.sided" (default), ""greater™ or "less". Y ou can specify just the

initial letter.
mu anumber specifying an optional parameter used to form the null
hypothesis. See Details.
paired alogical indicating whether you want a paired test.
exact alogical indicating whether an exact p-value should be computed.
correct alogical indicating whether to apply continuity correction in the normal

approximation for the p-value.
conf.int  a|ogical indicating whether a confidence interval should be computed.
conf.level confidencelevel of theinterval.

formula aformulaof theform Ihs ~ rhs where Ihs isanumeric variable giving
the data values and rhs afactor with two levels giving the corresponding
groups.

data an optional matrix or data frame (or similar: see model . frame) containing



the variablesin the formula formula. By default the variables are taken
from environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action  gfunction which indicates what should happen when the data contain NAS.
Defaultsto getOption(*'na.action™).

further arguments to be passed to or from methods.

Details
The formulainterface is only applicable for the 2-sample tests.

If only x isgiven, or if both x and y are given and paired is TRUE, a Wilcoxon signed
rank test of the null that the distribution of x (in the one sample case) or of x - y (inthe
paired two sample case) is symmetric about mu is performed.

Otherwise, if both x and y are given and paired is FALSE, a Wilcoxon rank sum test
(equivalent to the Mann-Whitney test: see the Note) is carried out. In this case, the null
hypothesisis that the distributions of x and y differ by alocation shift of mu and the
aternative isthat they differ by some other location shift (and the one-sided alternative
"greater" isthat x is shifted to the right of y).

By default (if exact isnot specified), an exact p-value is computed if the samples contain
less than 50 finite values and there are no ties. Otherwise, anormal approximation is
used.

Optionally (if argument conf_int istrue), a nonparametric confidence interval and an
estimator for the pseudomedian (one-sample case) or for the difference of the location
parameters x-y is computed. (The pseudomedian of a distribution F is the median of the
distribution of (u+v)/2, where u and v are independent, each with distribution F. If F is
symmetric, then the pseudomedian and median coincide. See Hollander & Wolfe (1973),
page 34.) If exact p-values are available, an exact confidence interval is obtained by the
algorithm described in Bauer (1972), and the Hodges-L ehmann estimator is employed.
Otherwise, the returned confidence interval and point estimate are based on normal
approximations.

With small samplesit may not be possible to achieve very high confidence interval
coverages. If this happens a warning will be given and an interval with lower coverage
will be substituted.

Value

A list with class "htest" containing the following components:

statistic thevalue of the test statistic with a name describing it.



parameter  the parameter(s) for the exact distribution of the test statistic.
p.value the p-value for the test.

null.value the|ocation parameter mu.

alternative gcharacter string describing the alternative hypothesis.
method the type of test applied.

data.name g character string giving the names of the data.

conf.int a confidence interval for the location parameter. (Only present if argument
conf.int = TRUE.)

estimate  gn estimate of the location parameter. (Only present if argument conf. int
= TRUE.)

Warning

This function can use large amounts of memory and stack (and even crash R if the stack
limit is exceeded) if exact = TRUE and one sampleislarge (several thousands or more).

Note

The literature is not unanimous about the definitions of the Wilcoxon rank sum and
Mann-Whitney tests. The two most common definitions correspond to the sum of the
ranks of the first sample with the minimum value subtracted or not: R subtractsand S
PLUS does not, giving avaue which islarger by m(m+1)/2 for afirst sample of sizem.
(It seems Wilcoxon's original paper used the unadjusted sum of the ranks but subsequent
tables subtracted the minimum.)

R's value can also be computed as the number of al pairs (x[i], y[i]1) for whichy[j]
isnot greater than x[i], the most common definition of the Mann-Whitney test.

References

David F. Bauer (1972), Constructing confidence sets using rank statistics. Journal of the
American Statistical Association 67, 687—690.

Myles Hollander & Douglas A. Wolfe (1973), Nonparametric statistical inference. New
Y ork: John Wiley & Sons. Pages 27-33 (one-sample), 68—75 (two-sample).
Or second edition (1999).

See Also

psignrank, pwi lcox.

wi lcox.exact in exactRank Tests covers much of the same ground, but also produces
exact p-valuesin the presence of ties.




wi lcox_test in package coin for exact and approximate conditional p-values for the
Wilcoxon tests.

kruskal . test for testing homogeneity in location parameters in the case of two or more
samples; t. test for an aternative under normality assumptions [or large samples]

Examples

## One-sample test.

## Hollander & Wolfe (1973), 29F.

## Hamilton depression scale factor measurements iIn 9 patients with
## mixed anxiety and depression, taken at the first (x) and second
## (y) visit after initiation of a therapy (administration of a
## tranquilizer).

X <- c¢(1.83, 0.50, 1.62, 2.48, 1.68, 1.88, 1.55, 3.06, 1.30)

y <- ¢(0.878, 0.647, 0.598, 2.05, 1.06, 1.29, 1.06, 3.14, 1.29)

wilcox.test(x, y, paired = TRUE, alternative = "greater')
wilcox.test(y - x, alternative = "less™) # The same.
wilcox.test(y - x, alternative = "less",

exact = FALSE, correct = FALSE) # H&W large sample
# approximation

## Two-sample test.
## Hollander & Wolfe (1973), 69fF.
## Permeability constants of the human chorioamnion (a placental
## membrane) at term (x) and between 12 to 26 weeks gestational
## age (y)-. The alternative of interest is greater permeability
## of the human chorioamnion for the term pregnancy.
X <- c¢(0.80, 0.83, 1.89, 1.04, 1.45, 1.38, 1.91, 1.64, 0.73, 1.46)
y <- c(1.15, 0.88, 0.90, 0.74, 1.21)
wilcox.test(x, y, alternative = "g"") # greater
wilcox.test(x, y, alternative = ''greater",

exact = FALSE, correct = FALSE) # H&W large sample

# approximation

wi lcox.test(rnorm(10), rnorm(10, 2), conf.int = TRUE)

## Formula interface.

boxplot(Ozone ~ Month, data = airquality)

wi lcox.test(0Ozone ~ Month, data = airquality,
subset = Month %in% c(5, 8))



chisg.test { stats} R Documentation

Pearson's Chi-squared Test for Count Data
Description
chisq.test performs chi-squared contingency table tests and goodness-of -fit tests.

Usage

chisqg.-test(x, y = NULL, correct = TRUE,
p = rep(1/length(x), length(x)), rescale.p = FALSE,
simulate.p.value = FALSE, B = 2000)

Arguments

X avector or matrix.

y avector; ignored if x isamatrix.

correct alogical indicating whether to apply continuity correction when
computing the test statistic for 2x2 tables. one half is subtracted
from all |O-E| differences. No correction is done if
simulate_p.value = TRUE.

p avector of probabilities of the same length of x. An error isgiven if
any entry of p is negative.

rescale.p alogical scalar; if TRUE then p isrescaled (if necessary) to sum to
1. If rescale.p isFALSE, and p doesnot sumto 1, an error is
given.

simulate.p.value glogical indicating whether to compute p-values by Monte Carlo
simulation.

B an integer specifying the number of replicates used in the Monte
Carlo test.

Details

If x isamatrix with one row or column, or if x isavector and y is not given, then a
“goodness-of -fit test” is performed (“x is treated as a one-dimensional contingency
table”). The entries of x must be non-negative integers. In this case, the hypothesis tested
iswhether the population probabilities equal thosein p, or are all equal if p isnot given.

If x isamatrix with at least two rows and columns, it is taken as a two-dimensional
contingency table. Again, the entries of x must be non-negative integers. Otherwise, x
and y must be vectors or factors of the same length; incomplete cases are removed, the



objects are coerced into factor objects, and the contingency table is computed from these.
Then, Pearson's chi-squared test of the null hypothesis that the joint distribution of the
cell countsin a2-dimensional contingency table is the product of the row and column
marginalsis performed.

If simulate.p.value iSFALSE, the p-value is computed from the asymptotic chi-squared
distribution of the test statistic; continuity correction is only used in the 2-by-2 case (if
correct iS TRUE, the default). Otherwise the p-value is computed for a Monte Carlo test
(Hope, 1968) with B replicates.

In the contingency table case simulation is done by random sampling from the set of all
contingency tables with given marginals, and works only if the marginals are strictly
positive. (A C trandation of the algorithm of Patefield (1981) is used.) Continuity
correction is never used, and the statistic is quoted without it. Note that thisis not the
usual sampling situation for the chi-squared test but rather that for Fisher's exact test.

In the goodness-of-fit case simulation is done by random sampling from the discrete
distribution specified by p, each sample being of sizen = sum(x). Thissimulation is
donein R and may be slow.

Value

A list with class "htest" containing the following components:

statistic the value the chi-squared test statistic.

parameter the degrees of freedom of the approximate chi-squared distribution of the test
statistic, NA if the p-value is computed by Monte Carlo simulation.

p.value the p-vauefor the test.

method a character string indicating the type of test performed, and whether Monte
Carlo simulation or continuity correction was used.

data.name g character string giving the name(s) of the data.

observed the observed counts.

expected the expected counts under the null hypothesis.

residuals the Pearson residuals, (observed - expected) / sqrt(expected).

References

Hope, A. C. A. (1968) A simplified Monte Carlo significance test procedure. J. Roy,
Satist. Soc. B 30, 582-598.

Patefield, W. M. (1981) Algorithm AS159. An efficient method of generating r x c tables
with given row and column totals. Applied Satistics 30, 91-97.



Examples

## Not really a good example
chisqg.test(InsectSprays$count > 7, InsectSprays$spray)

# Prints test summary
chisqg.test(InsectSprays$count > 7, InsectSprays$spray)$obs

# Counts observed
chisqg.test(InsectSprays$count > 7, InsectSprays$spray)$exp

# Counts expected under the null

## Effect of simulating p-values

X <- matrix(c(12, 5, 7, 7), nc = 2)

chisqg.test(X)$p.-value # 0.4233

chisqg.test(x, simulate.p.value = TRUE, B = 10000)$p.value
# around 0.29!

## Testing for population probabilities
## Case A. Tabulated data

X <- c(A =20, B =15, C = 25)
chisqg.test(x)

chisqg.test(as.-table(x)) # the same
X <- ¢(89,37,30,28,2)

p <- c¢(40,20,20,15,5)

try(
chisqg.test(x, p

p) # gives an error

chisq.test(x, p = p, rescale.p = TRUE)
# works
p <- ¢(0.40,0.20,0.20,0.19,0.01)
# Expected count in category 5
# 1s 1.86 < 5 ==> chi square approx.
p) # maybe doubtful, but is

chisqg.test(x, p
ok!
chisqg.test(x, p = p,simulate.p.value = TRUE)

## Case B. Raw data
X <- trunc(5 * runif(100))
chisqg.test(table(x)) # NOT "chisg.-test(x)"!



mcnemar.test { stats} R Documentation

McNemar's Chi-squared Test for Count Data

Description

Performs McNemar's chi-squared test for symmetry of rows and columnsin atwo-
dimensional contingency table.

Usage

mcnemar .test(x, y = NULL, correct = TRUE)
Arguments

X either atwo-dimensional contingency table in matrix form, or afactor object.
y afactor object; ignored if x isamatrix.

correct g|ogical indicating whether to apply continuity correction when computing the
test statistic

Details

The null isthat the probabilities of being classified into cells[i,j] and [j,i] arethe
same.

If x isamatrix, it istaken as atwo-dimensional contingency table, and hence its entries
should be nonnegative integers. Otherwise, both x and y must be vectors of the same
length. Incomplete cases are removed, the vectors are coerced into factor objects, and the
contingency table is computed from these.

Continuity correction isonly used in the 2-by-2 caseif correct iS TRUE.

Value

A list with class "htest" containing the following components:

statistic the value of McNemar's statistic.

parameter the degrees of freedom of the approximate chi-sguared distribution of the test
statistic.

p.value the p-vaue of the test.

method  acharacter strina indicating the tvpe of test performed. and whether



continuity correction was used.
data.name g character string giving the name(s) of the data.

References

Alan Agresti (1990). Categorical data analysis. New Y ork: Wiley. Pages 350-354.

Examples

## Agresti (1990), p. 350.

## Presidential Approval Ratings.

## Approval of the President"s performance in office in two surveys,
## one month apart, for a random sample of 1600 voting-age Americans.
Performance <-

matrix(c(794, 86, 150, 570),

nr = 2,
dimnames = list("1lst Survey" = c("Approve', "Disapprove™),
"2nd Survey" = c(“Approve’, "‘Disapprove™)))
Performance

mcnemar . test(Performance)
## => significant change (in fact, drop) in approval ratings



fisher.test { stats} R Documentation

Fisher's Exact Test for Count Data

Description

Performs Fisher's exact test for testing the null of independence of rows and columnsin a
contingency table with fixed marginals.

Usage

fisher.test(x, y = NULL, workspace = 200000, hybrid = FALSE,
control = list(), or = 1, alternative = "two.sided",
conf.int = TRUE, conf.level = 0.95,
simulate.p.value = FALSE, B = 2000)

Arguments

X either atwo-dimensional contingency table in matrix form, or a
factor object.

y afactor object; ignored if x isamatrix.

workspace an integer specifying the size of the workspace used in the network
algorithm. In units of 4 bytes. Only used for non-simulated p-values
larger than 2 by 2 tables.

hybrid alogical. Only used for larger than 2 by 2 tables, in which casesiit

indicated whether the exact probabilities (default) or a hybrid
approximation thereof should be computed. See Details.

control alist with named components for low level agorithm control. At
present the only one used is "mult', apositive integer >= 2 with
default 30 used only for larger than 2 by 2 tables. This says how
many times as much space should be allocated to paths asto keys:
seefile’ fexact.c’ in the sources of this package.

or the hypothesized odds ratio. Only used in the 2 by 2 case.

alternative indicates the alternative hypothesis and must be one of
"two.sided", "'greater or "less". You can specify just theinitial
letter. Only used in the 2 by 2 case.

conf.int logical indicating if a confidence interval should be computed (and
returned).
conf.level confidence level for the returned confidence interval. Only used in

the 2 by 2 case if conf.int = TRUE.
simulate.p.value g|oqical indicatina whether to compute p-values by Monte Carlo



simulation, in larger than 2 by 2 tables.

B an integer specifying the number of replicates used in the Monte
Carlo test.

Details

If x isamatrix, it istaken as atwo-dimensional contingency table, and hence its entries
should be nonnegative integers. Otherwise, both x and y must be vectors of the same
length. Incomplete cases are removed, the vectors are coerced into factor objects, and the
contingency table is computed from these.

For 2 by 2 cases, p-values are obtained directly using the (central or non-central)
hypergeometric distribution. Otherwise, computations are based on a C version of the
FORTRAN subroutine FEXACT which implements the network devel oped by Mehta and
Patel (1986) and improved by Clarkson, Fan and Joe (1993). The FORTRAN code can be
obtained from http://www.netlib.org/toms/643. Note this fails (with an error message)
when the entries of the table are too large. (It transposes the table if necessary so it has no
more rows than columns. One constraint is that the product of the row marginals be less
than 2731 - 1))

For 2 by 2 tables, the null of conditional independence is equivalent to the hypothesis that
the odds ratio equals one. * Exact’ inference can be based on observing that in general,
given all marginal totals fixed, the first element of the contingency table has a non-central
hypergeometric distribution with non-centrality parameter given by the odds ratio
(Fisher, 1935). The alternative for a one-sided test is based on the odds ratio, so
alternative = "greater” isatest of the odds ratio being bigger than or.

Two-sided tests are based on the probabilities of the tables, and take as * more extreme’
all tables with probabilities less than or equal to that of the observed table, the p-value
being the sum of such probabilities.

For larger than 2 by 2 tablesand hybrid = TRUE, asymptotic chi-squared probabilities
areonly used if the “ Cochran conditions’ are satisfied, that isif no cell has count zero,
and more than 80% of the cells have counts at least 5.

Simulation is done conditional on the row and column marginals, and works only if the
marginals are strictly positive. (A C tranglation of the algorithm of Patefield (1981) is
used.)

Value

A list with class "htest" containing the following components:

p.value the p-value of the test.
conf.int aconfidence interval for the odds ratio. Onlv present in the 2 by 2 case if



argument conf.int = TRUE.

estimate an estimate of the odds ratio. Note that the conditional Maximum
Likelihood Estimate (MLE) rather than the unconditional MLE (the
sample odds ratio) is used. Only present in the 2 by 2 case.

null.value the odds ratio under the null, or. Only present in the 2 by 2 case.
alternative gcharacter string describing the alternative hypothesis.

method the character string ""Fisher"s Exact Test for Count Data'.
data.name g character string giving the names of the data.

References
Agresti, A. (1990) Categorical data analysis. New Y ork: Wiley. Pages 59-66.

Fisher, R. A. (1935) Thelogic of inductive inference. Journal of the Royal Statistical
Society Series A 98, 39-54.

Fisher, R. A. (1962) Confidence limits for a cross-product ratio. Australian Journal of
Satistics 4, 41.

Fisher, R. A. (1970) Satistical Methods for Research Workers. Oliver & Boyd.

Mehta, C. R. and Patel, N. R. (1986) Algorithm 643. FEXACT: A Fortran subroutine for
Fisher's exact test on unordered r* c contingency tables. ACM Transactions on
Mathematical Software, 12, 154-161.

Clarkson, D. B., Fan, Y. and Joe, H. (1993) A Remark on Algorithm 643: FEXACT: An
Algorithm for Performing Fisher's Exact Test inr x ¢ Contingency Tables. ACM
Transactions on Mathematical Software, 19, 484-438.

Patefield, W. M. (1981) Algorithm AS159. An efficient method of generating r x c tables
with given row and column totals. Applied Satistics 30, 91-97.

See Also

chisqg.test

Examples

## Agresti (1990), p. 61F, Fisher®"s Tea Drinker

## A British woman claimed to be able to distinguish whether milk or
## tea was added to the cup first. To test, she was given 8 cups of
## tea, in four of which milk was added first. The null hypothesis
## 1s that there is no association between the true order of pouring
## and the woman®"s guess, the alternative that there is a positive
## association (that the odds ratio is greater than 1).



TeaTasting <-
matrix(c(3, 1, 1, 3),
nr = 2,
dimnames = list(Guess c(C'Milk™, “Tea™),
Truth = c("Milk™, "Tea™)))
fisher.test(TeaTasting, alternative = "greater')
## => p=0.2429, association could not be established

## Fisher (1962, 1970), Criminal convictions of like-sex twins
Convictions <-
matrix(c(2, 10, 15, 3),

nr = 2,

dimnames =

list(c('Dizygotic™, "Monozygotic'),

c("Convicted", "Not convicted™)))

Convictions
fisher.test(Convictions, alternative = "less")
fisher_test(Convictions, conf.int = FALSE)
fisher_test(Convictions, conf.level 0.95)%conf.int
fisher.test(Convictions, conf.level 0.99)$conf.int

## A r x c table Agresti (2002, p. 57) Job Satisfaction

Job <- matrix(c(1,2,1,0, 3,3,6,1, 10,10,14,9, 6,7,12,11), 4, 4,

dimnames = list(income=c("'< 15k", "15-25k", "'25-40k', "> 40k"™),
satisfaction=c("'VeryD", "LittleD", "ModerateS",

"VeryS™)))

fisher.test(Job)

fisher_test(Job, simulate=TRUE, B=1e5)
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ORIGIN = 0 _
2 X 2 Contingency Tests

Contingency tests consider data from categorical (also called nominal) variables - variablesin
which observations may be placed in classes, but the classes themselves need not havenumerical
or ordinal sgnificance. When comparing two categorical variablesit iscusomary to congtruct a
contingency table showing which observationsmay besimultaneously classfied according to
the classes. From the contingency table, tests of association (or alternatively tests of
independence) may be performed. Herewe look at the 2X2 casein which there are only 2
classesfor each of two variables.

Assumptions:

- Observed values X, X,, X, ... X, arearandom sample

Observed values Y, Y,, Y, ... Y ,.arearandom sample. Contingency Table

M odel: 1,1 1,2 =1
Let Probabilities - P, = P(X=i)
- PJ = P(Y:J) 2,1 2,2 xX=2
-P; = (X=i, Y5)
1 v=1 v=2 Grand
Hypotheses: Total
Ho Pij = (Pi)(Pj) < Thatis, variables X & Y areindependent!
Hy: Py <> (P)(P) <Two sided test

Criterion for Normal Approximation:
- IF expected valuesin each cell Ejj > 5 THEN Nor mal Approximation may be used
OTHERWISE use Exact Test e.g., Fisher's Exact Test

Normal Approximation:
Construct Contingency Tables of Observed and Expected in each cell:

- Tabulate Oy; for each cell Contingency Table __Row Totals

- Calculate Observed Row and Column Totals
- Calculate Expected for each cell O11 | Er2 f Oraf Erz | Ri=2xa
Ri- G
Ejj == ? Oz1 | E22 O21 ] Ezp Rz = Zx=2
Test Statistic (Yates Corrected): Ci=%y4 | Co=2v, | Srorzc
1\2 Column Totals Grand Total
9.~ & =3

; Ll 2)
Xw:=z E
(i, )) '

Critical Valueof the Test:
o = 0.05 < Probability of Typel error must be explicitly set

CV = inverseysf(l - o)  df =1  CV:= qohisq(1 — a,df)

Decision Rule:

IF qu >CV THEN REJECT H,
OTHERWISE ACCEPT H,,



2007 Biostatistics 34 2X2 Test of Association

Probability Value:

P:= (1 - ®yg(Xsg)) P:= (1 - pchisq(Xsq.df )
Example:
Breast Cancer Example Rosner Ex 10.13, p. 397
Obser ved: i=0.1 j:=0.1 = [683 2537
1498 8747)

RO = OO,O + OO,l RO = 3220
R1=010%011 R, = 10245 Obser ved Contingency T able:
GT = R0 + R1 GT = 13465 ) ( 683 2537\ . ( 3220 \
Co= O 0% % c, - 2181 - 1498 8747) - \10245)
Cl = OO,l + Ol,l Cl = 11284 C-r = (2181 11284) GT = 13465

"N Vector/Matrix Trangposefunction
_ C,+ C, = 13465
Assumptions:
- Observed values X, X,, X, ... X, arearandom sample
Observed values Y, Y,, Y, ... Y ,.arearandom sample.

Model: | ¢ pr gpabilities - P, = P(X=)
- P, = P(X=i)
- P, = (X=i, Y=))
Expected:
Ry Co Ry C;
E. .:= E .= Expected Contingency Table
0.0° @Gt 0.1° @Gt
R %o Ri-Cy 5215611 2698.4389 )
E, .= E, ,:= E=
1.0° @t 1L1° Gt 1659.4389 8585.5611 )
A confirmed p. 395
Hypotheses:
Ho Pij = (Pi)(Pj) < Thatis, variables X & Y areindependent!
Hy: Py <> (P)(P) <Two sided test

Criterion for Normal Approximation:
- IF expected valuesin each cell Ejj > 5 THEN Normal Approximation may be used
OTHERWISE use Exact Test e.g., Fisher's Exact Test

All E, jz 5thusdata qualifiesfor thisapproximation...
Test Statistic (Yates Corrected):
2
Uo. - E | 1)
)

Lil
2) XsgBLOCK = (

Calculation for Each Cell:

49.6612 9.5986)
15.6085 3.0168 )

XsgBLOCK. . :=
5 i Ei j
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Sum:

(@ (v

Xgg:= D XsgBLOCK™ + " XsqBLOCK Xgq = 77.8851 < confirmed p. 398

Critical Valueof the Test:

a = 0.01 < Probability of Typel error must be explicitly set
df =1  CV:= qchisg(l - o, df) CV = 66349 < confirmed p. 398
Decision Rule:

IF Xg >CV THENREJECT H, OTHERWISE ACCEPT H,

CV = 6.6349 Xsg = 77.8851
Probability Value:

P:=(1- pchisq(xsq,df)) P=0 < Rosner'svery small value more-or-less confirmed

Alternate Calculation of Test Statistic using Deter minant:

See Rosner p. 399:

n:=GT
a:=0q g ¢=0p
b:= OO,l d:= Ol,l
CE en)’ . | |
XS 2 ) |O| = 2.1738x 10° < determinant of matrix O

- [(a+Db)-(c+d)-(a+c):(b+d)]

Xgg = 77.8851 < from above
Xs= 77.8851 < here
R Prototype:
COMMANDS
> X=matrix(c(683,2537,1498,8747),nrow=2,byrow=T) < note here how to construct
> X a smple contingency table of
> chisg.test(X,correct=T) observations...

A turnsYates correction 'on'

Pearson's Chi-squared test with Yates' continuity
cor rection

data; X
X-gquared = 77.8851, df = 1, p-value < 2.2e-16

N Ted Statistic, df & Probability confirmed!
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Same Exampleworked as a Binomial Test of two populations:

Rosner p 387-388. Observed Contingency T able:

Model: o ( 683 2537) o ( 3220 )
Two Binomial populations with: 1498 8747) 10245 )

p, = P(X=0, Y=0) -

p, = P(X=1, Y=0) C = (2181 11284) GT = 13465

N Vector/Matrix Transposefunction

Hypotheses:
Ho P1 =P, < parameter p isthe samein the two populaitons
Hy Py <>p, < Two sided test
Point Estimate of p for each population:
@) @)
Plhat = 20 plhg = 0.2121 P2hat = _L0 P2hat = 0.1462
RO Rl
Pooled estimateof p & Q:
(0 (0 _
ZO ZO =218 < qum of 1¢t column of O
Phat == Phat = 0.162
R ZR:13465 <sumof R

Ohat == 1 — Phat Qhat = 0.838
Normal Theory Approximation:

Ted isvalid if N, - Plhat - Alhat 2 5 and N, P2hat - A2hat = 5

n:=R
No " Phat - Ghat = 437.081 N, - Phat - Ghat = 1390.6505 < Normal approximation OK
Test Statistic Z:
1
|Phat — P2het| - T )
T 1) Z = 88253
Phat “Ghat - | — + —

o M)

Critical Valuesof the Test:
o= 0.05 < probability of Typel error must be explicitly set

cV = qnorm(l - %,0,1\ CV =196

)

Decision Rule;
IF [Z| >CV THEN REJECT H,OTHERWISE ACCEPT H,

CV =19 Z - 88253
Probability Valuefor z:
P:=2-(1-pnorm(Z,0,1)) P=0
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ORIGIN = 0
McNemar's Test for Paired Data

Thistest employsa 2X2 contingency tablein which pairs of obser vations such asin treatments or
"before' versus" after" observations are exactly paired for individuals within a ssudy. Analogy
with the paired t-ted situation is evident here, although her eeach variable involves categorical
(nominal) data classes.

Paired Conting_]ency Table

Discordant

Assumptions:
- Paired exactly matched obser vations are made. Concordant § ' o A X=1

-X & Y refer to paired dependent observations

Discordant Concordant X=2
Type B
M odd!: - - o

Total
Interpret diagonal cells of paired observationsas

- concor dant - in agr eement in result between X & Y
- discordant - not in agreement in result in two types

- Type A (+,-) and Type B (-,+) definition arbitrary
- Let p bethe pr obability of the Type A discordant result

Hypotheses:

Ho-p =12 < Discordant Type A and Type B resultsar eequally probable
Thereisno differ ence between treatments or between " before' and " after”

Hip<>12 <Twosided test
Criterion for Normal Approximation:
- IF number of discordant pairs np > 20 THEN Approximation may be used
OTHERWISE use Exact Test
Construct Contingency Tables of Concordant and Discordant cells:
- Tabulatepaired Oy for each cell
- Calculatenp = total number of discor dant pairs
- Calculaten, =number of Type A discordant pairs

Normal Approximation:
Test Statistic (Corrected):

( p| 1)

npo-—|-— B 1 2

Xsg = 2 2) also calculated by: Xgq = (|nA nB| )
nD\ na + N
&

Critical Valueof the Test:
o = 0.05 < Probability of Typel error must be explicitly set
CV = inverseysfl - o)  df =1  CV:= qohisq(1 — a,df)

Decision Rule:

IF qu >CV THEN REJECT H,
OTHERWISE ACCEPT H,,

Probability Value:

P:= (1 - ®yg(Xsg)) P:= (1 - pehisg(Xsq, df ))
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Example:
Cancer Example Rosner Ex 10.24, p. 411-412

Assumptions:

- Paired exactly matched obser vations are made.
- X & Y refer to paired dependent observations

M odd!:

Interpret diagonal cells of paired observationsas
- concordant - in agr eement in result between X & Y
- discordant - not in agreement in result in two types:
- Type A (+,-) and Type B (-,+) definition arbitrary
- Let p bethe pr obability of the Type A discordant result

510 16
Obser ved: i=0.1 j=0.1 o::[ c 90)
np = 0) o+ 0 4 np = 21
na = 01,0 na=5
ng = OO,l ng = 16 np — np = 16
Hypotheses:

Ho-p =12 < Discordant Type A and Type B resultsar eequally probable
Thereisnodiffer ence between treatments or between " before" and " after”

Hi:p<>12 <Twosided test
Criterion for Normal Approximation:

- IF number of discordant pairs np > 20 THEN Approximation may be used
OTHERWISE use Exact Test

np = 21 < Normal Approximation isappr opriate
Normal Approximation:

Test Statistic (Corrected):
also calculated by:

( ol 1)
np-—|-— 2
npo-ng|l -1
qu = 2 2) qu = 4.7619 Xsg = (| A B| ) Xsg = 4.7619
(nD\ na + N
4 ) A confirmed p. 412

Critical Valueof the Test:
o = 0.05 < Probability of Typel error must be explicitly set

df =1  CV:= qchisg(1 - o, df) CV = 3.8415 < confirmed p. 412
Decision Rule:
IF Xg >CV THEN REJECT H,OTHERWISE ACCEPT H,

Xgy = 4.7619 CV = 3.8415

Probability Value:

P:= (1 - pchisg(Xgy.df )) P=0.0291 < confirmed p. 412
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R Prototype:

COMMANDS

> X=matrix(c(510,16,5,90),nrow=2,byrow=T)
> X

> mcnemar.test(X,cor rect=T)

McNemar's Chi-squared test with continuity correction

data: X
McNemar's chi-squared = 4.7619, df = 1, p-value = 0.02910

N qu, df and P values confirmed
Exact Test:
Probability Values:

IF n, <ngp/2:
n n
P=2. ZA Combin(nD k)- i\\ ’
b 2)
k=0
IF n, >ng/2:
n n
P=2. ZD combin(nD k)~ 1\ ’
9 2)
k= Na
IF n, =ng/2:
P=1
Example:
Rosner Ex. 10.25 p. 413-414
37
Obser ved: i=0.1 j:=0.1 O:= )
19)
np := Ol,O+OO,1 np=38
np := Ol,O na=1
nB:zoojl ng=7 np—-na=7

Criterion for Normal Approximation:

- IF number of discordant pairs np > 20 THEN Approximation may be used

OTHERWISE use Exact Test

np=28 <Normal ApproximationisNOT appropriate - Exact Method must be used

Exact Test Probability: n, <ngy/2:

Na \\nD

, 1
Pi=2. Z combin(np, k) - (2) P = 0.0703 < confirmed p. 414

k=0
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R Prototype:

COMMANDS

> X=matrix(c(3,7,1,9),nrow=2,byrow=T)
> X

> mcnemar.test(X)

McNemar's Chi-squared test with continuity correction

data; X
McNemar's chi-squared = 3.125, df = 1, p-value = 0.0771

N Apparently not donethe Exact way, but P result is close.



2007 Biostatistics 36 RXC Contingency Tables

ORIGIN = 0 o _
x2 Test for Association in RXC Contingency Tables

Thistest employsa RXC contingency table consisting of R rowsand C Columnsand isthus
an extension of the 2X2 case discussed previoudy.

Assumptions:
RXC Contingency Table
- Obser ved values X;; are -
arandom sample O11 | O12 | Ous 0y
- Obser ved values for (o7 0, O3 0y,
Rows and Columns
are independent. Oss O3> Os3 Os; | Row Totals
Model:
Let Probabilities
~Pi=P(R=D) 0 o 0 0
) Pj = P(C=j) i1 i2 i3 i
- Py =P(R=1, C5)) Column Totals Grand Total
Hypotheses:

Ho: Py = (Pi)(Pj) < That is, variablesR & C areindependent!
Hi: Py <>(P)(P) < Twosided test
Criterion for Approximation:

- IF no more than 1/5 of the cells have expected valuesin each block Ejj <5
AND no cell has expected value Ej; < 1 THEN Approximation may be used

Construct Contingency Tables of Observed and Expected in each cell:

- Tabulate O;; for each cell

- Calculate Observed Row and Column Totals
- Calculate Expected for each cdll

Ri- G
1T et
x2 Test Statistic: ,
e P E)
1 ZZ E |
i ’
Critical Valueof the Test:

o = 0.05 < Probability of Typel error must be explicitly set

df =(R-1)-(C-1) <whereR & C arethenumber of Row and Column cellsrespectively

CV = inverseys((1 — o) CV = qohisq(1 — o, df)
Decision Rule:

IF qu >CV THEN REJECT H,
OTHERWISE ACCEPT H,,

Probability Value:

P:= (1 - ®yg(Xsg)) P:= (1 - pehisg(Xsq, df ))
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Example:
Cancer Rosner Example 10.35 p. 430

. Obser ved:
Assumptions: - Coos
- Observed values X ; are 0. [ 30 1206 1011 463 220
arandom sample i=0.R-1j=0.C-1 7" (1422 4432 2893 1092 406 )
- Obser ved valuesfor Calculating Observed sums:
Rows and Columns
are independent T 4
® ' RS := Z(O ) < sumsfor each row
M odd!: o
— j
L et Pr obabilities CS, = ZO < sums for each column
P P(R:f) GT:= ZRS<0> GT = 13465 ch<°> = 13465 < Grand Total
- Pj = P(C=j)
- Py =P(R=i, C=)) Obser ved Table with Sums:
Hypotheses: o_ [ 320 1206 1011 463 220) ms_ [ 3220 )
Hy Py = (P)P) - \1422 4432 2893 1092 406)  \10245)

Hy: Py <> (P)(P) .
CS = (1742 5638 3904 1555 626) GT = 13465

Construct Contingency Tables of Observed and Expected in each cell:
Calculating Expected table:
RS - CS.
I J

E =—-—
' GT

Calculating Expected sums as a check:

0
) < sumsfor each row

T
ERS. = Z(E
ECSJ. = ZE<1> < sumsfor each column

EGT := ZRS<0> EGT = 13465 ZECS<O> - 13465 < Grand Total

Expected Table with Sums.

4165793 13482629 9335967 371.8604 149.7007) 3220
(13254207 4289.7371 2970.4033 11831396 476.2993 ) (10245 )
ECS' = (1742 5638 3904 1555 626) EGT = 13465

v2 Test Statistic:

| 5y
Xa=2 2, E | Xsq = 130.338
i :
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Critical Valueof the Test:
o = 0.05 < Probability of Typel error must be explicitly set

df = (R-1)-(C-1) df =4 <whereR & C arethe number of Row and
Column cellsrespectively
CV = qchisg(1 - o, df) CV = 9.4877

Decision Rule;
IF Xg >CV THEN REJECT H,OTHERWISE ACCEPT H,,

Xgy = 130.338 CV = 94877

Probability Value:
P:= (1 - pchisg(X gy, df )) P=0
Prototypein R:

COMMANDS:
> X=matrix(c(320, 1206, 1011, 463, 220, 1422, 4432, 2893, 1092,406),nr ow=2,byrow=T)
> X

> chisq.test(X)

Pearson's Chi-squared test

data: X
X-gquared = 130.338, df = 4, p-value < 2.2e-16

N Xsq, df & P contirmed
Dataformat:

Prototype in Systat:

Count Row Column

Torun, set the Count Column asa” frequency” under DATA 320 1 1)
Run Crosstabs setting Row as ROW and Column as COL 1206 1 2
1011 1 3
463 1 4
Case frequencies determined by value of variable COUNT. 20 15
Frequencies 1422 2 1
ROW (rows) by COL (colunms) 4430 2 2
2893 2 3
1 2 3 4 5 Tod 1092 2 4
1 30 1206 1011 463 20 30 406 2 5)

2 1422 4432 2893 1092 406 10245

T8 170 o8 004 1555 626 13465

Test statistic Value df Prob

Pearson Chi-square 130.33802 4,00000 0.00000
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ORIGIN =0 .
x2 Test for Goodness of Fit

The RXC Contingency Table approach can be applied to many hypothesesin addition to
independence of variables P, = (Pi)(Pj).

Assumptions: Goodness of Fit Table
- Obser ved values O, are 0, 0, O3 O
arandom samplein g cells Total
M Odd El Ez E3 Ej
Let Expected Probabilities
-P is specified:

-internally specified model
with k parameters estimated
from thesample.

OR

- externally specified model k=0

Hypotheses:
Ho: P; aredistributed according tothemodel
H,: P; differ from the model < Two sided test
Criterion for Approximation:
- IF no more than 1/5 of thecells have expected valuesin each cell Ej<5
AND no cell has expected value Ej < 1 THEN Approximation may be used
Construct Contingency Tables of Observed and Expected in each cell:

- Tabulater for each cdl

- Calculate Observed Row and Column Totals
- Calculate Expected for each cdl:

Ejj := GT - pEj < where: PE; are the expected probabilities of each cell

x2 Test Statistic:

Critical Valueof the Test:
o = 0.05 < Probability of Typel error must be explicitly set

dof =g-k-1 < where: g = the number of cdls,
k = number of parametersof the internally specified model

CV = inverseysq(1 — o) CV := qehisg(1 — o, df)

Decision Rule:

IF qu >CV THEN REJECT H,
OTHERWISE ACCEPT H,,

Probability Value:

P:= (1 - ®yg(Xsg)) P:= (1 - pehisg(Xsq, df ))
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Example:
Testing for Nor mal Digtribution Rosner Example 10.41 p. 441

Assumptions: 57 )
- Obser ved values Oj are 330
arandom samplein g cells 2132
. 4584
Model: 0:= eT:=30
Let Expected Probabilities: 4604
-P; is specified: 2119
-internally specified mode < internally specified 659
with k parameters esimated with par ameter s 251 )
from thesample. X &
OR bar GT = 14736
- externally specified model k=0 K== 2
Hypotheses: g=8
Ho: P are distributed according tothemode
H,: P; differ from the model < Two sided test
Constructing Expected Table:
0 50
Xpar := 80.68 < mean & standard deviation given for sample whose )
frequenciesaretabulated in X. 50 60
s:= 12.00 60 70

Here we can not calculate them directly.
j==0.g-1 70 80
boundary valuesin X > B =

80 90
E.:= GT- (pnorm(B. ., Xpar, S| — pnorm(B. ., Xpqr,s)) < calculating expected based
: ( ( )1 ) ( .0 )) on normal digribution: 90 100
obser ved expected totals GT * prob of each cell 100 110
57 ) 77.8653 110 999
330 547.1493 ) o
2132 126,682 Zoz 14736 x< Test Statistic:
o 4584 E 4283.3488 (O E )2
4604 44785195 | ) E=14736 Xq=Y LV g - 350198
E.
2119 2431.1276 i i
R
659 684.0861 < E verified p.438 verified p. 441
251 ) 107.2213 )
Critical Valueof the Test:
o = 0.05 < Probability of Typel error must be explicitly set
daf =g-k-1 df =5 < where: g = the number of célls,
R 3 k = number of parameters of
CV = qohisq(1 — o, df) CV = 11.0705 internally specified model

Decision Rule;

IF X, >CV THEN REJECT H,OTHERWISE ACCEPT H,
Xsg = 350.198 CV = 11.0705

Probability Value:
P:= (1 - pchisg(Xgy.df )) P=0 < verified p. 441
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Example from Scratch:

Let'stest the ability of MathCad's random number generator to makea Normal Distribution:

W=45 o:=15  X:=morm(1000,1,6)  plot:= histogram(19,X)

150

100 [~ — 1

pl ot<1> ] B
o

0
—20 0 20 40 60 80 100

pl ot<0>

0

38.4154

34.8089

37.9007

30.728

19.7147

45.653

43.1905

53.3464

77.8768

Q|| N[l B W[N] L] O

57.131

[EEY
o

50.7771

[EEN
[EEN

57.9334

[EEY
N

58.7335

[EEY
W

55.095

(=Y
i

29.3353

15| 46.0362

Herel had thehisogram function make 19 cellswith boundar iesin
X shown in thefir s column of variable plot. The second columnin

plot arethe countsof Observed valuesin each cdll.

g:= Iength(plot<1>> g=19 j:=0.g-2 GT:= Zpl
B<1> = pIot<0>

( <0>) < congructing boundary
Bj+1,0:= plot j matrix B
By o= —99999 B, ,:=99999 <tails

Xpar := mean(X)
< internally estimated

s:= \Var(X) parameters
g:= Iength(B<O>) j==0.g-1
Ej = GT- (pnorm(BJ.,l, Xbar,S) - pnorm(Bj’O,Xbar,s))

ZE = 1000

length(E) = 19

< Expected matrix E >

Notice that | chose19 cellsin order to have
no cell with Expected valuelessthan 1...

Even 0, the firg cell violates that assumption...

oV

E=

GT = 1000

0.5109
1.155
3.1858
7.788
16.8742
32.4045
55.1543
83.2052
111.255
131.8527
138.5033
128.9534
106.416
77.8361
50.4607
28.9948
14.7666
6.6654

40179 )

plot

—99999
-4.4211
0.7368
5.8947
11.0526
16.2105
21.3684
26.5263
31.6842
36.8421
42
47.1579
52.3158
57.4737
62.6316
67.7895
72.9474
78.1053
83.2632

44211 2 )
0.7368 4
58947 7
11.0526 2
16.2105 26
21.3684 36
26.5263 77
31.6842 98
36.8421 127
42
47.1579 139
52.3158 118
57.4737 78
62.6316 73
67.7895 45
72,9474 15
78.1053
83.2632
884211 3 )

136

~4.4211)
0.7368
5.8947
11.0526
16.2105
21.3684
26.5263
31.6842
36.8421
42
47.1579
52.3158
57.4737
62.6316
67.7895
72.9474
78.1053
83.2632
99999 )
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So, lumpingthefirst twocells(B, ):

@) .
g:= Iength(plot ) j=0.9-2 m:=0.1 1.6659 \
— 3.1858
Pl ™ Birtm 7.788
Bl o= 799999 16.8742
. 32.4045
And recalculating Expected (E, ):
55.1543
g:= Iength(BL<0>) j==0.g-1 83.2052
E_ == GT- (pnorm(BL_ ,Xbar,s) - pnorm(BL. ,Xbar,s)) 111.255
j i1 i.0 131.8527
138.5033
ZEL = 1000 128.9534
length(E) = 18 1(7)2‘312
Criterion for Approximation: 50.4607
IF no morethan 1/5 of thecdls have 28.9948
expected valuesin each cell Ej <5 14.7666
AND no cell has expected value Ej < 1 6;3654
THEN Approximation may be used. 4'0179 )

3 cellswith expected lessthan 5 so qualifiesfor test...

lumping thefirst two cells

Resizing the Observed:
. (
g=18 j=0.0g-1 OJ. = (plot1>)j+1
5 o O0 = (plot<1>)0 + (plot<1>>1
x< Test Statistic:
g=18 j==0.g-1
2
)
J j length(O) = 18
Xgg = —_— Xgg = 58.7119
= Z EL. =
j i
Critical Valueof the Test:
o = 0.05 < Probability of Typel error must be explicitly set
g- 18 k=2 <where: g =the number of cells,
o —g—k-1 & - 15 k = number of parametersof the

internally specified model
CV = qchisg(1 — a,df)  CV = 24.9958

Decision Rule;
IF Xg, >CV THEN REJECT H,OTHERWISE ACCEPT H,,
Xgg= 587119  CV = 24.9958

Probability Value:

P:= (1 - pehisy(Xegdf )) P=41938x 10

-99999 0.7368
0.7368 5.8947
5.8947 11.0526
11.0526 16.2105
16.2105 21.3684
21.3684 265263
26.5263 31.6842
31.6842 36.8421
36.8421 42
42 47.1579
47.1579 52.3158
52.3158 57.4737
57.4737 62.6316
62.6316 67.7895
67.7895 72.9474
72,9474 78.1053
78.1053 83.2632
83.2632 99999 )

6 )
7

26
36
77
98
127
136
139
118
78
73
45
15
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Prototypein R: Datatransferred from M athCAD

Random Normal Example.txt

COMMANDS _ observed probabilities
> RN=read.table(" c:/2007BiostatsData/ 1 6 0.001666
Random Normal Example.txt") 2 7 0.003186
> RN 3 2 0.007788
> attach RN 4 26 0.016874
> X=obser ved 5 36 0.032405
> P=probabilities 6 77 0.055154
> chigy.test(X,p=P) 7 98 0.083205
8 127 0.111255
Chi-squared test for given probabilities 9 136 0.131853
10 139 0.138503
data: X 2 18 ool
X-gquared = 58.7106, df = 17, p-value = 1.713e-06 13 73 0.077836
Warningm _ 14 45 0.050461
arningmessage. 15 15 0.028995
Chi-squared appr oximation may be 16 8 0.014767
incorrect in: chisg.test(X, p=P) 17 6 0.006665
18 3 0.004018

A value of qu verified

6 < Notethat R considersthevector of probabilities P

tobe an exter nally specified model. Under these
circumstancesk=0 and df=17, and P is confirmed.
BUT We can be morespecifichere...

Using Externally Specified M odel:

1 - pehisg(Xsg,g — 1) = 1.7118x 10~

u =45 o =15 <externally gpecified parameterswe gave the random number generator
ELE, = GT- (pnorm(BLjﬁl,H,o) - pnorm(BLjﬁo,H,c)) < new calculation of Expected
1.5844
Xz Test Statistic: ZELE = 1000 2.9824
g=18 j:=0.g-1 2 engh(ELc) - 18 7 o462
(oj - ELEJ_> ' 15.6603
XsqE = Z T XsqE = 82.3532 < new calculation of X, 301043
i ! 51.4756
Critical Valueof the Test: 78.2927
o = 0.05 < Probability of Typel error must be explicitly set 105.9231
g- 18 k=0 < Whelr(e_: g = the number of cells, Ele- 127.4713
df —g-k-1 & - 17 = number of parametersof the 136.4541

internally specified model

CVE = qchisg(1 - o,df)  CVE = 27.5871 129.9313

o Anew critical value 110.051

Decision Rule: 82.9137

IF Xg, >CV THEN REJECT H,OTHERWISE ACCEPT H,, 55.5659

Xgq=58.7119  CVE = 27.5871 33.1237

N 17.5636

Probability Value: 6 2635
Pe = (1 - pehisg(Xgg. df ) Pe= 17118 x 10 © < new probability 53726
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ORIGIN = 0 _
Fisher's Exact Test

Fisher's Exact Test may be used for 2 X 2 contingency tablesthat fail the criterion for use of
the Nor mal Appr oximation.

Assumptions:
- Obser ved values X, X,, X5, ... X, are arandom sample Contingency Table
Observed valuesY, Y,, Y, ... Y ,.arearandom sample. a b a+b
Model:
Let Probabilities - P, = P(X=i) c d c+d
- P =P(Y=))
) Pij = (X=i, Y=)) a+c b+d n

Criterion for Normal Approximation:
- IF expected valuesin each cell Ejj > 5 THEN Approximation may be used
OTHERWISE use Exact Test e.g., Fisher's Exact Test

Fisher's Exact Test:
Enumerateall Possible Contingency Tables:

- Enumerateall possible 2X2 Contingency tables with identical r ow and column
totalsastheobserved table.
- Calculatethe exact probability of each table based on the Hypergeometric Distribution.

Hyper geometric Probability of a 2X2 contingency table:

_(a+b)!-(c+d)!-(a+c)-(b+d)! <ab,cd,narespecified asinthetableabove.

Pr: n-a-b!-c-d!

Hypotheses:
Hy pl= (Pi)(Pj) < That is, variables X & Y areindependent!
Hy: Py <> (P)(P) <Two sided test

Probability Value:
. < for all tables0 toobserved table a,
P=2. m“{(PTO’ PTl’ " ’PTa)’(PTa’ PTa+1’ " ’PTk)’O'5] and a + (a+1) up tomax table k

" this probability isinter pr eted asthe probability of obtaining a table

as extremeasthe one observed.
Note that " one-sded" testsare possible here

One-sided probability Values: where P=min(P;'s) directly, but these
for al . must be formulated in terms of the binomial
P= (PTO’PTl’ - ’PTa) < for atternative parameter p; & p, - see Biodtatistics 34 for this.

hypothessH,: p, <p,
Point Estimates of

p._ (pT’pT pT) < for alter native Binomial Proportions:
a ol hypothesisH,: p; > p,

a
Pihat == atb P2hat == crd

Critical Valueof theTest & Decison Rule:

o = 0.05 < Probability of Typel error must be explicitly set

IF P<a THENREJECT H,OTHERWISE ACCEPT H,
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Example:
Rosner Example 10.20 p. 406

a=2 b=23 al=2  bl=25852x 10°

c=5 d=30 Cl=120 di = 2.6525x 10°2

n=a+b+c+d n=60 n!:8.321><1081
Assumptions:

- Observed values X, X,, X, ... X, arearandom sample

Observed values Y, Y,, Y, ... Y ,.arearandom sample.

Model:
Let Probabilities - P, = P(X=i)
- P, =P(Y=))
} Pij =(X=i,Y=))

Criterion for Normal Approximation:

Contingency Table

a b a+b
c d c+d
atc b+d n

() e

A Row and Column totals

- IF expected valuesin each cell Ejj > 5 THEN Nor mal Approximation may be used

OTHERWISE use Exact Test e.g., Fisher's Exact Test

a=2 b=283
c=5 d=30

Fisher's Exact Test:

Enumeration of all Possible Contingency Tables:

< Fisher's Exact Test must be used...

Observed Table:
- - ab 2 23 a+b 25 a+c
c=5 d=30 cd) 5 30) c+d) 35) b+d)
TableO: T
a=0 bzzRO—a c =(7 53
c=Cp-a d=R;-c Hypergeometric Probability:
a b) 0 25) (a+b)l-(c+d)!-(a+c)-(b+d)!
Toe _ — = 0.0174
° (c a) ° (7 28) "o ni-al-b!-cl-d PTo
Table1:
a=1 b:= RO— a
c=Cp-a d=R;-c Hypergeometric Probability:
ab 1 24 . . l. !
- ) - A pr o (a+b)!-(c+d)!-(a+c)-(b+d)! P 01051
cd) 6 29) 1 n'-al-bl-cl-d 1
Table 2 (The Observed Table):
a=2 b:= RO— a
c=Cp-a d=R;-c Hypergeometric Probability:
a b) 2 23) (a+b)l-(c+d)!-(a+c)-(b+d)!
To o _ — = 0.2522
2 (c d) ? (5 30) ", ni-al-b!-cl-d °T,
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Fisher's Exact Test

Table 3:
a=3 b:= RO -a
c=Cp-a d=R;-c Hypergeometric Probability:
a b) 3 22) (a+b)l-(c+d)!-(a+c)-(b+d)!
Tas Ta- - - 03118
3 (c a) 3 (4 31) P n'-a-b-cl-d T
Table 4.
a=4 b:= RO -a
c=Cp-a d=R;-c Hypergeometric Probability:
a b) 4 21\ (a+b)l-(c+d)!-(a+c)-(b+d)!
Tg= Ty-= = — 02144
4 (c a) ¢ (3 32) T, nl-al-bl-cl-dl PT,
Table5:
a=>5 b:= RO -a
c=Cp-a d=R;-c Hypergeometric Probability:
a b) 5 20) (a+b)l-(c+d)!-(a+c)-(b+d)!
Te o _ - ~ 0.0819
5 (c a) ° (2 33) P nl-al-bl-cl-dl PT
Table6:
a==56 b:= RO -a
c=Cp-a d=R;-c Hypergeometric Probability:
a b) 6 19) (a+b)l-(c+d)!-(a+c)-(b+d)!
Te:= Te= = - 0016
° (c a) ° (1 34) "o n-a-bl-cl-dl PTs
Table7:
a=17 b:= RO -a
c=Cp-a d=R;-c Hypergeometric Probability:
a b) 7 18) (a+b)l-(c+d)!-(a+c)-(b+d)!
To e _ - ~ 0.0012
! (c a) 7 (o 35) o, n'-a-b-cl-d PT
Hypotheses:
Ho p1= (Pi)(Pj) <Thatis, variables X & Y areindependent!
Hy: Py <> (P)(P) <Two sided test
0.0174
Pr Obabl|lty Value: 0.1051
A= Pr_+ Pr +Pr A=03747 < confirmed p. 407 0-2522
o 12 0.3118
B:=Pr +Pr +Pr,+Pr+Pr +Pr B=08775 < confirmed p. 407 Pr= 0.2144
_ N 0.0819
Two sded Probability: 0,016
P:= 2. min[(A),(B),0.5] P- 07493 < confirmed p. 407 0.0012)

Critical Valueof theTest & Decison Rule:

values confirmed p. 406 »

o = 0.05 < Probability of Typel error must be explicitly set

IFP<oa THENREJECT HyOTHERWISE ACCEPT H,,

P = 0.7493 o = 0.05
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Prototypein R:

COMMANDS
> X=matrix(c(2,23,5,30),nrow=2,byrow=T)
> X
> fisher.test(X,alternative="two.sded" ,conf.level=0.95)
Fisher's Exact Test for Count Data 0.0174)
0.1051
data: X 0.2522
p-value = 0.6882 '
alternative hypothesis trueoddsratioisnot equal to 1 Pr = 03118
95 percent confidence interval: 0.2144
0.04625243 3.58478157 0.0819
sample estimates:
oddsratio 0.016
0.527113 0.0012 )

N Herethecalculations from Rosner & R'soutput are similar in result,
but clearly do not match. Perhapsthisrepresentsroundingerror.

Note that R also hasa Hypergeometric Digribution function that may beused here:

COMMANDS

> X=0:7

> X

> dhyper(X,7,53,25)

[1] 0.017411703 0.105070619 0.252169485 0.311822481 0.214377956 0.081853401

[7] 0.016049687 0.001244670 0.0174)
~ These numbers match calculation of vector P, above 01051
0.2522
Pr 0.3118
| 0.2144
0.0819
0.016
> phyper(X,7,53,25) 0.0012
[1] 0.01741170 0.12248232 0.37465181 0.68647429 0.90085224 0.98270564 0.99875533
[8] 1.00000000
N These numbers are the cumulative probabilitiesused in calcuation of A above.
A = 0.3747

Thissuggeststhat R'sfisher.test() calculates probabilites somewhat differently...
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ORIGIN = 0 _ _ _
"Simple" Linear Regression

Linear Regression and theso-called " General Linear Modd" represent a classof methods that
seek tor éate values of an observed " dependent” random variable (Y) that isNormally distributed
tooneor more" independent” (or predictor) variables (X) usnga linear function analogousto a
linear transfor mation - i.e., usng only translation and changeof scale. Wetypically employ
"linear coeficients' (not to be confused with the probability of types| & Il errorsin gatistical
tests) todescribe translation (o) and change of scale (). Thusafunction suchasY =5 + 23X
gualifiesasa linear function whereas Y = X2 or Y= 5 +X3 would not. Note, however, that with the
use of an appropriate non-linear tr ansfor mations of the data, many non-linear functions can be
treated by general linear methods also. For insance, taking the square root allows oneto mode Y
=X2as Y = a\/X, and taking logs allows one to model the famous allometricequation: Y = ax® as
In(Y) =In(a) + b(In(X)).

Assumptions:

- Standard Linear Regression depends on specifying in advance which variableisto be
consider ed 'dependent' and which 'independent’. Thisdecision mattersas changing
rolesfor Y & X usually produces a different r esult.

=Y, Y, Y, ., Y, (dependent variable) isarandom sample ~ N(p,02).
- X1 X5, X5, .., X, (independent var iable) with each value of X; matched to Y,

M odel: where: o isthey intercept of the regr ession line(trandation)

B istheSIOpe of theregr ession line(scaling coefficient)
gistheerror factor in prediction of Y giventhat itisa

random variable distributed as N(0,52).

Y=a+pX+e

L east Squares Estimation of the Regression Line:

Sums of Squares and Cr oss Products cor rected for mean location:

Lxx = Z (Xi B Xbaf)z < cor rected Sum of squar es of X
i
Lyy = Z (Yi - Ybaf)z < corrected Sum of squar esof Y
i
Lxy = Z (Xi - Xbar) ' (Yi N Ybaf) < corrected Sum of cross products

Estimated Regresson Coefficientsfor Y = a + gX:

L .
—" < sample estimateof
I-XX
a:= Ypa - b Xpar < sample esimate of a

Estimted valuesof Y (Y ,):

Yhat = a+ b- X, <usingesimated coefficients and each valueof the independent
' variable to estimate dependent value points on the Regr ession line.

Residuals:

&=VYha - Y; < deviation of each value Y, from Regression line = Yhat,
|
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Example:

Rosner Example 11.8 p. 471 K := READPRN("c:/2007BiostatsData/ GreenTouchstone Study2.txt" )

Assumptions:
01
- Let independent variable X be Estriol level in thefirst column of K ol 71
- Let dependent variable Y beBirthweight in the second column of K T ol s
-Y isarandom sample ~N 2
i ple ~N(n,c?) 5T ol 28
3|12|27
Modéel: 41427
5|16|27
Y=a+pBX+e 6 161 22
K=|7|14|30
. . . . 8|16] 30
L east Squares Estimation of the Regression Line: s Tie ot
10| 17| 30
x = KO Xpar = mean(X) Xpar = 17.2258 11191381
@ 12| 21|30
Y =K Ypar := mean(Y) Ypar = 32.0323 13| 24| 28
_ 14| 15| 32
n = length(Y) i=0.n-1 n=231
15| 16| 32
Sums of Squares and Cr oss Products cor rected for mean location:
Lyx = Z (xi - xbar)2 Lyx = 677.4194
i ~ vermed p. 471
Ly =3 (¥, Ybar)z Lyy = 680.9677
i A closebut not the same as p. 478
Ly = Z (xi - xbar) : (Yi - Ybar) Lyy = 410.7742

i " closebut not the same asp. 471

My guesss hereisthat there'san
error in hisTable 11.1 or my
GreenT ouchSone Study.xls

Estimated Regresson Coefficientsfor Y = a+ gX:

L .

=" b = 0.6064 < sample estimateof B
I-XX

a:= Ypa — b Xpar a= 21.5869 < sample estimate of a

Estimted valuesof Y (Y ,):

Yhat = a+ b- X, <usingesimated coefficients and each valueof the independent
! variable to estimate dependent value points on the Regr ession line.

Residuals: < deviation of each value Y, from Regression line = Yhat,

ei = Yhati — Yi
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Plot of Values: 50
[ ]
40 —
30 7
Y
[ N X ]
Yhati
20— 7
(S av)
g
10— =
0
-10 | ] ] ]
5 10 15 20 25
Xj
Prototypein R:
COMMANDS
> K=read.table(" c:/2007BiostatsData/GreenT ouchgone.txt" )
> K
> attach(K)
> X=Estriol
> Y=BirthWeight a= 215869 0
> Iit(X,Y) coefficientsconfirmed 0| 0.8315
b = 0.6064 1| 2.0443
2 | 2.0443
$coefficients 3| 1.8634
Intercept X 4 | 3.0762
21.586857 0.606381 5| 4.289
_ 6| 7.289
$residuals e=[7T 00762
[1] -0.83152381 -2.04428571 -2.04428571 -1.86342857 -3.07619048 i
[6] -4.28895238 -7.28895238 -0.07619048 -1.28895238 -0.28895238 8| 1289
[11] -1.89533333 -2.10809524 -4.32085714 -8.14000000 1.31742857 9| 0.289
[16] 0.71104762 0.10466667 -4.74638095 -3.95914286 3.31742857 10| 1.8953
[21] 3.31742857 4.31742857 4.71104762 0.89190476 2.49828571 11| 2.1081
[26] 4.10466667 4.49828571 4.28552381 5.07276190 2.25361905 Wl 413200
[31] 6.86000000 = s
And much more suff... 14| -1.3174
15| -0.711

30
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Prototypein R:

Call:
COMMANDS
> Im(Y~X) Im(formula=Y ~ X)
Cosfficients:
COM MAN DS (Intercept) X <just the estimates
> predict(Im(Y~X)) 21.5869  0.6064 of a and B

> fitted(Im(Y~X))

1 2 3 4 5 6 7 8
25.83152 27.04429 27.04429 28.86343 30.07619 31.28895 31.28895 30.07619  _
9 10 11 12 13 14 15 16 hat
31.28895 31.28895 31.89533 33.10810 34.32086 36.14000 30.68257 31.28895 calculated
17 18 19 20 21 22 23 24
31.89533 36.74638 37.95914 30.68257 30.68257 30.68257 31.28895 33.10810
25 26 27 28 29 30 31
32.50171 31.89533 32.50171 33.71448 34.92724 36.74638 36.14000

values

COMMANDS:

> PRED=predict(Im(Y~X))

> RESI DUAL S=resid(Im(Y~X))

> RESUL TS=data.frame(Y,X,PRED,RESI DUALS) < In data frame format:

>RESULTS
> plot(X,Y) Y X PRED RESIDUALS

> abline(Im(Y~X),col=" blue") 1 25 7 25.83152 -0.83152381
> segment (X, predict(Im(Y~X)),X,Y,col="red") 225 927.04429 -2.04428571
3 25 9 27.04429 -2.04428571
4 27 12 28.86343 -1.86342857
5 27 14 30.07619 -3.07619048
6 27 16 31.28895 -4.28895238
Plot with Fitted values (blue) 7 24 16 31.28895 -7.28895238
and Residuals (red) 8 30 14 30.07619 -0.07619048
9 30 16 31.28895 -1.28895238
10 31 16 31.28895 -0.28895238
11 3017 31.89533 -1.89533333
12 3119 33.10810 -2.10809524
- 13 30 21 34.32086 -4.32085714
14 28 24 36.14000 -8.14000000
15 3215 30.68257 1.31742857
16 3216 31.28895 0.71104762
17 3217 31.89533 0.10466667
18 32 25 36.74638 -4.74638095
> 19 34 27 37.95914 -3.95914286
- 20 3415 30.68257 3.31742857
21 3415 30.68257 3.31742857
8 7 22 3515 30.68257 4.31742857
23 36 16 31.28895 4.71104762
24 3419 33.10810 0.89190476
253518 32.50171 2.49828571
26 36 17 31.89533 4.10466667
27 3718 32.50171 4.49828571
w w w w 28 3820 33.71448 4.28552381
10 15 20 25 29 4022 34.92724 5.07276190
X 30 39 25 36.74638 2.25361905
31 43 24 36.14000 6.86000000

40

35
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CompareValues:

7)
9
9
12
14
16
16
14
16
16
17
19
21
24
15
16
17
25
27
15
15
15
16
19
18
17
18
20
22
25
24)

25)
25
25
27
27
27
24
30
30
31
30
31
30
28
32
32
32

FRrRRERY

36

35
36
37
38
40
39

"Simple" Linear Regression

Yha =

25.8315))
27.0443
27.0443
28.8634
30.0762
31.289
31.289
30.0762
31.289
31.289
31.8953
33.1081
34.3209
36.14
30.6826
31.289
31.8953
36.7464
37.9591
30.6826
30.6826
30.6826
31.289
33.1081
32,5017
31.8953
32,5017
33.7145
34.9272
36.7464

36.14 )

0.8315
2.0443
2.0443
1.8634
3.0762
4.289
7.289
0.0762
1.289
0.289
1.8953
2.1081
4.3209
8.14
-1.3174
-0.711
-0.1047
4.7464
3.9591
-3.3174
-3.3174
-4.3174
-4.711
-0.8919
~2.4983
~4.1047
~4.4983
~4.2855
-5.0728
~2.2536
-6.86 )

Yhat— e=

25)
25
25
27
27
27
24
30
30
31
30
31
30
28
32
32
32

R RER

36

35
36
37
38
40
39
43 )
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ORIGIN =0

ANOVA for "Simple" Linear Regression

Goodness of fit of afitted regression line can be tested using the F-test for Regr ession (also
known asthe ANOVA for " Analyssof Variance" for Regresson) or alternatively, and
equivalently, the t-test of Regresson. Here we consider the ANOVA approach.

Assumptions:

- Standard Linear Regression depends on specifying in advance which variableisto be
consider ed 'dependent' and which 'independent’. Thisdecision mattersas changing
rolesfor Y & X usually produces a different r esult.

=Y, Y, Y, ., Y, (dependent variable) isarandom sample ~ N(p,02).
- X1 X5 X5, .., X, (independent var iable) with each value of X; matchedto Y,

M odel: where: o isthey intercept of the regr ession line (trandation)
_ B istheSIOpe of theregr ession line(scaling coefficient)
Y=oa+pX+e gistheerror factor in prediction of Y giventhat itisa

random variable with N(0,62)

Variance (Sum of Squares) Decomposition of the Regression:

Oncearegresson modd (Y = a + X + g) isfitted with data, one gill needsto determine
how useful the regr ession might be, especially whether knowledge about the X; provide
insght into inter preting the Y, asarandom variable from a Normal digtribution with error ;.

Thisisdone by consgderinga " partition” of total variance in thesample of Y.

Note that variance hereisaddressed in terms of " Sums of Squares" the numerator asthisis
the only important part of variance to consider at this point:

SSt = Z (Yi - Ybar)2 < Total sum of Squares

SSR = z (Yhati - Yba,r)2 < Regression sum of Squares

SSE = Z (Yi - Yhati)2 < Residual (also called " Error") Sum of Squares

|
These Sums of Squarestally asfollows:

SSt:= SSRr + SSg
And theratio of SS; to SS; can be used asa measure of " fit" of thedatato the regression.

Hypotheses:
HoB=0 < Slope of the Regression is zero implying no r elationship between X; and Y;

H;:Bp<>B <Two sided test
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ANOVA for Linear Regression:

Compute ANOVA Table ANOVA TABLE
SS df MS
. SSR
Regr ession: SSR 1 MSR := T
. SSg
Residual: SSg (n-2) MSEg =
(n-12)
SSt
TOTAL: SSt (n-1) MST := ( 1
Test Statistic:
MSR . . .
Fi=—— < Fistheratio of samplevariances
MSg

Sampling Distribution:

If Assumptionshold and H, istrue, then F ~F ;) )
Critical Valueof the Test:
o = 0.05 < Probability of Typel error must be explicitly set

oV = inversedp(1 - o) cvi=gF(1 - a,1,n-2)
Decision Rule:

IFF>CV, THENREJECT H,
OTHERWISE ACCEPT H,,

Probability Value:

P=1-®(F) P:=1- pF(F,1,n- 2)

Example:

Rosner Example 11.12 p. 477 K := READPRN("c:/2007BiostatsData/GreenTouchstone Study2.txt" )

Assumptions:

- Let independent variable X be Estriol level in thefirst column of K
- Let dependent variable Y beBirthweight in the second column of K

-Y isa random sample ~N(p,c?)

Model:
Y=a+pX+e
L east Squares Estimation of the Regression Line:
X = KO Xpar := mean(X) Xpar = 17.2258
v K Y par := mean(Y) Ypar = 32.0323

n = length(Y) i=0.n-1 n=231
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Sums of Squares and Cr oss Products cor rected for mean location:
Loci= 3 (% - xbar)2 Ly = 677.4194

Ly =3 (¥ - Ybar)z
[
Lyy = Z (xi - xbar) : (Yi - Ybar)
[
Estimated Regresson Coefficientsfor Y = a+ BX:

Lyy = 680.9677

Lyy = 410.7742

L
" b = 0.6064 < sample estimateof B

I-XX

b:

a:= Ypg — b Xpar a= 21.5869 < sample esimate of ¢,

Estimted valuesof Y (Y )
<usngedimated coefficients and each value of the independent

Yha =a+b-X
! ! variable to estimate dependent value points on the Regr ession line.

Residuals: < deviation of each valueY; from Regresson line = Yhat,

ei = Yhati - Yi
Sums of Squares:

SSt = Z,: (Y- Ybar)z

SSRi=" (Yha, - Yo

SSg = Z (Y- Yhmi>2

< Total Sum of Squares- sameasL, above

< Regression sum of Squares

< Residual (also called " Error") Sum of Squares

Hypotheses:
Ho:p=0
Hi:p<>B <Two sided test

< Slope of the Regresson is zero implying nor élationship between X; and Y;

ANOVA for Linear Regression:
Compute ANOVA Table ANOVA TABLE

SS df MS
. SSR
Regr ession: SSR = 249.0856 1 MSR = - MSR = 249.0856
. SSg
Residual: SSE = 431.8821 (n-2) MSE = "2 MSE = 14.8925
n p—
SSt
TOTAL: SSt = 680.9677 (n—1) MSt = " MST = 22.6989
n p—
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Test Statistic:
MSR . . .
F= —— < Fistheratio of samplevariances F = 16.7256
MSg

Sampling Distribution:

If Assumptionshold and H istrue, then F ~F ;) )
Critical Valueof the Test:
o = 0.05 < Probability of Typel error must be explicitly set

cvi=qgF1-a,1,n-2) CV=4183
Decision Rule:

IFF>CV, THENREJECT HOTHERWISE ACCEPT H,
F = 16.7256 CV =4183

Probability Value:

Powerful suff!!

P.=1-pF(F,1,n-2) P=0.0003

Prototypein R:

COMMANDS

> K=read.table(" c:/2007BiostatsData/GreenT ouchstone.txt")
> K
> attach(K)
> X=Estriol
> Y=BirthWeight Call:
> X Im(formula=Y ~ X)
> Im(Y~X) -

Coefficients:
(Intercept) X
21.5869  0.6064 < a & b values same as above

COMMANDS
> anova(lm(Y~X))
or
> anova.Im(Im(Y~X))

Analyssof VarianceTable

Response: Y

Df Sum &g Mean Sq F value Pr(>F)
X 1 249.09 249.09 16.726 0.0003134 ***
Residuals 29 431.88 14.89

Signif. codes: 0'***' 0.001'**' 0.01'*' 0.05'.'0.1"'" 1

~ ANOVA results match above



2007 Biostatistics 40

ANOVA for Linear Regression

Prototypein SYSTAT:

Dep Var: BIRTHWT

Adjusted squared multiple R: 0.34391

Regression

N: 31 Multiple R: 0.60480 Squared multiple R: 0.36578

Standard error of estimate: 3.85908

Coefficient Std Error Std Coef Tolerance t P(2 Tail)
21.58686 2.64645 0.00000 8.15690 0.00000
0.60638 0.14827 0.60480 1.00000 4.08969 0.00031

Analysis of Variance

Sum-of-Squares df Mean-Square F-ratio P
249 .08565 1 249 .08565 16.72559 0.00031
431.88210 29 14 .89249
Durbin-Watson D Statistic 0.714
First Order Autocorrelation 0.588

" values of tables match results above

Plot of Residuals against Predicted Values

10 T T

RESIDUAL

-10

25

30

35
ESTIMATE

40
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ORIGIN = 0
Thet-Test Approach and Interval Estimation for " Simple" Linear Regression

Goodness of fit of afitted regression line can be tested using a t-test approach. This
method also providesfor a direct estimation of confidence intervalsfor the dope parameter
B. Interval estimatescan also be derived for the Regr ession lineitself asamean, aswell
asfor prediction of " new" observations.

Assumptions:

- Standard Linear Regression depends on specifying in advance which variableisto be
consider ed 'dependent' and which 'independent’. Thisdecision mattersas changing
rolesfor Y & X usually produces a different r esult.

=Y, Y, Y, ., Y, (dependent variable) isarandom sample ~ N(p,02).
- X1 X5 X5, .., X, (independent var iable) with each value of X; matched to Y,

M odel: where: o isthey intercept of the regr ession line(trandation)
_ B istheSIOpe of theregr ession line(scaling coefficient)
Y=oa+pX+e gistheerror factor in prediction of Y giventhat itisa

random variable with N(0,62)

t-Test for Smple Linear Regression:

Hypotheses:
HoB=0 < Slope of the Regression is zero implying no r elationship between X; and Y;
Hyp<>0 < Two sided test
Test Statistic:
(o b < b isunbiased point estimate of B
\/MﬁSE < MSE isMean Square Error from ANOVA tablealso denoted ?,
Lxx <L,, Corrected sums of squares of X asdefined in Regresson

Critical Valueof the Test:
o = 0.05 < Probability of Typel error must be explicitly set

Cq:= inversecbt(g\ Co:= inversecbt(l - g\
2) 2)
Note degrees of freedom = (n-2)
o ) o )
Ci=qtl —,n-2 Co=qt|l1-—,n-2
1=4q [ 2 n ) 2:=0q [ 2 n )

Decision Rule:

IF |t| >C, THEN REJECT H,OTHERWISE ACCEPT H,

Probability Value:

P =minimum(2 @(t),1-2 ®,(t) < Rosner Eq 11.8, p. 481

P:=min[2-pt(t,n - 2),2- (1 - pt(t,n - 2))]
Notethat C, and C, are

Confidence Interval for the Regression (B): explicitly evaluated above so C,
isalr eady negativein value. So

MS MS . .
Clr:= (bJrCl. ’ E b+ Co- E\ itisaddedto X hereto find
Lxx Lxx ) < the L ower Bound of the CI.
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Confidence Interval for Regression Estimates Y5 and New Predictions of Y:
Oneor more values of X mugt be explicitly specified to obtain aprediction CI for Y, .:
Xp =X < hereusngall original values of X, but any X values may be specified instead...

Confidence Interval (Cl):

2 2
(Xni - Xbar) 1 (Xni - >(bar)
ClpL. =Yha +C1- IMSg-| — + ———— Clry. = Ypa + Co- |[MSg:| — + ———
i i n Lxx i i n Lyx
Prediction Interval (PI):

2 2

(xni - Xbar) 1 (Xni - Xbar)
PIRL. == Yha + C1- |[MSg- |1+ — + PRu =Yha + Co- [MSEg- |1+ —+ ——

i i n Lyx i i n Lxx

Example:
Rosner Example 11.12 p. 477 K := READPRN("c:/2007BiostatsData/GreenTouchstone Study2.txt" )

Assumptions:

- Let independent variable X be Estriol level in thefirst column of K
- Let dependent variable Y beBirthweight in the second column of K

-Y isa random sample ~ N(p,52)

Model:
Y=a+pX+e
L east Squares Estimation of the Regression Line:
x = KO Xpar := mean(X) Xpar = 17.2258
v kY Ybar = mean(Y) Ypar = 32.0323
n = length(Y) i=0.n-1 n=231
Sums of Squares and Cr oss Products cor rected for mean location:
Lyx = Z (xi - xbar)2 Lyx = 677.4194
[
Ly =3 (¥, Ybar)z Lyy = 680.9677
[
Ly = Z (xi - xbar) : (Yi - Ybar) Lyy = 410.7742

Estimated Regresson Coefficientsfor Y = a+ gX:

L )
= b = 0.6064 < sample estimateof B
I-XX
a:= Ypa — b Xpar a= 21.5869 < sample estimate of a

Estimted valuesof Y (Y ,):

Yhat = a+ b- X, <usingesimated coefficients and each valueof the independent
! variable to estimate dependent value points on the Regr ession line.
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Residuals:
< deviation of each valueY; from Regresson line = Yhat,

ei = Yhati - Yi

Sums of Squares:

SSt = Z (Y- Ybar)z

SSRi=" (Yha, ~ Yo

SSg = Z (Y- Yhmi>2

< Total sum of Squares

< Regression sum of Squares

< Residual (also called " Error") Sum of Squares

ANOVA for Linear Regression:
Compute ANOVA Table ANOVA TABLE

SS df MS
. SSr
Regr ession: SSR = 249.0856 1 MSR = T MSR = 249.0856
. SSg
Residual: SSE = 431.8821 (n-2) MSg = "2 MSE = 14.8925
SSt
TOTAL: SSt = 680.9677 (n-1) MSt = ( D MST = 22.6989
n —
Hypotheses:
Ho: B =0 < Slope of the Regression is zero implying nor elationship between X; and Y;
Hi:p<>0 < Two sided test
Test Statistic:
t= b t = 4.0897
MSg
I—XX

Critical Valueof the Test:

o = 0.05 < Probability of Typel error must be explicitly set

Cp:= qt(%,n - 2) Cy = —2.0452
Note degrees of freedom = (n-2)

Coi= qt(l 2o ) Cy = 2.0452
2 )
Decision Rule:
IF t| >C, THEN REJECT H,OTHERWISE ACCEPT H,

t=4.0897 Cq1=-20452 Cp=2.0452
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Probability Value:
P:=min[2-pt(t,n—2),2- (1 - ptt,n - 2))] P = 0.0003

Confidence Interval for the Regression (B):

MS MSg ) _
ClR=|b+Cq1- E b+ Co- E b = 0.6064
Lxx Lxx )

Clr = (0.3031 0.9096)

Confidence Interval for Regression Estimates Y, and New Predictions of Y:
Oneor more values of X, must be explicitly specified to obtain aprediction Cl for Y,

Xn = X; < hereusngall original values of X, but any X values may be specified insead...

Confidence Interval (ClR):

2 2
1 (Xni — Xpar 1 (Xn - ><bar)
ClRL. = Yha + C1- |MSE-| — + Clry = Ypa + Co- |[MSg-| — + ——
i [ n Lyxx I ! n Lxx
(C|RL1 C|RU1) = (241752 29.9134) for point: X=X, =9
Prediction Interval (Plg):
2
1 (Xni - Xbar) 1 (Xni - ><bar)
PIRL. == Yphat + C1- |[MSg-| 1+ — + PRU =Ypha + Co- [MSE- |1+ — + ——
i i n Lyx i i n Lyxx
(PI RL, Pl RUl) = (18.6463 35.4423) for point: X= )(1: 9

Plot of Regression and Prediction Interval:

50 T T

e

15 | | | |
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Prototypein SYSTAT:

Dep Var: BIRTHWT N: 31 Multiple R: 0.60480 Squared multiple R: 0.36578

Adjusted squared multiple R: 0.34391 Standard error of estimate: 3.85908

Effect Coefficient Std Error Std Coef Tolerance t P(2 Tail)
CONSTANT 21.58686 2.64645 0.00000 8.15690 0.00000
ESTRIOL 0.60638 0.14827 0.60480 1.00000 4.08969 0.00031

Analysis of Variance

Source Sum-of-Squares df Mean-Square F-ratio

Regression 249 .08565 1 249 .08565 16.72559

Residual 431.88210 29 14 .89249
Durbin-Watson D Statistic 0.714

First Order Autocorrelation 0.588

Prototypein R:

COMMANDS

> K=read.table(" c:/2007BiostatsData/GreenT ouchstone.txt" )
>K

> attach(K)

> X=Estriol

> Y=BirthWeight

> summary(Im(Y~X))

Call:
Im(formula=Y ~ X)

Residuals:
Min  1Q Median 3Q Max
-8.14000 -2.07619 -0.07619 3.31743 6.86000

Cosfficients:

Estimate Std. Error t value
(Intercept) 21.5869 2.6465 8.157
X 0.6064 0.1483 4,090

Signif. codes: 0'***' 0.001'**' 0.01'*' 0.05'.'0.1'" 1

P

0.00031

Pr(>[t])
5.4e-09 ***
0.000313 ***

Residual standard error: 3.859 on 29 degrees of freedom
Multiple R-Squar ed: 0.3658, Adjusted R-squared: 0.3439

F-gatigic: 16.73 on 1 and 29 DF, p-value: 0.0003134
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Plotting Intervalsin R:

COMMANDS

> PRED=predict(Im(Y~X),interval=" prediction" ,|level=0.95)
> PR=data.frame(PRED)

> PR

> CONF=predict(Im(Y~X),interval=" confidence" ,|level=0.95)
>CN=data.frame(CONF)

> plot(X,Y)

> abline(Im(Y~X),col="blue")

> segment(X,PR$Iwr,X,PR$upr,col="red")

> segment(X,CN$lwr, X,CNS$upr,col="green")

> points(X,CN$lwr,col=" green")

> points(X,CN$upr,col="green")

> points(X,PR$lwr,col="red")

> points(X,PR$upr,col="red")

40
|
)

35

25

10 15 20 25
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Regression Estimation

Comparison of Confidence and Prediction Intervals:

In R:

COMMANDS

> CN
> PR

CONFIDENCE INTERVAL (CN)

fit  lwr  upr
1 25.83152 22.42192 29.24113
2 27.04429 24.17517 29.91340
3 27.04429 24.17517 29.91340
4 28.86343 26.73721 30.98965
5 30.07619 28.35386 31.79852
6 31.28895 29.82345 32.75445
7 31.28895 29.82345 32.75445
8 30.07619 28.35386 31.79852
9 31.28895 29.82345 32.75445
10 31.28895 29.82345 32.75445
11 31.89533 30.47611 33.31456
12 33.10810 31.59186 34.62433
13 34.32086 32.49893 36.14278
14 36.14000 33.64411 38.63589
15 30.68257 29.11251 32.25263
16 31.28895 29.82345 32.75445
17 31.89533 30.47611 33.31456
18 36.74638 33.99550 39.49726
19 37.95914 34.67360 41.24469
20 30.68257 29.11251 32.25263
21 30.68257 29.11251 32.25263
22 30.68257 29.11251 32.25263
23 31.28895 29.82345 32.75445
24 33.10810 31.59186 34.62433
25 32.50171 31.06483 33.93859
26 31.89533 30.47611 33.31456
27 32.50171 31.06483 33.93859
28 33.71448 32.06607 35.36288
29 34.92724 32.90103 36.95345
30 36.74638 33.99550 39.49726
31 36.14000 33.64411 38.63589

PREDICTION (PR)

fit  lwr upr
1 25.83152 17.23384 34.42920
2 27.04429 18.64628 35.44229
3 27.04429 18.64628 35.44229
4 28.86343 20.68935 37.03751
5 30.07619 21.99775 38.15463
6 31.28895 23.26135 39.31656
7 31.28895 23.26135 39.31656
8 30.07619 21.99775 38.15463
9 31.28895 23.26135 39.31656
10 31.28895 23.26135 39.31656
11 31.89533 23.87605 39.91462
12 33.10810 25.07107 41.14512
13 34.32086 26.22060 42.42111
14 36.14000 27.86206 44.41794
15 30.68257 22.63522 38.72992
16 31.28895 23.26135 39.31656
17 31.89533 23.87605 39.91462
18 36.74638 28.38803 45.10473
19 37.95914 29.40990 46.50838
20 30.68257 22.63522 38.72992
21 30.68257 22.63522 38.72992
22 30.68257 22.63522 38.72992
23 31.28895 23.26135 39.31656
24 33.10810 25.07107 41.14512
25 32.50171 24.47929 40.52414
26 31.89533 23.87605 39.91462
27 32.50171 24.47929 40.52414
28 33.71448 25.65148 41.77748
29 34.92724 26.77860 43.07587
30 36.74638 28.38803 45.10473
31 36.14000 27.86206 44.41794
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Ascalculated above:

Y CONFIDENCE INTERVAL: PREDICTION INTERVAL :
25.8315)) 22,4219 29.2411) 17.2338)) 34.4292)
27.0443 24.1752 29.9134 18.6463 35.4423
27.0443 24.1752 29.9134 18.6463 35.4423
28.8634 26.7372 30.9897 20.6894 37.0375
30.0762 28.3539 31.7985 21.9978 38.1546
31.289 29.8235 32.7545 23.2613 39.3166
31.289 29.8235 32.7545 23.2613 39.3166
30.0762 28.3539 31.7985 21.9978 38.1546
31.289 29.8235 32.7545 23.2613 39.3166
31.289 29.8235 32.7545 23.2613 39.3166
31.8953 30.4761 33.3146 23.876 39.9146
33.1081 31.5919 34.6243 25.0711 41.1451
34.3209 32.4989 36.1428 26.2206 42.4211

36.14 33.6441 38.6359 27.8621 44.4179
30.6826 29.1125 32.2526 22,6352 38.7299
Yhat = | 31289 | Clg =|29.8235| Clry=| 327545 PlrL = | 232613 | Plry = | 39.3166
31.8953 30.4761 33.3146 23.876 39.9146
36.7464 33.9955 39.4973 28.388 45.1047
37.9501 34.6736 41.2447 29.4099 46.5084
30.6826 29.1125 32.2526 22,6352 38.7299
30.6826 29.1125 32.2526 226352 38.7299
30.6826 29.1125 32.2526 22.6352 38.7299
31.289 29.8235 32.7545 23.2613 39.3166
33.1081 31.5919 34.6243 25.0711 41.1451
32,5017 31.0648 33.9386 24.4793 40.5241
31.8953 30.4761 33.3146 23.876 39.9146
32,5017 31.0648 33.9386 24.4793 40.5241
33.7145 32.0661 35.3629 25.6515 41.7775
34.9272 32.901 36.9534 26.7786 43.0759
36.7464 33.9955 39.4973 28.388 45.1047
36.14 ) 33.6441 ) 38.6359 ) 27.8621 ) 44.4179 )

" values match thosederived from R.
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ORIGIN = 0
Association and Correlation in " Simple" Regression

Onceit isdeter mined by ANOVA F or t-teststhat an association between var iables exists by
testingH,: B =0, summary statistics such asthe coefficient of determination (-2 or R?)
and coefficient of correlation (r) may prove helpful. More usefully, further inferences
may be made concerning the degree of association. This may be done by testing of Hy: B = g or
providing confidencelimitson B. Alternatively, one can test and pr ovide confidence limitson
the population correlation coefficient (p) viaits sample etimate (r). Testsusing
correlation are particular ly useful when the reseacher isunwilling to specify in advancewhich of
twovariables (X or Y) should be consdered independent versus dependent.

Coefficient of Determination (R2) and Coefficient of Correlation (r):

From values defined in constructing Regression or the ANOVA table:

Coefficient of Correlation:

Lx

SS SS .
E— r= =R r= |1- =E < equivalent
“—xx' Lyy SSt SSt

Coefficient of Determination:

2
qu::r

2 .
R . DX R SSR R 1 SSE <equivalent
B L L M7 ss (=
XX Lyy T

Note: Valuesof r and R2 rangebetween -1 and 1. Thecloser R2isto -1 or 1, the stronger
thelinear relationship between the variablesis potentially observed. R2 or r near zero
suggests no association. However, no single number can capture thesituation exactly. It is
possible, for datato show non-linear relationships, and for thereto be high

cor relation/deter mination without necessarily a* good" regression fit or precison in
prediction.

Correlation Coefficient Related to Sample Covariance & Standard Deviation:

= = ./L = ./L
Sxy (n-1) Sx XX Sy \[ yy
r:= = < correlation coefficient in terms of
S-Sy covariance& standard deviations

Correlation coefficient related toregression slope (b asestimate of B):

L

b:=r ¥ b:=r- el < equivalent
I-XX
L

r=b. | = r:bz < equivalent
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Example:
Rosner Example 11.12 p. 477 K := READPRN("c:/2007BiostatsData/GreenTouchstone Study2.txt" )

Calculating the Correlation:

X:= K<0> Y = K<1> Xpar := mean(X)  Xpgr = 17.2258 Ypar = mean(Y) Ypg = 32.0323
n = length(Y) i=0.n-1 n=231

Sums of Squares and Cr oss Products (from means):

o= D0 = (Yo by 3 (o)1 Yoo

i i i
Lyx = 677.4194 Lyy = 680.9677 Lyy = 410.7742
Estimated Regresson Coefficientsfor Y = a+ BX:

L
b= L—Xy b = 0.6064 a:= Ypar — b- Xpar a= 215869
XX
Estimted valuesof Y (Y ,): Residuals:
Yha :=a+b- X &= Yhat — Y;
| |

ANOVA Sumsof Squar es.

Sst:= Z (Yi- Ybar)z SR z (Yrt, - Ybar)z e Z (Yi- Yhmi)z

i i i
SSt = 680.9677 SSR = 249.0856 SSE = 431.8821

Coefficient of Correlation:

ny SSr SSg .
M= ——— r = 0.6048 — = 0.6048 1- — =0.6048 <equivalent
JExx - Lyy SSt SSt

Coefficient of Deter mination:

2 |—xy2 SSR SSg .
Rgg=r Rgy= 03658 = 0.3658 — = 0.3658 1 - — = 0.3658 < equivalent
Prototypein R:
COMMANDS
> K=read.table(" c:/2007BiostatsData/GreenT ouchgone.txt" )
>K ) Call:
> X=K$Estriol

; ] Im(formula=Y ~ X)
> Y=K$BirthWeight

> summary(Im(Y=X)) - Residuals:
Min 1Q Median 3Q Max
-8.14000 -2.07619 -0.07619 3.31743 6.86000

Coefficients:

EstimateStd. Error tvaluePr(>|t])
(Intercept) 21.5869 2.6465 8.157 5.4e-09 ***
X 0.6064 0.1483 4.090 0.000313 ***

Signif. codes: 0'***'0.001'**' 0.01'*' 0.05'.'0.1""' 1

Residual sandard error: 3.859 on 29 degrees of freedom
R2 reported here > Multiple R-Squar ed: 0.3658, Adjusted R-squared: 0.3439
F-gatigic: 16.73 on 1 and 29 DF, p-value: 0.0003134
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Onesamplet-Test for B = By:

Thistes allows statistical appraisal of specificvaluesfor dope(B) not just whether B iszero.

Note: thistest isa generalization of thet-Test for H,: g = 0.

Assumptions:

- Standard Linear Regresson depends on specifying in advance which variableisto be
consider ed 'dependent’ and which 'independent’. This decision matters as changing
rolesfor Y & X usually produces a different result.

-Y,, Y, Y, .., Y, (dependent variable) isarandom sample ~ N(p,?).
- X1, X5 Xg, ., X, (independent var iable) with each value of X; matched to Y,

M odd!: <where: a isthey inter cept of the regression line (trandation)
~ B istheSIOpeof the regr ession line (scaling coefficient)
Y=oa+pX+e gistheerror factor in prediction of Y given that itisa

random variable with N(u,c?)

Hypotheses:
Ho B =B < Slope of the Regression is B, - this value must beexplicitly stated.
Hi:Bp<>B, <Twosided test

Test Statistic:
‘o b-PBo < b isunbiased point estimateof B
MSg <MSE isMean Square Error from ANOVA tablealso denoted szx_y
Lxx <L,, Corrected sumsof squares of X asdefined in Regresson

Critical Valueof the Test:
o = 0.05 < Probability of Typel error must be explicitly set

Cq:= inversed{g\ Co:= inversed>t(1 - g\
2) 2)
Note degrees of freedom = (n-2)
o« ) o )
Ci=0qgf—,n-2 Co=qt|1-—,n-2
1=4 ( > n ) 2:=( ( > n )

Decision Rule;

IF |t| >C, THEN REJECT H,OTHERWISE ACCEPT H,,

Probability Value:

P =minimum(2 @(t),1-2 ®,(t)

P:=min[2-pt(t,n—2),2- (1 - ptt,n - 2))]
< Notethat C; and C, are

Confidence Interval for the Regression (B): explicitly evaluated above so C,
isalr eady negativein value. So

MS MS . .
ClR:= (b+c:1- ’ E b+Cp- 3 itisadded to X, hereto find
bxx Lxx ) the L ower Bound of theCl.
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Example: obser ved slope:
b = 0.6064 Solet'stest:  Bg:= 05

From above:
< Note degrees of freedom = (n-2)

SSg
We also need from ANOVA: MSg:= ——
n-2

Onesamplet-Test for B = By

Assumptions:
=Y Y5 Yg o, Y, (dependent variable) isarandom sample ~ N(p,o2).

- X1, Xy Xy, ..., X, (independent var iable) with each value of X; matchedto Y,

Modéel:
Y=oa+pX+e

Hypotheses:
Ho B =B, =0.5 < Slope of the Regresson is B, - this value must beexplicitly stated.

Hi: B <>Byg < Two sided test
Test Statistic:
b —
t:= Po t=0.7175
’MSE
I-XX
Critical Valueof the Test:
< Probability of Typel error must be explicitly set

a = 0.05

Cq1:= qt(g,n - 2} Co:= qt(l - 3,n - 2} < Note degrees of freedom = (n-2)
2 2
Cq1 = -2.0452 Cp = 2.0452
Decision Rule:
IF |t| >C, THEN REJECT H,OTHERWISE ACCEPT H,
t=0.7175 Cq1 = -2.0452 Cp = 2.0452
Probability Value:
P=0.4788

P:=min[2-pt(t,n—2),2- (1 - ptt,n - 2))]
Confidence Interval for the Regression (B):

MSg MSg )
ClR=|b+C1- b+ Co-
Lxx Lxx )

Clr = (0.3031 0.9096) <sameCl asinthetest H, B =0...

Prototypein R:
Thistes you must do by hand. Obtain MS: from anova(Im(Y~X)). Calculatet satistic with

formula above. Usefunction qt() for C; & C,,.
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Onesamplet-Test for p = 0:

Association/Correlation

Thisted, using p instead of B, isan equivalent alternativetothe previous H,: B=p, t-test.

Assumptions:

- Standard Linear Regression depends on specifying in advance which variableisto be
consider ed 'dependent’ and which 'independent’. This decision matters as changing
rolesfor Y & X usually produces a different r esult.

=Y Y, Yg o, Y, (dependent variable) isarandom sample ~ N(p,o2).

- X1, Xy Xy, ..., X, (independent var iable) with each value of X; matchedto Y,

Modéel: <where: o isthey inter cept of the regression line (trandation)

_ B isthe Slope of the regr ession line (scaling coefficient)

Y=oa+pX+e gistheerror factor in prediction of Y giventhat itisa
random variable with N(p,62)

p =B(c /o) < correlation coefficient p defined in ter ms of Regression slope 8
and standard deviationsc, & o,.
Hypotheses:
Ho:p=0 < No correlation
Hip<>0  <Twosided test
Test Statistic:
{ e r-yn-2

\ll—rz

Critical Valueof the Test:

o = 0.05 < Probability of Typel error must be explicitly set
C1 = inversedy E\ Co = inversedy 1 - E\
2) 2)
- qt(“ i 2\ - qt(l o 2\ Note degrees of freedom = (n-2)
1=af —.n- 2=ql-7.n-
2 ) )

Decision Rule;

IF |t| >C, THEN REJECT H,OTHERWISE ACCEPT H,
Probability Value:

P =minimum(2 @(t),1-2 ®(t)
P:=min[2-pt(t,n—2),2- (1 - ptt,n - 2))]
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Example:

From above, obser ved correation coefficient:  r = 0.6048

Onesamplet-Test for p =0:
Assumptions:
-Y, Y, Y, ., Y, (dependent variable) isarandom sample ~ N(p,02).
- X1, X5, X5, .., X, (independent var iable) with each value of X; matched to Y,

Model:
Y=a+pX+e
p =B(c /o)
Hypotheses:
Ho:p=0 < No correlation
Hip<>0  <Twosided test

Test Statistic:

t.= ryn-2 t = 4.0897 < Same value reported from t-test of H,: g =0
\/ 1- r2
Critical Valueof the Test:
o = 0.05 < Probability of Typel error must be explicitly set

Cy:= qt(%,n - 2\ Coi= qt(l - %,n - 2\ < Note degrees of freedom = (n-2)

) )
Cp = -2.0452 Cp = 2.0452
Decision Rule:
IF |t| >C, THEN REJECT H,OTHERWISE ACCEPT H,
t = 4.0897 Cp = -2.0452 Cp = 2.0452
Probability Value:
P:=min[2- pt(t,n — 2),2- (1 - pt(t,n - 2))] P=0.0003 < Sameresultast-texof H,: B =0

Call:
Prototypein R: Im(formula=Y ~ X)
> summary(Im(Y~X)) Min  1Q Median 3Q Max
-8.14000 -2.07619 -0.07619 3.31743 6.86000
Coefficients:
Estimate Std. Error t value Pr(>Jt])
- Intercept) ~ 21.5869  2.6465 8.157 5.46-09 *+*
tstatigic& P > (
el X 06064 01483  4.090 0.000313 ***

valuesare
identical tothe
t-testfor Hy: B =0

Signif. codes: 0'***' 0.001'**' 0.01'*'0.05'.'0.1'"' 1

Residual standard error: 3.859 on 29 degrees of freedom
Multiple R-Squar ed: 0.3658, Adjusted R-squared: 0.3439
F-gatigic: 16.73 on 1 and 29 DF, p-value: 0.0003134
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Fisher's Onesample z-Test for p = pg:

Thistest evaluates specific values of pg using Fisher's z-transformation approach. See
Rosner p. 499ff for this.

Assumptions:
- Normal distribution for all variables used to compute correlation coefficient r.
Hypotheses:

Ho P =pp < Corréation Coefficient p, value must be explicitly stated.
Hip<>0  <Twosided test

Fisher's z-transfor mation:

Z:= 1~In(1+ r\
2 1-r1)
Distribution of z:
1
zisNormally distributed: N(u,0?) with: = pt o= = - In| — po) 2 1
2 1- po) n-3

A isthe Normalized digtribution of z~ N(0,1) where: A= (z — Zo) An-3
Test Statistic:

Ai=(z-20)-yn-3

Critical Valueof the Test:
o = 0.05 < Probability of Typel error must be explicitly set

Cq:= inversecDN(%) Co:= inversecDN(l - %)
< Note useof N(0,1) herel
C1:= qnorm(%,o,l} Co:= qnorm(l - %,0,1}

Decision Rule:
IF [A| >C, THEN REJECT H,OTHERWISE ACCEPT H,
Probability Value:

P = minimum(2 @(A),1-2 @ (1))
P.= mir[z' pnorm(x,o,l),z . (1 - pnorm(x,o,l))]

Notethat C; and C, are explicitly
evaluated above so C, isalready

negative in value. Soit isadded to
X.... hereto find theL ower Bound

bar
Confidence Interval for p: < of theCl.
1 1 . . S .,
z21:=2+Cq- z0:=2+Coy- < Clinunitsof z (i.e, "transformed")
yn-3 yn-3
2z 2.2
_ e Lo 1 _ e 2 1
PL= 2z P2= 22, < Cl inunitsof p

e +1 e +1
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Example:
From above:  r= 0.6048 And let'stest:  pg:= 0.7

Fisher's One sample z-Test for p = pg:

Assumptions:
- Normal distribution for all variables used to compute correlation coefficient r.
Hypotheses:
Ho: p=po=0.7 < Correation Coefficient p, value must be explicitly stated.
Hyip<>0 < Two sided test
Fisher's z-transformation:
o L0 z = 0.7007
2 \1-r1)
Distribution of z:
1
zisNormally distributed: N(u,6?) with: = p o= ~ - In| — po) 2 [3
2 \1-p9) n-3
A isthe Normalized distribution of z~N(0,1) where: = (z-12)-\/n-3
Test Statistic: L = 08673

20:=p Li=(z-20)n-3 A = -0.8817
Critical Valueof the Test:
a = 0.05 < Probability of Typel error must be explicitly set
Cyp= qnorm[%,o,l\ Cpi= qnorm[l - %,0,1) < Note useof N(0,1) herel

)

C1=-19 Cr=196
Decision Rule:

IF x| >C, THEN REJECT H,OTHERWISE ACCEPT H,

A=-08817 C;=-196 Cp=196
Probability Value:
P:= mi 2- pnorm(1,0,1),2- (1 - pnorm(1,0,1))] P- 0378

Confidence Interval for p:

z1:=2+Cq- 2p:=2+Cyp- ; ; fan "
Jyn-3 Jn-3 < Cl inunitsof z (i.e, "transformed" )
7, = 0.3303 7, = 10711
< Cl inunitsof p
Here we use the exponential function
expl2-z7) -1 expl2-z) -1
p1i= M poi= M exp() for number e=2.7183 Since we
exp(2- 21) + 1 exp(2-2p) + 1 already used symbol eto refer tothe

residual vector above....
p1 = 0.3188 po = 0.7899



Assignment for Week 11

Today we begin our final push toward the end of the semester looking at Linear Regression first and
then ANOVA. In fact, the two are closely related under an encompassing rubric called “linear modeling’
or “glm” (for the general linear model). At heart, all of these methods involving specifying a statistical
model allowing observations of a dependent variable to be interpreted in light of observations for one or
more independent variables plus a general hypothesis of uncontrolled or unexplained variability often
called “error” or “residual”. Many different models can be used. In “Simple” and “Multiple” Linear
Regression, a single dependent variable Y is specified in terms of an inter cept coefficient o plus one or
more regression (or slope) coefficients §; exactly associated with the independent variables X; (withi=1
in “simple” or more than one in “multiple” regression). The first step in Linear Regression is to “fit” the
regression — in other words find the “best” line describing the relationship between independent and
dependent variables. One way to do this is the least squar es method which involves finding a line
through the points that minimizes the squared distances between points on the line itself, with the
observations Y for each X.

9

Once fitted, the line becomes the regression prediction Yy, of where the Expected (or mean) values of
each Y are to be found, and the distance between Yy, and Y becomes the residual unexplained
variance. Of course, the smaller the residual, the better the fit between Y and X;. To measure this fit,
variance is usually expressed in terms of Sums of Squares— the numerator in variance calculations.
Here, residual unexplained variance becomes the Total Sums of Squares SSrt that is partitioned into
Regression Sums of Squares SSg and Within (or Error) Sums of Squares SSg such that SSg + SSg =
SSt. With this partition of variance, one sets up a standard ANOVA table displaying the Sour ce of the
variance, Sums of Squares SS, degrees of freedom df, and M ean Squares MS. From a standard
ANOVA table, several inference procedures may be followed to test hypotheses about the linear model
parameter s with the fitted data.

Our objective this week is to prototype regression fitting and the associated tests with real data. Pick a
data set from one of your data sources, and perform the following:

1. Fit your data using a “Simple” Linear Regression model. Also recover and display your regression
predictions and residuals. Draw a graph displaying your results. [see Biostatistics Worksheet 39].

2. Calculate the ANOVA table. [see Worksheet 39]
3. Perform a F-Test for § = 0 and interpret the results. [see Worksheet 40]

4. Perform a t-Test for P = 0, calculate the confidence interval for , and interpret the results. [see
Worksheet 41]

5. Calculate confidence intervals for the regression prediction and for confidence interval for new
observations. [see Worksheet 41]

Calculate the coefficient of determination and coefficient of correlation. [see Worksheet 42]
Perform a t-Test for = By (a value you wish to test), and interpret results. [see Worksheet 42]

Perform a t-Test for p = 0 (no correlation), and interpret results. [see Worksheet 42]

o =N

Perform Fisher’s z-Test for p = p, (you supply the test value), and interpret results. [see Worksheet
42]



Isfit { stats} R Documentation

Find the Least Squares Fit

Description

The least squares estimate of b in the model
y=Xb+e

is found.

Usage

Isfit(x, y, wt = NULL, intercept = TRUE, tolerance = 1le-07,
yname = NULL)

Arguments

X amatrix whose rows correspond to cases and whose columns correspond to
variables.

y the responses, possibly amatrix if you want to fit multiple left hand sides.

wt an optional vector of weights for performing weighted least squares.

intercept whether or not an intercept term should be used.
tolerance the tolerance to be used in the matrix decomposition.
yname names to be used for the response variables.

Details

If weights are specified then aweighted least squares is performed with the weight given
to the jth case specified by the jth entry in wt.

If any observation has amissing value in any field, that observation isremoved before the
anaysisiscarried out. This can be quite inefficient if thereisalot of missing data.

The implementation is via a modification of the LINPACK subroutines which allow for
multiple left-hand sides.

Value
A list with the following named components:

coef the least sauares estimates of the coefficients in the moddl (b as stated



above).
residuals residuas from the fit.
intercept indicates whether an intercept was fitted.
qr the QR decomposition of the design matrix.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New SLanguage.
Wadsworth & Brooks/Cole.

See Also

Im which usually is preferable; 1s.print, Is.diag.

Examples

##-- Using the same data as the Im(.) example:
IsD9 <- Isfit(x = unclass(gl(2,10)), y = weight)
Is.print(IsD9)

[Package stats version 2.4.1 Index]



m { stats}

R Documentation

Fitting Linear M odels

Description

Im is used to fit [inear models. It can be used to carry out regression, single stratum
analysis of variance and analysis of covariance (although aov may provide a more
convenient interface for these).

Usage

Im(formula,
method =
singular.

Arguments

formula

data

subset

weights

na.action

method

model, X,
y, gqr

singular.ok

data, subset, weights, na.action,
"qr', model = TRUE, x = FALSE, y = FALSE, gr = TRUE,
ok = TRUE, contrasts = NULL, offset, ...)

a symbolic description of the model to be fit. The details of model
specification are given below.

an optional data frame, list or environment (or object coercible by
as.data.frame to a data frame) containing the variablesin the model. If not
found in data, the variables are taken from environment(formula),
typically the environment from which Im is called.

an optional vector specifying a subset of observationsto be used in the
fitting process.

an optional vector of weights to be used in the fitting process. Should be
NULL or a numeric vector. If non-NULL, weighted least squaresis used
with weightsweights (that is, minimizing sum(w*e~2)); otherwise
ordinary least squaresis used.

afunction which indicates what should happen when the data contain NAS.
The default is set by the na.action setting of options, and is na.fail if that
isunset. The “factory-fresh” default is na.omit. Another possible valueis
NULL, no action. Vaue na.exclude can be useful.

the method to be used; for fitting, currently only method = "qr"is
supported; method = "model .frame" returns the model frame (the same
aswith model = TRUE, see below).

logicals. If TRUE the corresponding components of the fit (the model
frame, the model matrix, the response, the QR decomposition) are
returned.

logical. If FALSE (the default in Sbut not in R) asingular fit is an error.



contrasts  gnoptional list. Seethe contrasts.arg of model.matrix.default.

offset this can be used to specify an a priori known component to be included in
the linear predictor during fitting. This should be NULL or a numeric
vector of length either one or equal to the number of cases. One or more
offset terms can be included in the formula instead or as well, and if both
are specified their sum is used. See model .offset.

additional arguments to be passed to the low level regression fitting
functions (see below).

Details

Modelsfor Im are specified symbolically. A typical model has the form response ~
terms Where response is the (numeric) response vector and terms is a series of terms
which specifiesalinear predictor for response. A terms specification of the form first
+ second indicates all thetermsin first together with al the termsin second with
duplicates removed. A specification of the form first:second indicates the set of terms
obtained by taking the interactions of all termsin first with al termsin second. The
specification fFirst*second indicates the cross of first and second. Thisisthe same as
first + second + first:second.

If the formulaincludes an offset, thisis evaluated and subtracted from the response.

If response isamatrix alinear model isfitted separately by least-squares to each column
of the matrix.

See model.matrix for some further details. The termsin the formulawill be re-ordered so
that main effects come first, followed by the interactions, all second-order, al third-order
and so on: to avoid this pass a terms object as the formula (see aov and demo(glim.vr)
for an example).

A formula has an implied intercept term. To remove thisuse eithery ~ x - 10ry ~ 0
+ x. Seeformula for more details of allowed formulae.

Im calls the lower level functions Im.fit, etc, see below, for the actual numerical
computations. For programming only, you may consider doing likewise.

All of weights, subset and offset are evaluated in the same way as variablesin
formula, that isfirst in data and then in the environment of formula.

Value
Im returns an object of class ""Im" or for multiple responses of classc('mim™, ""Im™).

The functions summary and anova are used to obtain and print a summary and analysis of
variance table of the results. The generic accessor functions coefficients, effects,



fitted.values and residuals extract various useful features of the value returned by
Im.
An object of class""Im" isalist containing at least the following components:

coefficients gnamed vector of coefficients

residuals the residuals, that is response minus fitted values.
fitted.values the fitted mean values.

rank the numeric rank of the fitted linear model.
weights (only for weighted fits) the specified weights.
df.residual  theresidual degrees of freedom.

call the matched call.

terms the terms object used.

contrasts (only where relevant) the contrasts used.
xlevels (only where relevant) arecord of the levels of the factors used in fitting.
offset the offset used (missing if none were used).

y if requested, the response used.

X if requested, the model matrix used.

model if requested (the default), the model frame used.

In addition, non-null fits will have components assign, effects and (unless not
requested) qr relating to the linear fit, for use by extractor functions such as summary and
effects.

Usingtimeseries
Considerable care is needed when using Im with time series.

Unlessna.action = NULL, the time series attributes are stripped from the variables
before the regression is done. (Thisis necessary as omitting NAs would invalidate the time
series attributes, and if NAs are omitted in the middle of the series the result would no
longer be aregular time series.)

Even if the time series attributes are retained, they are not used to line up series, so that
the time shift of alagged or differenced regressor would be ignored. It is good practice to
prepare adata argument by ts.intersect(..., dframe = TRUE), then apply a suitable
na.action to that dataframe and call Im with na.action = NULL so that residuals and
fitted values are time series.

Note



Offsets specified by offset will not be included in predictions by predict.Im, whereas
those specified by an offset term in the formula will be.

Author(s)

The design was inspired by the S function of the same name described in Chambers
(1992). The implementation of model formula by Ross Ihaka was based on Wilkinson &
Rogers (1973).

References

Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical Modelsin Seds J. M.
Chambersand T. J. Hastie, Wadsworth & Brooks/Cole.

Wilkinson, G. N. and Rogers, C. E. (1973) Symbolic descriptions of factorial models for
analysis of variance. Applied Satistics, 22, 392-9.

See Also

summary.lm for summaries and anova.lm for the ANOVA table; aov for a different
interface.

The generic functions coef, effects, residuals, fitted, vcov.

predict.Im (via predict) for prediction, including confidence and prediction intervals,
confint for confidence intervals of parameters.

Im.influence for regression diagnostics, and glm for gener alized linear models.

The underlying low level functions, Im.fit for plain, and Im.wfit for weighted regression
fitting.

More Im() examples are available e.g., in anscombe, attitude, freeny, LifeCycleSavings,
longley, stackloss, swiss.

Examples

## Annette Dobson (1990) "An Introduction to Generalized Linear
Models™.
## Page 9: Plant Weight Data.

ctl <- ¢c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)
trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)
group <- gl(2,10,20, labels=c('Ctl","Trt'"))

weight <- c(ctl, trt)

anova(Im.D9 <- Im(weight ~ group))

summary(Im_.D90 <- Im(weight ~ group - 1))# omitting intercept
summary(resid(Im.D9) - resid(Im.D90)) #- residuals almost identical



opar <- par(mfrow = c(2,2), oma = ¢c(0, 0, 1.1, 0))

plot(Im.D9, las = 1) # Residuals, Fitted,

par(opar)

## model frame :

stopifnot(identical(Im(weight ~ group, method = "model.frame™),
model . frame(Im.D9)))

#i## less simple examples in ""See Also' above

[Package stats version 2.4.1 Index]



itted { stats} R Documentation

Extract Model Fitted Values

Description

fitted isageneric function which extracts fitted values from objects returned by
modeling functions. fitted.values isan aliasfor it.

All object classes which are returned by model fitting functions should provide a fitted
method. (Note that the generic is Fitted and not fitted.values.)

Methods can make use of napredict methods to compensate for the omission of missing
values. The default and nls methods do.

Usage

fitted(object, ...)
fitted.values(object, ...)

Arguments

object an object for which the extraction of model fitted values is meaningful.
other arguments.

Value
Fitted values extracted from the object x.
References

Chambers, J. M. and Hastie, T. J. (1992) Satistical Modelsin S. Wadsworth &
Brooks/Cole.

See Also

coefficients, glm, Im, residuals.

[Package stats version 2.4.1 Index]
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Predict method for Linear Moddl Fits

Description
Predicted values based on linear model object.

Usage

## S3 method for class "Im":

predict(object, newdata, se.fit = FALSE, scale = NULL, df = Inf,
interval = c("'none", "confidence", "prediction™™),
level = 0.95, type = c(“response', "terms"),
terms = NULL, na.action = na.pass, pred.var = res.var/weights,
weights = 1, ...)

Arguments

object  QOpject of classinheriting from *Im"

newdata  An optional dataframein which to look for variables with which to predict.
If omitted, the fitted values are used.

se.fit A switchindicating if standard errors are required.

scale Scale parameter for std.err. calculation

df Degrees of freedom for scale

interval Type of interval calculation.

level Tolerance/confidence level

type Type of prediction (response or model term).
terms If type="terms", which terms (default is all terms)

na.action function determining what should be done with missing values in newdata.
The default isto predict NA.

pred.var the variance(s) for future observations to be assumed for prediction intervals.
See Details.

weights  variance weights for prediction. This can be a numeric vector or a one-sided
model formula. In the latter case, it isinterpreted as an expression evaluated
in newdata

further arguments passed to or from other methods.

Details



predict. Im produces predicted values, obtained by evaluating the regression function in
the frame newdata (which defaults to model . frame(object). If thelogical se.fitis
TRUE, standard errors of the predictions are calculated. If the numeric argument scale is
set (with optional df), it isused asthe residual standard deviation in the computation of
the standard errors, otherwise thisis extracted from the model fit. Setting intervals
specifies computation of confidence or prediction (tolerance) intervals at the specified
level, sometimes referred to as narrow vs. wide intervals.

If the fit is rank-deficient, some of the columns of the design matrix will have been
dropped. Prediction from such afit only makes sense if newdata is contained in the same
subspace as the original data. That cannot be checked accurately, so awarning is issued.

If newdata is omitted the predictions are based on the data used for the fit. In that case
how cases with missing valuesin the original fit is determined by the na.action
argument of that fit. If na.action = na.omit omitted cases will not appear in the
residuals, whereasif na.action = na.exclude they will appear (in predictions,
standard errors or interval limits), with residual value NA. See also napredict.

The prediction intervals are for a single observation at each case in newdata (or by
default, the data used for the fit) with error variance(s) pred.var. This can be amultiple
of res.var, the estimated value of sigma”™2: the default is to assume that future
observations have the same error variance as those used for fitting. If weights is
supplied, the inverse of thisis used as a scale factor. For aweighted fit, if the prediction
isfor the original data frame, weights defaults to the weights used for the model fit, with
awarning since it might not be the intended result. If the fit was weighted and newdatais
given, the default is to assume constant prediction variance, with awarning.

Value
predict. Im produces a vector of predictions or amatrix of predictions and bounds with

column names fit, lwr, and upr if interval isset. If se. FitiSTRUE, alist with the
following components is returned:

fit vector or matrix as above
se.fit standard error of predicted means
residual .scale residual standard deviations

df degrees of freedom for residual
Note

Variables are first looked for in newdata and then searched for in the usual way (which
will include the environment of the formula used in the fit). A warning will be given if
the variables found are not of the same length as those in newdata if it was supplied.



Offsets specified by offset in thefit by Im will not be included in predictions, whereas
those specified by an offset term in the formulawill be.

Notice that prediction variances and prediction intervals always refer to future
observations, possibly corresponding to the same predictors as used for the fit. The
variance of the residuals will be smaller.

Strictly speaking, the formula used for prediction limits assumes that the degrees of

freedom for the fit are the same as those for the residual variance. This may not be the
caseif res.var isnot obtained from the fit.

See Also

The model fitting function Im, predict, SafePrediction

Examples

## Predictions

X <- rnorm(15)

y <- X + rnorm(15)

predict(Im(y ~ x))

new <- data.frame(x = seq(-3, 3, 0.5))

predict(Im(y ~ x), new, se.fit = TRUE)

pred.w.plim <- predict(Im(y ~ x), new, interval="prediction')

pred.w.clim <- predict(Im(y ~ x), new, interval="confidence')

matplot(new$x,cbind(pred.w.clim, pred.w.plim[,-1]),
Ity=c(1,2,2,3,3), type="1", ylab="predicted y")

## Prediction intervals, special cases

## The first three of these throw warnings
w<- 1+ x"2

fit <- Im(y ~ X)

wfit <- Im(y ~ X, weights = w)

predict(fit, interval = "prediction')

predict(wfit, interval = "prediction™)

predict(wfit, new, interval = *“prediction’)

predict(wFit, new, interval = "prediction", weights = (new$x)”2)
predict(wfit, new, interval = "prediction”, weights = ~x"2)

[Package stats version 2.4.1 Index]
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ANOVA for Linear Modd Fits

Description

Compute an analysis of variance table for one or more linear model fits.

Usage

## S3 method for class "Im":

anova(object, ...)

anova. Imlist(object, ..., scale = 0, test = "F")
Arguments

object,  objectsof class Im, usualy, aresult of acall to Im.

test acharacter string specifying the test statistic to be used. Can be one of "'F*,
""Chisq" or ""Cp", with partial matching allowed, or NULL for no test.
scale numeric. An estimate of the noise variance sigma2. If zero thiswill be

estimated from the largest model considered.

Details

Specifying a single object gives a sequentia analysis of variance table for that fit. That is,
the reductionsin the residual sum of squares as each term of the formulais added in turn
are given in as the rows of atable, plusthe residual sum of squares.

The table will contain F statistics (and P values) comparing the mean square for the row
to the residual mean sgquare.

If more than one object is specified, the table has arow for the residual degrees of
freedom and sum of squares for each model. For all but the first model, the change in
degrees of freedom and sum of squaresis aso given. (This only make statistical sense if
the models are nested.) It is conventional to list the models from smallest to largest, but
thisis up to the user.

Optionally the table can include test statistics. Normally the F statistic is most
appropriate, which compares the mean square for arow to the residua sum of squares for
the largest model considered. If scale is specified chi-squared tests can be used.
Mallows' Cp statistic is the residual sum of squares plus twice the estimate of sigma’\2
times the residual degrees of freedom.



Value

An object of class ""anova' inheriting from class ""data. frame™.

Warning

The comparison between two or more models will only be valid if they are fitted to the
same dataset. This may be a problem if there are missing values and R's default of
na.action = na.omitisused, and anova. Imlist will detect thiswith an error.

Note

Versions of R prior to 1.2.0 based F tests on pairwise comparisons, and this behaviour
can still be obtained by adirect call to anovalist. Im.

References

Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical Modelsin Seds J. M.
Chambersand T. J. Hastie, Wadsworth & Brooks/Cole.

See Also
The model fitting function Im, anova.

drop1 for so-called ‘type |1’ anovawhere each term is dropped one at a time respecting
their hierarchy.

Examples

## sequential table
fit <- Im(sr ~ ., data = LifeCycleSavings)
anova(fit)

## same effect via separate models

fit0 <- Im(sr ~ 1, data = LifeCycleSavings)
fitl <- update(fitO, . ~ . + popl5)

fit2 <- update(fitl, . ~ . + pop75)

fit3 <- update(fit2, . ~ . + dpi)

fitd <- update(fit3, . ~ . + ddpi)
anova(fito, fitl, fit2, fit3, fit4d, test="F")

anova(fit4, fit2, Fit0, test="F'") # unconventional order

[Package stats version 2.4.1 Index]
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Summarizing Linear Model Fits
Description
summary method for class " Im".

Usage

## S3 method for class "Im":
summary(object, correlation = FALSE, symbolic.cor = FALSE, ...)

## S3 method for class "summary.Im":

print(x, digits = max(3, getOption('digits') - 3),
symbolic.cor = x$symbolic.cor,
signif.stars = getOption(‘'show.signif.stars™), ...)

Arguments
object an object of class " Im™, usualy, aresult of acall to Im.
X an object of class "'summary. Im", usualy, aresult of acall to

summary. Im.

correlation |qgical; if TRUE, the correlation matrix of the estimated parametersis
returned and printed.

digits the number of significant digits to use when printing.

symbolic.cor |ogical. If TRUE, print the correlations in a symbolic form (see symnum)
rather than as numbers.

signif.stars |ogical. If TRUE, “significance stars’ are printed for each coefficient.
further arguments passed to or from other methods.

Details

print.summary. Im tries to be smart about formatting the coefficients, standard errors,
etc. and additionally gives “significance stars” if signif.stars iSTRUE.

Correlations are printed to two decimal places (or symbolically): to see the actual
correlations print summary(object)$correlation directly.

Value



The function summary . Im computes and returns alist of summary statistics of the fitted
linear model given in object, using the components (list elements) **call' and ""terms"
from its argument, plus

residuals

coefficients

aliased

sigma

df

fstatistic

r.squared

adj .r.squared
cov.unscaled

correlation

symbolic.cor

na.action

See Also

the weighted residual's, the usual residuals rescaled by the square root of
the weights specified in the call to Im.

ap x4 matrix with columns for the estimated coefficient, its standard
error, t-statistic and corresponding (two-sided) p-value. Aliased
coefficients are omitted.

named logical vector showing if the original coefficients are aliased.
the square root of the estimated variance of the random error

sgma’2 = U(n-p) umw{i] R[i]"2),

where R[i] isthei-th residual, residuals[i].

degrees of freedom, a 3-vector (p, n-p, p*), the last being the number of
non-aliased coefficients.

(for models including non-intercept terms) a 3-vector with the value of
the F-statistic with its numerator and denominator degrees of freedom.

R™2, the “fraction of variance explained by the model”,
R'2=1- 3um(R[i]"2) / Sum((yi]- y*)"2),

where y* isthe mean of y[i] if thereis an intercept and zero otherwise.
the above R"2 statistic “adjusted”, penalizing for higher p.
ap x p matrix of (unscaled) covariances of the coef[j], j=1, ..., p.

the correlation matrix corresponding to the above cov.unscaled, if
correlation = TRUE is specified.

(only if correlation istrue.) The value of the argument
symbolic.cor.

fromobject, if present there.

The mode! fitting function Im, summary.

Function coef will extract the matrix of coefficients with standard errors, t-stati stics and

p-values.

Examples



##-- Continuing the Im(.) example:

coef(Im.D90)# the bare coefficients

s1d90 <- summary(Im.D90 <- Im(weight ~ group -1))# omitting intercept
s1d90

coef(sld90)# much more

[Package stats version 2.4.1 Index]



2007 Biostatistics 43 Multiple Regression
ORIGIN =0

Multiple Regression

Multiple Regression is an extensgon of the technique of linear regression that describesthe
relationship between asingle dependent variable(Y) and multiple independent (predictor)
variables (X;, X,, X3, ...). Typically, multipler egresson involves specifying one, or sometimes
several, linear models, constructing the multiple regr ession, and then testing hypotheses often
involving several regression coefficients (8, B, s --.) cor responding to each of the X variables.

Assumptions:

- Multiple Linear Regr ession depends on specifyingin advance which variable is consdered
'dependent’ and which others'independent’. Thisdecision mattersas changing
rolesfor Y versus X'susually produces a different result.

Y Y, Y Y, (dependent variable) isarandom sample ~ N(p,62).

- k Vectorsof Independent Variables

- X110 Xp190 Xq 3, - s Xqy (independent variable) with each value of X, ; matched to Y;

- X1 Xz X3 s X5y (independent variable) with each value of X ,; matched to Y,

:'Xk,l’ Xy2s Xz - Xy (independent variable) with each value of Xk; matched to Y,

Model:
YiZ ot ByXg; + ByXoit BaXait o+ BiXyi * g fori=1ton

where: o isthey intercept of the regr ession line(trandation).
B,'saretheregression coefficient (i.e, "dope") for each X, of
theregresson line.
si‘saretheresiduals(i.e. "error")in prediction of Y given that itisa

random variable with N(u,62)

Note that thisis one of many possible linear modelsinvolving X ;'sthat may be squar ed

or higher order functionsof an original variable (i.e., X2, X3, etc.) or cross pr oducts of
two original variables (i.e., X,iX,; etc.). Thisisthewonderful and extremely powerful world

of Linear M odeling.
L east Squares Estimation of the Regression Line:

Calculationsin Multiple Regression ar eextensive, and best visualized using matrix algebra
where sums of squaresand cross productsare implicit in matrix manipulations

X: becomesa (n X k+1) Matrix of valueswith afirst column of 1'sand each of k vectors
abovecomprising a subsequent columns.

X1 isthe Inverse Matrix of X, such that X-1X =1 (the identity matrix).

XT isthe trangpose matrix of X whererowsand columns are reversed.
Y isthe vector of Y;'sarrayed asa column of numbers.
b isthe vector of regression coefficientsincluding a plusall g;'s

arrayed as a sngle column of numbers.
isthe vector of fitted values Y, arrayed asacolumn of numbers.

e isthe vector of resdualse, arrayed asacolumn of numbers.
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Estimated Regression Coefficients (b):

-1
b:= (XT X) . (XT Y) < Note: all calculations here involve
Estimated valuesof Y (Yhat): MathCad's matrix algebra functiond
Yhat = X-b
Residuals (e):
e=Y - Yhat
Example: Rosner Table 11.9 p. 511. K := READPRN("c:/2007BiostatsData/Rosner Table 11.9a.txt" )
Y = K<2> < dependent variableisthe 3rd column of K
n:= length(Y)  n=16 135 3 89) 89 1 135 3)
i=0.n-1 Li::1 120 4 90 90 1 120 4
100 3 83 83 1 100 3
X = t(l_ KO K<1>)
= augmentL, K, 105 2 77 77 1 105 2
A independent variables are first 130 4 92 92 1130 4
two columns of K 125 5 98 98 1125 5
] 125 2 82 82 1125 2
Assumptions: 105 3 85 85 1105 3
- vector Y isthe dependent variable K= 120 5 96 Y= 9% X= 1120 5
and a random sample~ N(p,6?). 90 4 95 95 1 90 4
- matrix X arethe independent
variablesmatched toY 120 2 80 80 1120 2
9% 3 79 79 1 9% 3
Model: 120 3 86 86 1120 3
160 3 92 92 1 160 3
Estimated Regression Coefficients (b): 125 3 88) 88) 1125 3)
-1
b= (xTx) - (xTy) 88.0671) 0.9329
92.0711 -2.0711
Estimated valuesof Y (Y4): 83.6717 ~0.6717
78.4119 -1.4119
Yhat = X-b
93.3269 -1.3269
Residuals (e): 98.5867 -0.5867
80.9235 1.0765
e=Y - Yha 53.450194
84.2996 0.7004
b=| 0125583 Ypg = e=
97.9588 —-1.9588
5.887719 )
88.3036 6.6964
80.2956 —0.2956
83.0438 —-4.0438
Values confirmed in Table 11.10 p. 512 > 86.1833 -0.1833
95.8386 1.1614
91.2067 0.7933

86.8113 ) 1.1887 )



2007 Biostatistics 43 Multiple Regression
Prototypein R:

COMMANDS

> K=read.table(" c:/2007BiostatsData/Rosner Table 11.9.txt")
> K

> Y=K$SBP

> X1=K $Bir thwt

> X2=K$Age

> Im(Y~X1+X2) < Noteformulaformat for Linear Modd...

Call:
Im(formula=Y ~ X1+ X2)

Cosfficients:
(Intercept) X1 X2
53.4502 0.1256  5.8877

> plot.Im(Im(Y~X1+X2)) < Diagnogtic plotsfor assessng Normality Assumption.
> summary(Im(Y~X1+X2))

Call:
Im(formula=Y ~ X1+ X2)

Residuals:
Min 1Q Median 3Q Max
-4.0438 -1.3481 -0.2395 0.9688 6.6964

Coefficients:

Estimate Std. Error t value Pr(>Jt])
(Intercept) 53.45019 4.53189 11.794 2.57e-08 ***
X1 0.12558 0.03434 3.657 0.00290 **
X2 5.88772 0.68021 8.656 9.34e-07 ***

Signif. codes: 0'***'0.001'**' 0.01'*' 0.05'.'0.1"'" 1

Residual sandard error: 2.479 on 13 degrees of freedom
Multiple R-Squar ed: 0.8809, Adjusted R-squared: 0.8626
F-gatigic: 48.08 on 2 and 13 DF, p-value: 9.844e-07

> anova(lm(Y~X1+X2))

Analyssof VarianceTable

Response: Y

Df Sum &g Mean Sq F value Pr(>F)
X1 1 130.54 130.54 21.238 0.0004901 ***
X2 1 460.50 460.50 74.923 9.342e-07 ***
Residuals 13 79.90 6.15

Signif. codes: 0'***' 0.001'**' 0.01'*' 0.05'.'0.1"'" 1
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> predict(Im(Y~X1+X2),confidence=0.95,interval=" prediction")

fit  lwr upr
88.06709 82.41169 93.72250
92.07106 86.45813 97.68400
83.67168 77.94349 89.39987
78.41187 72.49403 84.32972
93.32689 87.68236 98.97143
98.58670 92.53982 104.63358
80.92354 75.05303 86.79405
84.29959 78.65438 89.94481
97.95878 91.90561 104.01195
10 88.30356 82.21745 94.38968
11 80.29562 74.44843 86.14282
12 83.04376 77.21015 88.87738
13 86.18334 80.64367 91.72302
14 95.83856 89.84909 101.82803
15 91.20667 84.91020 97.50314
16 86.81126 81.25746 92.36506
Warning message:
Predictionson current datarefer to _future_responses
in: predict.Im(Im(Y ~ X1 + X2), confidence= 0.95, interval = "prediction")

O©CoOoO~NOOThWNE

Prototypein SYSTAT:

SYSTAT Rectangular file C:\Documents and Settings\Wm Stein\Desktop\Biostatistics Spring
2007\Week 11\Data\Rosner Table 11.syd,
created Mon Apr 02, 2007 at 15:20: 33, contains var iables:
BLANKBIRTHWTAGESBP
<Bookmark(3)>

Dep Var: SBP N: 16 Multiple R: 0.93857 Squar ed multipleR: 0.88091

Adjusted squared multiple R: 0.86259 Standard error of estimate: 2.47917

Effect Coefficient Std Error Std Coef Tolerance t P(2 Tail)
CONSTANT  53.45019 453189  0.00000 . 11.79424 0.00000
BIRTHWT 0.12558 0.03434  0.35208 0.98859 3.65746 0.00290
AGE 5.88772 0.68021  0.83323 0.98859 8.65580 0.00000

Analysisof Variance

Source Sum-of-Squar es df Mean-Square F-ratio P
Regr ession 591.03564 2 295.51782 48.08063 0.00000
Residual 79.90186 13 6.14630

*** WARNING ***
Case 10 isan outlier (Studentized Residual =  6.75638)

Durbin-Watson D Statisic 2.214
Firs Order Autocorrelation -0.121
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ORIGIN = 0
Inference in Multiple Regression

A variety of tests may be employed testing regresson coefficientsin M ultiple Regresson in
ways that are analogousto thosein " Simple" Linear Regression.

Assumptions:

-Y,, Y, Y, ..., Y, (dependent variable) isarandom sample ~ N(u,62).

- X Matrix of One and column vectors of Independent Variables

- X115 Xps90 Xq3, - Xqy (independent variable) with each value of X ; matched to Y,
- Xo10 Xoigw Xp s X5y (independent variable) with each value of X ,; matched to Y,

:'Xk,l’ Xy2s Xz - Xy (independent variable) with each value of Xk; matched to Y,

Model:
YiZ ot ByXg; + ByXoit BaXait o+ BXyi * g fori=1ton

where: o isthey intercept of the regr ession line(trandation).
B,'saretheregression coefficient (i.e, "dope") for each X, of

theregresson line.
si‘saretheresiduals(i.e. "error")in prediction of Y given that itisa

random variable with N(u,62)

Note that thisis one of many possible linear modelsinvolving X 'sthat may be squar ed

or higher order functionsof an original variable (i.e., X2, X3, etc.) or cross pr oducts of
two original variables (i.e., X,iX,; €tc.). Thisisthewonderful and extremely powerful world

of Linear M odeling.

L east Squares Estimation of the Regression Line:
Estimated Regression Coefficients (b):
1 Note: all calculations hereinvolve

b:= (XT X) . (XT Y) MathCad's matrix algebra functiond
Estimated valuesof Y (Y4):
. Yhat .= X- b n:= length(Y) k:=cols(X) -~ 1 < calculationsneeded
Residuals (e): for size of problem
a for ANOVA table
e=Y- Yhat

ANOVA Table for Multiple Regression:

Sums of Squares: Degr ees of Freedom: Mean Squares
2 SSR -
SSR = Z(Yha — mean(Y)) dfg = k — <Regression
dfR
SS .
ssg:= (Y - Yhat)2 dfg:=n-k-1 ?E <Residual
E
SS
2 T
SSt:="$" (Y - mean(Y dft:=n-1 — < Total
T Z( (Y)) T oy
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F-Test (ANOVA) for Hy: all B's=0versusH4: not all B'sareO:

Hypotheses:
Hy B;=B,=B3=..=B,=0 < Note specificity of test here!
H,:At least one B, isNOT O <Two sided test
Test Statistic:
MS
= R < Fistheratio of samplevariances
MSg

Sampling Distribution:

If Assumptionshold and Hg istrue, then F ~F ., 1)
Critical Valueof the Test:
o = 0.05 < Probability of Typel error must be explicitly set

CV = inversedp(1 — o) cVi=gF(1-a,k,n-k-1) note: df = k, (n-k-1)
Decision Rule:

IF |F|>CV, THENREJECT H,OTHERWISE ACCEPT H,

Probability Value:

P=1-®(F) P:=1- pF(F,k,n -k - 1)
Exampl € Rosner Table 11.9 p. 511. K := READPRN("c:/2007BiostatsData/Rosner Table 11.9a.txt" )
Y = K<2> < dependent variableisthe 3rd column of K
n:= length(Y)  n=16 135 3 89) 89 1 135 3)
i=0.n-1 Li::1 120 4 90 90 1120 4
100 3 83 83 1 100 3
X = t(l_ KO K<1>)
= augmeniiL, K -, 105 2 77 77 1 105 2
7 independent variables are first 130 4 92 92 1130 4
two columns of K 125 5 98 98 1125 5
] 125 2 82 82 1 125 2
Assumptions: 105 3 85 85 1105 3
- vector Y isthe dependent variable K= 120 5 96 Y= 9% X= 1120 5
and a random sample~ N(u,62). 90 4 95 95 1 90 4
- matrix X are the independent
variablesmatchedto Y 120 2 80 80 1120 2
95 3 79 79 1 95 3
Model: 120 3 86 86 1 120 3
Y=o+ By Xy +ByXy t g 150 4 97 97 1 150 4
] ) o 160 3 92 92 1 160 3
Estimated Regression Coefficients (b): 125 3 88) 88 1125 3)

-1

b= (xTx) - (xTy)
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Estimated valuesof Y (Y4):
Yha = X-b
Residuals (e):

e=Y - Yna

n := length(Y)

Multiple Regression Inference

53.450194
0.125583
5.887719 )

b= Yha =

k= cols(X) — 1

ANOVA Table for Multiple Regression:

Sums of Squares:

sSri= 3" (Vhat - mean(Y))? SSg = 591.0356  dfg := k

sse= Y(Y - Yha)?

sst= (Y - mean(Y))?>  SSt= 670.9375 dft =

Test Statistic:
MSR

- MSg
Critical Valueof the Test:
a := 0.05

cV=qgF(1- a,k,n—k—1)

Decision Rule;

SSg = 79.9019

< Fistheratio of samplevariances

Degr ees of Freedom:

dfr =2

dfg =

n-1

SSe
n-k-1dfg=13 MSg:=——

SSt
dfr=15 MST:=——

88.0671 0.9329
92,0711 —2.0711
83.6717 -0.6717
78.4119 ~1.4119
93.3269 ~1.3269
98.5867 ~0.5867
80.9235 1.0765
84.2996 0.7004
o7ose8 | | -19588
88.3036 6.6964
80.2956 -0.2956
83.0438 ~4.0438
86.1833 -0.1833
95.8386 1.1614
91.2067 0.7933
86.8113 ) 1.1887 )

Mean Squares.

SSR
MSR = — MSR = 2955178
dfp

MSEg = 6.1463
dfg

MST = 44.7292
dfr

" values confirmed Table 11.10 p. 512

CV = 3.8056

IF |F|>CV, THEN REJECT H,OTHERWISE ACCEPT H,

F = 48.0806

Probability Value:
P:=1-pFF,k,n-k-1)

CV = 3.8056

P=908443x 10

F = 48.0806

< confirmed p. 516

< Probability of Typel error must be explicitly set

note: df = k, (n-k-1)

< confirmed p. 516
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Prototypein R:

COMMANDS

> K=read.table(" c:/2007BiostatsData/Rosner Table 11.9.txt")
> K

> Y=K$SBP

> X1=K $Bir thwt

> X2=K$Age

> anova(Im(Y~X1+X2))

Analyssof VarianceTable

Response: Y

Df Sum &g Mean Sq F value Pr(>F)
X1 1 130.54 130.54 21.238 0.0004901 ***
X2 1 460.50 460.50 74.923 9.342e-07 ***
Residuals 13 79.90 6.15

Signif. codes: 0'***' 0.001'**' 0.01'*' 0.05'.'0.1"'" 1

" Notethat in or der to obtain appropriatevalue for M Sz, one mugt first sum the partial Sum of
Squar esfor X; & X, and also sum the degrees of freedom for X; & X,. The MSg can be
calculated by hand, along with a new F value that isone half the sum for X; and X, reported here.

Prototypein SYSTAT:
SYSTAT Rectangular file C:\Documents and Settings\Wm Stein\Desktop\Biostatistics Spring
2007\Week 11\Data\Rosner Table 11.syd,
created Mon Apr 02, 2007 at 15:20: 33, contains var iables:
Dep Var: SBP N: 16 Multiple R: 0.93857 Squar ed multipleR: 0.88091

Adjusted squared multiple R: 0.86259 Standard error of estimate: 2.47917

Effect Coefficient Std Error Std Coef Tolerance t P(2 Tail)
CONSTANT  53.45019 4.53189  0.00000 : 11.79424 0.00000
BIRTHWT 0.12558 0.03434  0.35208 0.98859 3.65746 0.00290
AGE 5.88772 0.68021  0.83323 0.98859 8.65580 0.00000

Analysisof Variance

Source Sum-of-Squar es df Mean-Square F-ratio P
Regr ession 591.03564 2 295.51782 48.08063 0.00000
Residual 79.90186 13 6.14630

¥+ WARNING ***
Case 10 isan outlier (Studentized Residual =  6.75638)

Durbin-Watson D Statisic 2.214
Firs Order Autocorrelation -0.121

N SYSTAT reportsthingsour way in its ANOVA table
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t-Test for Hg: B; = 0and all other B;'s <> O:

Note: Thist-test approach isequivalent to the Partial F-Tes approach (Rosner p. 519) asfar
asinference on coefficients for each independent variable goes. However partial F-test
approaches (also called " maximum liklihood" or " full and reduced model" methods) are
gener ally more useful and form thecore of so-called " General Linear Modding" srategies.
Most satigtical packagaesincluding R & SYSTAT routinely report partial Fin addition to,
or instead of, t-test r exults.

Hypotheses:
Hy Bj =0and all other 3;'S<>0 < oneonly of the regr ession parameter iszero

Hy Bj <>0and al other B's<>0 < Twosided test

Calculating Standard Errorsfor regression parameters f:

i=1.k
0 @))?
Lyx, = Z(X - mean(x )) < corrected Sums of Squares for each
-1 independent variable in matrix X
MS
SEg = E < Standard Error for each b.
Lxx See Rosner p. 483.
Test Statistic:
b.
t = —
-1
SEBi—l

Sampling Distribution:

If Assumptionshold and H istrue, then F ~F ., 1)

Critical Valueof the Test:
o = 0.05 < Probability of Typel error must be explicitly set

Cq:= inversecl){g\ Co:= inverse(l)t(l - E\
2) 2)
" \ o \ Note degrees of freedom = (n-k-1)
Ci=qtl —,n-k-1 Co=qtll1-—,n-k-1
1=( ( > n ) 2= ( > n )

Decision Rule;

IF |t| >C, THEN REJECT H,OTHERWISE ACCEPT H,

Probability Value: < Notethat C, and C, are

P = minimum(2 @(t),1-2 ®(t) for each explicitly evaluated above so C,
isalr eady negativein value. So
P= mlr{[z pt[ti’(” —k- 1)]]’[2 ' [1 - pt[ti’(” —k- Dﬂﬂ it isadded to X, hereto find

the L ower Bound of theCl.
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Example: (samedata asabove)

t-Test for Hp: B; = 0and all other B;'s <> 0:

Hypotheses:
Hy: Bj =0andall other B;'s <> 0 < oneonly of the regression parameter isnot zero
Hy: Bj <>0and all other B;'s <> 0 <Two sided test

Calculating Standard Errorsfor regression parameters f:

i=1.k k=2
3 & M2 (52734375
Lxx. ~—Z(X - mean(x )) Lxx = 13.4375 )
MS 0.0341 .
SER := £ B= ( ) < closebut not quite the same
xx 0.6763 ) asTable11.10
Test Statistic: MSg = 6.1463
R b, _ (36785) A thisisthesame
i-1" SEp . 8.7056 )
-

Critical Valueof the Test:
o = 0.05 < Probability of Typel error must be explicitly set

Cy:= qt(%,n k- 1} Coi= qt(l - %,n k- 1} < Note degrees of freedom = (n-k-1)

Cq1=-2.1604 Cp = 2.1604
Decision Rule:
IF |t| >C, THEN REJECT H,OTHERWISE ACCEPT H,
o (3.6785\ < for B,
87056) <forp,
Probability Value:

ip::._o...k—; i (oo ) <forp,
= mi[2-pft,(n—k - D[ 2 [1-pft(n-k-D]]] - P= 8.7507x 10 ') <for B,
> summary(Im(Y~X1+X2))

Call:
Im(formula=Y ~ X1+ X2)

Cy = -2.1604 Cy = 2.1604

Residuals:
Min  1Q Median 3Q Max
-4.0438 -1.3481 -0.2395 0.9688 6.6964

Coefficients:
Estimate Std. Error t value Pr(>Jt])
t & Pvalues (Intercept) 53.45019 4.53189 11.794 2.57e-08 ***
approximately > X1 0.12558 0.03434 3.657 0.00290 **
match... X2 5.88772 0.68021 8.656 9.34e-07 ***

rounding?
Signif. codes: 0'***' 0.001'**' 0.01'*'0.05'.'0.1'"' 1

Residual standard error: 2.479 on 13 degrees of freedom
Multiple R-Squar ed: 0.8809, Adjusted R-squared: 0.8626
F-gatistic: 48.08 on 2 and 13 DF, p-value: 9.844e-07
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ORIGIN =0

Inter preting Regression Results from Statistics Packages

"Indudtrial strength" Statistical packages, such asthoseprovided by R, SYSTAT, SPSS,

Minitab or SAS are clearly the way to go for routine analyss of these stastical problems. Each

provides dightly differ ent output that is char acterigtically dense with information. The

packages also provide multiple diagnostic toolsfor determining the appropriateness of L inear
Regr ession to differ ent datasets. Provided in thissheet isa brief summary of terms useful for

interpreting results based on things we have seen in previous Worksheets.

SYSTAT Output of Multiple Linear Regression:

SYSTAT Rectangular file C:\Documents and Settings\Wm Stein\Desktop\Biostatistics Spring

2007\Week 11\Data\Rosner Table 11.syd,
created Mon Apr 02, 2007 at 15:20: 33, contains var iables.

BLANKBIRTHWTAGESBP

Dep Var: SBP N: 16 Multiple R: 0.93857 Squar ed multipleR: 0.88091

Adjusted squared multiple R: 0.86259 Standard error of estimate: 2.47917

Effect Coefficient Std Error Std Coef Tolerance t
CONSTANT  53.45019 453189  0.00000 . 11.79424
BIRTHWT 0.12558 0.03434 0.35208 0.98859 3.65746
AGE 5.88772 0.68021 0.83323 0.98859 8.65580

Analysisof Variance

Source Sum-of-Squar es df Mean-Square F-ratio P
Regr ession 591.03564 2 295.51782 48.08063 0.00000
Residual 79.90186 13 6.14630

***% WARNING ***
Case 10isan outlier (Studentized Residual =  6.75638)

Durbin-Watson D Statisic 2.214
First Order Autocorrelation -0.121
Dependent Variable:
SBP isthe namel gaveto the dependent variable Y in the SYSTAT data table.
N:
Number of matched Y with X'sin thestudy.
Multiple R & Squared multipleR:
Squar ed multipleR isthe Coefficient of Deter mination:
SSRr
sst

< from the ANOVA table

P(2 Tail)

0.00000
0.00290
0.00000
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Multiple Risthe Coefficient of Correlation:

SS

>R < sguare-root of the Coefficient of Determination
SSt

Effect:

These are the names employed for the | ndependent portion ofthe the Regr ession Equation:
YiZ o4 ByXqj + Xyt BaXgit ot BiXyit g

"Congant" isthevariable name for coefficient o - it involves only trandation

in dependent variableY
"BIRTHWT" arethevariable names| gaveto the two independent variables X
"AGE" in thisstudy

Coefficients:

These are estimates of the regr ession coefficientsa & B,

Standard Errors:

These are sandar d err ors of the Regr ession coefficients:

MSg . .
SEp, = for coefficients estimates of B,

' Lxx < See Rosner p. 483

1 X 2)
SEg:= [MSg-|— + bar for coefficient esimate of o
XX

Standardized Coefficients:
These are Sandardized Regr ession Coefficients: < See Rosner p. 513

Sx.
bs = b - [—' coefficientsstandardized by multiplying the
' Sy ) ratio of sandar d deviationsfor each estimate of a & B,

Standardized coefficients are useful because relative magnitude reported areall in the
same units of standard deviation, whereasthe " raw" Regr ession coefficients also r eflect
the magnitude of the scalefor each X variable, and these may be greatly different.

t & P(2 Tail):
These arethe t-gatisics and Probability values calculated in the t-test:
H Bj =0 and all other Bi'S <>0
. < See Worksheset 44
Hy Bj <>0Oandall other B;'s <> 0

Note that a test for o hasnot been given...

Analysis of Variance:
Thisisthe sandard ANOVA table for the multiple regression

< See Worksheets40 & 44

In Source:

Given her ear estandard namesfor portionsof thechart:

" Regression” isarow for reporting SS;, dfy & MS; Sometimes, asin R output more than
one" partial regresson” row needsto be summed for all " Regression" values.
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ORIGIN =0

General Linear Models

Regression and General Linear Models:

Multiple Linear Regr ession is not restricted to car dinal data, but may ber eadily adapted to
other formsof data. In thisguise-the so called " General Linear Mode" or "GLM" ,isavery
wide-ranging method that can be shown to unify much of standard statisticsincluding t-tests,
%2, ANOVA, and many non-parametric statistical techniques. Shown hereisonestandard
extenson to independent variablesin data classes through the judicious use of " dummy
coding" . Because all variables can be" binned" into data classes (asin hisograms), this
approach hasbroad application.

Example: Catsdata pr evioudy analyzed in Biogtatistics Wor ksheet 27:

cats := READPRN("c:/2007BiostatsData/dcats.txt" )

. . ol1]|2]|s3
Calculationsin R: T ol 21
t-test approach: two populationsequal variance 1| 2| o] 2|74

COMMANDS 2] 3] 0] 2)95
> dcats=read.table(" c:/2007Biostat sData/dcats.txt" ) S| 4] 0)21]72
> dcats 4| 5| 0]21(73
> X 1=dcats$Bwt[dcat spSex==" 0" ] 5 6| 0[21|76
> X2=dcats$Bwt[dcatspSex=="1"] 61 71 olz21ls1
> t.test(X1,X2,alternative=" two.sded" ,var.equal=T) cas=[71 8l ol21l82
Two Sample t-tes 8] 9| 0]21]83
9| 10| 0f21]|85
data: X1 and X2 10| 11| 0|21(8.7
t =-7.3307, df = 142, p-value = 1.590e-11 11 12| 0]21|98
alternative hypothesis truedifference in meansis not equal to O 12| 13] of22[71
95 percent confidenceinterval: 3l olz22187
-0.6861584 -0.3946927
sample estimates: 14| 15| 0f22]9.1
mean of x mean ofy 15| 16| 0]2.2]9.7

2.359574 2.900000 < mean differ ence: 2.9 - 2.359574= 0.5404

Regression approach: with dummy variable for Sex: F=0 M=1

COMMANDS
> Y=dcats$Bwt
> X=dcats$Sex
> summary(Im(Y~X))

t statistic& P match >

differencein means
calculated above match
estimatefor coefficient
B1 here.

2.9 — 2.359574 = 0.5404

Call:
Im(formula=Y ~ X)

Residuals:
Min 1Q Median 3Q Max
-0.90000 -0.25957 -0.05957 0.30000 1.00000

Coefficients:

Egimate Std. Error t value Pr(>[t|)
(Intercept) 2.35957 0.06051 38.997 < 2e-16***
X 0.54043 0.07372 7.331 1.59e-11 ***

Signif. codes: 0'***'0.001'**' 0.01'*' 0.05'.'0.1""' 1

Residual standard error: 0.4148 on 142 degrees of freedom
Multiple R-Squar ed: 0.2745, Adjusted R-squared: 0.2694
F-gatigic: 53.74 on 1 and 142 DF, p-value: 1.590e-11



Assignment for Week 12
Let’s broaden our attack on Regression and ANOVA this week using both R an SPSS.
Using a dataset of choice, including several I have placed in the Data Section this week, do the following:

Multiple Regression — As discussed in lecture, multiple regression involves extension of the regression
technique using least squares to the commonly encountered situations with more than one independent
variable.

1. Fit your data using a Multiple Linear Regression model with at least two independent variables. Also
recover and display your regression predictions and residuals. Draw graphs displaying your
results comparing the dependent variable with each multiple independent variables. [see
Biostatistics Worksheet 39 for making graphs & 43 for Multiple Regression].

2. Calculate the ANOVA table. [see Worksheet 44 & 45]

3. Perform a F-Test for Hy): all B's = 0 versus Hj: not all B's are 0 and interpret the results. [see
Worksheet 44 & 45]

4. Perform a t-Test for Hy: ; = 0 and all other fj's <> 0, and interpret the results. [see Worksheet 44 &
45]

5. Now try the same thing again using SPSS. The important thing to think about here is how to structure
your data in an appropriate way in order to use SPSS’s Graphical User’s Interface (GUI). My
sense is that SPSS is generally less flexible than R, but once you figure out how it works,
probably more efficient.

One-Way ANOVA for fixed effects — Now find data that will work with this approach. Some datasets
already have categorical variables as text fields whereas others list categories as dummy
variables. See Biostatistics Worksheet 46 and dataset dcats.txt for an example of this.

6. Run the dcats.dta set both as a regression and as an ANOVA and compare your results. Are the
number n; in each sample of the ANOVA equal? If not, drop some observations from dcat.txt to
make them equal and re-run Regression and ANOVA. Do these results differ? If so, how?
What parts are comparable?

7. Using data you chose, perform the F-Test for All o; = 0 in One-Way ANOVA with Fixed Effects
Model, and compare the results in both R and SPSS.

8. Assuming you can with the data (if not, find another dataset that makes this test meaningful), now
perform the t-Test for a; = aj versus Hy: aj <> o for specific i’s & j’s you choose (try more than
one). Interpret your results.



End of Term Assignment for Graduate Students

The Department of Biological Sciences mandates that | require something ‘extra’ from
graduate students in courses simultaneously taught at both graduate and undergraduate
levels. Whereas this course primarily consists of introducing the theoretical framework
of statistics with quite a bit of practice with specific procedures, the objectives of all
students are basically the same. However, graduate students have chosen afield of study
with its own peculiar problems, methodology, literature, and style of ‘ scientific’
reportage. No doubt, al fields utilize some sort of statistical appraisal, and it is important
to become familiar with techniques actually used by your colleagues-to-be. Therefore,
we have an excellent rationale for this end-term requirement.

Here' swhat | want you to hand in by the last day of term:

The report need not be all that long or involved. Asfar as|’m concerned the fewer words
the better. What | want is a brief summary of the literature in your chosen field of study.
In fact, | need thisinformation as | endeavor to better fit this course in the future to its
intended target audience. Please provide me with the following:

1. I need abasic summary of the resear ch objectives of your field of study. What, and
how do leading researchers report their findings. What kinds of study are
typically conducted. Who is the intended audience?

2. What journals or other forms of publications represent the most prestigious outlets for
research in your field? What, typically, is reported in these journal s?

3. | need an annotated bibliography of 10-15 recent papers reporting statistical results
inyour field. Please include a complete and correctly formatted reference list.
Following each reference, provide me a sentence or two describing the statistical
tests utilized. Please be as specific as possible. Some tests probably have been
covered in this course, whereas others may not have been. Either way, try to be
as specific as you can about: statistical hypothesistested, assumptions of the
test (if stated by the authors or that you would expect to bein force), statistical
model utilized, and each paper’s conclusion.

4. Finaly, | need alist of statistical procedures/tests that in your opinion, would
constitute an important set for your field of study.



factor { base} R Documentation

Factors
Description

The function factor is used to encode a vector as afactor (the terms ‘ category’ and
‘enumerated type' are also used for factors). If ordered is TRUE, the factor levels are
assumed to be ordered. For compatibility with Sthereisalso afunction ordered.

is.factor, is.ordered, as. factor and as.ordered are the membership and coercion
functions for these classes.

Usage

factor(x = character(), levels = sort(unique.default(x), na.last =
TRUE),

labels = levels, exclude = NA, ordered = is.ordered(x))
ordered(x, ...)

is.factor(x)
is.ordered(x)

as.factor(x)
as.ordered(x)

Arguments

X avector of data, usually taking a small number of distinct values.

levels an optional vector of the values that x might have taken. The default is the set
of values taken by x, sorted into increasing order.

labels gither an optional vector of labels for the levels (in the same order as levels
after removing those in excllude), or a character string of length 1.

exclude gvector of values to be excluded when forming the set of levels. This should be
of the same type as x, and will be coerced if necessary.

ordered |ogical flag to determine if the levels should be regarded as ordered (in the
order given).

(inordered(.)): any of the above, apart from ordered itself.

Details

The type of the vector x is not restricted.



Ordered factors differ from factors only in their class, but methods and the model -fitting
functions treat the two classes quite differently.

The encoding of the vector happens as follows. First all the valuesin exclude are
removed from levels. If x[i] equals levels[j], then the i-th element of theresult is j.
If no match isfound for x[i] in levels, then the i-th element of the result is set to NA.

Normally the ‘levels’ used as an attribute of the result are the reduced set of levels after
removing those in exclude, but this can be altered by supplying 1abels. This should
either be a set of new labels for the levels, or a character string, in which case the levels
are that character string with a sequence number appended.

factor(x, exclude=NULL) applied to afactor is ano-operation unless there are unused
levels: in that case, afactor with the reduced level set isreturned. If exclude isused it
should also be a factor with the same level set as x or a set of codes for the levelsto be
excluded.

The codes of afactor may contain NA. For a numeric x, Set exclude=NULL to make NA an
extralevel ("NA™), by default the last level.

If "NA" isalevel, the way to set a code to be missing isto use is.na on the left-hand-side
of an assignment. Under those circumstances missing values are printed as <NA>.

is.factor isgeneric: you can write methods to handle specific classes of objects, see
I nternal M ethods.

Value

factor returns an object of class "factor' which has a set of integer codes the length of
x with a"levels" attribute of mode character. If ordered istrue (or ordered is used)
theresult has class c(*'ordered', "factor").

Applying factor to an ordered or unordered factor returns afactor (of the same type)
with just the levels which occur: see adso [ . factor for amore transparent way to achieve
this.

is.factor returns TRUE or FALSE depending on whether its argument is of type factor or
not. Correspondingly, is.ordered returns TRUE when its argument is ordered and FALSE
otherwise.

as.factor coercesits argument to afactor. It is an abbreviated form of factor.
as.ordered(x) returnsx if thisis ordered, and ordered(x) otherwise.

Warning
The interpretation of afactor depends on both the codes and the **1evels™ attribute. Be

careful only to compare factors with the same set of levels (in the same order). In
particular, as.numeric applied to afactor is meaningless, and may happen by implicit



coercion. To “revert” afactor f to its original numeric values,
as.numeric(levels(F))[F] isrecommended and slightly more efficient than
as._numeric(as.character(¥)).

Thelevels of afactor are by default sorted, but the sort order may well depend on the
locale at the time of creation, and should not be assumed to be ASCII.

Comparison operatorsand group generic methods
There are "*factor' and ""ordered" methods for the group generic Ops, which provide

methods for the Comparison operators. (The rest of the group and the Math and Summary
groups generate an error as they are not meaningful for factors.)

Only == and = can be used for factors: afactor can only be compared to another factor
with anidentical set of levels (not necessarily in the same ordering) or to a character
vector. Ordered factors are compared in the same way, but the general dispatch
mechanism precludes comparing ordered and unordered factors.

All the comparison operators are available for ordered factors. Sorting is done by the
levels of the operands: if both operands are ordered factors they must have the same level
Set.

Note

Storing character data as a factor is more efficient storage if thereis even asmall
proportion of repeats. On a 32-hit machine storing a string of n bytes takes 28 +

8* ceiling((n+ 1)/8) bytes whereas storing a factor code takes 4 bytes. (On a 64-bit
machine 28 is replaced by 56 or more.) Only if they were computed from the same values
(or in some cases read from afile: see scan) will identical strings share storage.

References

Chambers, J. M. and Hastie, T. J. (1992) Satistical Modelsin S. Wadsworth &
Brooks/Cole.

See Also
[ - factor for subsetting of factors.

gl for construction of “balanced” factors and ¢ for factors with specified contrasts.
levels and nlevels for accessing the levels, and unclass to get integer codes.

Examples

(ff <- factor(substring('statistics™, 1:10, 1:10), levels=letters))
as.integer(ff) # the internal codes



factor (fF) # drops the levels that do not occur
ff[, drop=TRUE] # the same, more transparently

factor(letters[1:20], label="letter")
class(ordered(4:1)) # "ordered", inheriting from "factor"

## suppose you want "NA" as a level, and to allowing missing values.
(x <- factor(c(1, 2, "NA™), exclude = "))

is.na(x)[2] <- TRUE

x #[1] 1 <NA> NA, <NA> used because NA is a level.

is.na(x)

# [1] FALSE TRUE FALSE

factor()



anova{ stats} R Documentation

Anova Tables

Description

Compute analysis of variance (or deviance) tables for one or more fitted model objects.
Usage

anova(object, ...)

Arguments

object gn object containing the results returned by a mode! fitting function (e.g., Im or
glm).
additional objects of the same type.

Value

This (generic) function returns an object of class anova. These objects represent analysis-
of-variance and analysis-of-deviance tables. When given a single argument it produces a
table which tests whether the model terms are significant.

When given a sequence of objects, anova tests the models against one another in the
order specified.

The print method for anova objects prints tablesin a* pretty” form.

Warning

The comparison between two or more models will only be valid if they are fitted to the
same dataset. This may be a problem if there are missing values and R's default of
na.action = na.omit isused.

References

Chambers, J. M. and Hastie, T. J. (1992) Satistical Modelsin S, Wadsworth &
Brooks/Cole.

See Also

coefficients, effects, fitted.values, residuals, summary, dropl, add1.




[Package stats version 2.4.1 Index]



anova.lm { stats} R Documentation

ANOVA for Linear Modd Fits

Description

Compute an analysis of variance table for one or more linear model fits.

Usage

## S3 method for class "Im":

anova(object, ...)

anova. Imlist(object, ..., scale = 0, test = "F")
Arguments

object,  objectsof class Im, usualy, aresult of acall to Im.

test acharacter string specifying the test statistic to be used. Can be one of "'F*,
""Chisq" or ""Cp", with partial matching allowed, or NULL for no test.
scale numeric. An estimate of the noise variance sigma2. If zero thiswill be

estimated from the largest model considered.

Details

Specifying a single object gives a sequentia analysis of variance table for that fit. That is,
the reductionsin the residual sum of squares as each term of the formulais added in turn
are given in as the rows of atable, plusthe residual sum of squares.

The table will contain F statistics (and P values) comparing the mean square for the row
to the residual mean sgquare.

If more than one object is specified, the table has arow for the residual degrees of
freedom and sum of squares for each model. For all but the first model, the change in
degrees of freedom and sum of squaresis aso given. (This only make statistical sense if
the models are nested.) It is conventional to list the models from smallest to largest, but
thisis up to the user.

Optionally the table can include test statistics. Normally the F statistic is most
appropriate, which compares the mean square for arow to the residua sum of squares for
the largest model considered. If scale is specified chi-squared tests can be used.
Mallows' Cp statistic is the residual sum of squares plus twice the estimate of sigma’\2
times the residual degrees of freedom.



Value

An object of class ""anova' inheriting from class ""data. frame™.

Warning

The comparison between two or more models will only be valid if they are fitted to the
same dataset. This may be a problem if there are missing values and R's default of
na.action = na.omitisused, and anova. Imlist will detect thiswith an error.

Note

Versions of R prior to 1.2.0 based F tests on pairwise comparisons, and this behaviour
can still be obtained by adirect call to anovalist. Im.

References

Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical Modelsin Seds J. M.
Chambersand T. J. Hastie, Wadsworth & Brooks/Cole.

See Also
The model fitting function Im, anova.

drop1 for so-called ‘type |1’ anovawhere each term is dropped one at a time respecting
their hierarchy.

Examples

## sequential table
fit <- Im(sr ~ ., data = LifeCycleSavings)
anova(fit)

## same effect via separate models

fit0 <- Im(sr ~ 1, data = LifeCycleSavings)
fitl <- update(fitO, . ~ . + popl5)

fit2 <- update(fitl, . ~ . + pop75)

fit3 <- update(fit2, . ~ . + dpi)

fitd <- update(fit3, . ~ . + ddpi)
anova(fito, fitl, fit2, fit3, fit4d, test="F")

anova(fit4, fit2, Fit0, test="F'") # unconventional order

[Package stats version 2.4.1 Index]



2007 Biostatistics 47 One-Way ANOVA
ORIGIN =0

One-Way Analysisof Variancewith Fixed Effects M odel

Analysisof Variance (ANOVA) are a br oad class of gatistical moddsthat fall under the GLM
framework. However unlike typical regresson wher eall variables are usually continuous, the
independent variable(s) in ANOVA involve membership in classes. Sincemore than two
classes may be present, this approach allows extension of the t-test strategy to compar isions of
multiple populations. Since ANOV A isubiquitousin many experimental settingsin biology, its
proficient useisoften viewed as evidence of good experimental design.

Data Structure: One-Way ANOVA
. Treatment Classes:
k groupswith not Obi
ily the same jects
necessartly . (Replicates)|  #1 #2 43 #k
numbers of observations 1
and differ ent means. >
Let index i,j indicate 3
theith column
(treatment class) and n nl n2 n3 nk
jth row (object). means: Xbar.1 | Xbar.2 = Xbar.3 Xbar.k
Model: p isthe grand mean of all objects.
Xij=p+ao+g; <where: % isthemeanof i = p +o; for each classi.
& isthe error term specificto each abject i,j
Restriction:
0 < allows estimation of k parameters.
Zni'a' = Other redtrictionsare also possble:
I Z aj:=0 or ok:=0 < See Rosner p. 558
Assumptions: i

_arearandom sample ~ N(0,69)

8”

Number & Means:

n:= z n < total number of obser vations
i

1 .
GM : - (E ZX"Jj grand mean - sample estimate of p
J

i
Xbari = mean(X<i>)

Sums of Squares.

SSt ::ZZ(XU_ GM)2 < Total Sum of Squares
i

SSyy = Zz (Xi’j - Xbari)z < Within (Error) Sum of Squares
i

2
SSg = 2 . 2 ’(Xbari B GM) < Between (Treatment) Sum of Squares
P
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One-Way ANOVA Table

Source: SS df MS
SSp
Between SSg k-1 —
k-1
SS
Within SSw n—k W
n-k
TOTAL Sst
0|1 2 3
Example: 0 1| 1| 39|4.62
. _ o ‘ 1 2| 1| 40(5.29
Vital Capacity Data in thisweek's Data folder: > 3 11 210552
V ;= READPRN("c:/2007BiostatsData/vital.txt" ) 3 4 1| 41371
ng:= 12 ng = 12 < determined by 4 5| 1| 45|4.02
ng:=39-11 ni= 28 looking at 2 6 1| 491509
row numbers 6 7 1) 52| 27
ng:= 83 - 39 no = 44 ! ,

2 2 in the firs V=|7 8 1| 47|4.31
n:=ng+nNg+nN2 n=_84 column... 8 9 1 61| 2.7
_ _ _ 9| 10| 1| 65|3.03
j0:=0..ng—-1 j1:=0.n1-1 j2:=0.np-1 0] 11 1| 581273

(3 (3 (3 11| 12| 1| 59]|3.67
Xo. =\V7] X1 =\Vv7] Xo =\V7] :
%0 ( )’0 Y1 ( )’1+”0 ’p2 ( )’2+”°+”1 12 13| 2| 29|5.21
13| 14| 2| 29|517
Xpar = mean(Xg)  Xpar, = mean(X1)  Xpa_ = mean(Xp)
0 ! 2 14| 15[ 2| 33]4s88
3.949167) 15| 16| 2| 32| 45
Xpar = | 4471786 < meansfor each class
4.462045 )
(2 no- Xbaro +ng- Xbarl +n2: Xbar2
GM := mean(V ) GM = 4.392024 = 4.392024
n
N Grand mean
Sums of Squares.
i:=0.2
2 2 2
SSt:= Xo - GM X1 - GM Xo — GM SSt = 47.641
Ti= 2 (X0~ OM)T+ D (X, — GM)T+ 3 (X2, ~ GM) T
io i1 i2
2 2 2
SSyy = Xo - X X1 - X Xo =X SSyy = 44.8936
W Z( %0 baro) * Z( Ly barl) " Z( 2 barz) w
io i1 i2
2 2 2
SSg = z (xbaro - GM) + Z (x,oarl - GM) + Z (xmr2 - GM) SSg = 2.7473

io i1 2

SSg + SSyy = 47.641
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One-Way ANOVA Table: k:=3 < number of dasses
Source SS df MS
SSg
Between SSg = 2.7473 k—1=2 MSg := 1 MSg = 1.3737
o SSwy
Within SSyy = 44.8936 n-k=81 MSyy = ” MSyy = 0.5542
n p—
TOTAL SST = 47.641

Prototypein R:

COMMANDS
> V=read.table(" c:/2007BiostatsData/vital .txt" )
>V
> Y=V$vital.capacity
> X=V$group
NOTE that thereisa RIGHT WAY and aWRONG WAY to do ANOVA inR:
WRONG WAY::

> anova(lm(Y~X))

Analyssof VarianceTable

Response: Y

Df Sum &g Mean Sq F value Pr(>F)
X 1 1.609 1.609 2.8658 0.09428 .
Residuals 82 46.032 0.561

Signif. codes: 0'***' 0.001'**' 0.01'*'0.05'.'0.1'" 1

What thisdoesis produce an ANOVA on the L inear Regresson of the dependent variable (Y)
with the valuesreported for theindependent variable(X). These values are classindicator s
(1,2,3) and are meaningless. Thefact that thisisaL inear Regresson ANOVA can be seen in
thereport of 1 DF for variable X in the ANOV A chart...

RIGHT WAY:

> X=factor(V$group) < herethevaluesof variable V$group areconverted into class" factors'
> X
> anova(lm(Y~X))

Analyssof VarianceTable

Response: Y

Df Sum &g Mean Sq F value Pr(>F)
X 2 2.747 1.374 2.4785 0.09021 .
Residuals 81 44.894 0.554

N These values match above.



2007 Biostatistics 47 One-Way ANOVA

>V

group age vital.capacity 43 324 5.82
1 139 4.62 44 332 4.77
2 140 5.29 45 323 571
3 14 5.52 46 325 4.47
4 14 3.71 47 332 455
> 145 4.02 48 318 461
6 149 5.09 49 319 5.86
7152 2.70 50 326 5.20
8 147 4.31 51 333 4.44
9 16l 2.70 52 327 5.52
10 165 3.03 53 333 4.97
11 158 2.73 on 3 on 499
12159 3.67 55 3 42 4.89
13 229 .21 56 335 4.09
14229 .17 57 335 4.24
15 233 4.88 58 341 3.88
16 232 4.50 59 338 4.85
17 231 4.47 60 341 4.79
18 229 5.12 61 336 4.36
19 229 4.51 62 336 4.02
20 230 4.85 63 341 3.77
21 221 .22 64 341 4.22
2 228 4.62 65 3 37 4.94
23 223 .07 66 3 42 4.04
24 235 3.64 67 339 451
25 238 3.64 68 341 4.06
26 238 5.09 6 343 402
27 243 4.61 70 341 4.99
28 239 4.73 71 3 48 3.86
29 238 4.58 72 347 4.68
30 242 o.12 73 353 4.74
31 243 3.89 74 3 49 3.76
32 243 4.62 75 354 3.08
38 237 4.30 76 348 5.00
34 230 2.70 77 349 3.31
35 230 3.50 78 347 3.11
36 245 5.06 79 352 476
37 248 4.06 80 358 3.95
38 251 4.51 81 362 4.60
39 246 4.66 82 365 4.83
2(1) g gg é-gg 83 362 3.18
b > 84 359 3.03
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Prototypein SYSTAT:

Effects coding used for categorical variables in model.
Categorical values encountered during processing are:
GROUP (3 levels)
1, 2, 3

Dep Var: VITALCAPACI N: 84 Mul tiple R: 0.24014 Squared multiple R: 0.05767

Analysis of Variance

Source Sum-of-Squares df Mean-Square F-ratio P
GROUP 2.74734 2 1.37367 2.47846 0.09021
Error 44 .89362 81 0.55424

Durbin-Watson D Statistic 1.692

First Order Autocorrelation 0.126

Least Squares Means

VITALCAPACI
N
|
|




2007 Biostatistics 48 One-Way ANOVA F-Test
ORIGIN =0

F-Test for Hy: All o; = 0in One-Way ANOVA with Fixed Effects M odel

Inferences on the means of the multiple populationsindicated by the class (" factor" or
"group") variable follow directly from the ANOVA table.

Data Structure: One-Way ANOVA
. Treatment Classes:

k gr oup§W|th not Objects

necessar ily the same (Replicates)|  #1 #2 #3 ”
numbers of observations 1

and differ ent means. >

Let index i,j indicate 3

theith column -

(treatment class) and n nl n2 n3 nk
jth row (object). means: Xbar.1 = Xbar.2 = Xbar.3 Xbar.k

F Test for Overall Comparison of Class Means:

Model: p isthe grand mean of all objects.
Xij=p+ao+g; <where: % isthemeanof i = p +o; for each classi.

.. . istheerror term specificto each object i,j

Restriction: i P Jeh
0 < allows estimation of k parameters.
Zni'a' = Other redtrictionsare also possble:
' Z aj=0 O  q=0 < See Rosner p. 558

Assumptions: i

; arearandom sample ~ N(0,6?)

One-Way ANOVA Table

g

Source: SS df MS
SSg
Between SSg k-1 -
k-1
SS
Within SSw n—k W
n-k
TOTAL Sst
Hypotheses:
Ho a; =0foralli < All treatment class deviations from thegrand mean are 0
H,: At least oneq; <>0 <Two sided test
Test Statistic:
MSg . -
F= —— < Ratioof " between" versus" within" Mean Squares
MSw
Distribution of the test Statistic F:
If Hyistruethen F ~F((k-1),(n-k)) where: k = number of classes

n = total number of obser vations



2007 Biostatistics 48 One-Way ANOVA F-Test

Critical Valueof the Test:
o = 0.05 < Probability of Typel error must be explicitly set

oV = inversedp(1 - o) €V = gF1 - o, (k - 1),(n - k)]
Decision Rule:
IF F>C, THEN REJECT H,OTHERWISE ACCEPT H,

Probability Value:
P = minimum(®(F),1-®(F)
P:= min[ pF[F, (k — 1), (n - K)],pF[F,(k = 1),(n - K)]]

Example:
Vital Capacity Data in thisweek's Data folder:
One-Way ANOVA Table: k=3 < number of classes
FromR: n:=84
Analysisof VarianceTable
Response: Y
Df Sum &g Mean Sq F value Pr(>F)
X 2 2.747 1.374 2.4785 0.09021 .
Residuals 81l 44.894 0.554
Source: SS df MS
SSg
Between SSg = 2.747 k-1=2 MSg = m MSg = 1.3735
- SSw
Within SSyy = 44.894 n-k=28l MSyy = ” MSyy = 0.5542
n —
TOTAL SSt:= SSg + SSyy SSt = 47.641
Test Statistic:
MSg
Fi=—— F=24781
MSw
Critical Valueof the Test:
o = 0.05 < Probability of Typel error must be explicitly set
CVi=qgd1l-oa,(k-1),(n-k)] CV=231093
Decision Rule:
IFF>C, THEN REJECT HyOTHERWISE ACCEPT H,
F=24781 CV = 3.1093
Probability Value:
P:= min[ pF[F,(k — 1),(n — k)],1 — pF[F,(k — 1),(n - k)] ] P = 0.0902

~ values match R output above
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Another Example:

R COMMANDS:
> |rissread.table(” ¢:/2007BiostatsData/iris.txt")
Iris dataset: > ris
> Y=IristSepal.Length k=3 < number of classes
> length(Y) '
> X=Iris$Species n:= 150 <number of objects

> anova(lm(Y~X))

One-Way ANOVA Table

From R: Analyssof VarianceTable
Response: Y
Df Sum &g Mean Sq F value Pr(>F)
X 2 63.212 31.606 119.26 < 2.2e-16 ***
Residuals 147 38.956 0.265

Signif. codes: 0'***' 0.001'**' 0.01'*'0.05'.'0.1'"' 1

Source: SS df MS
SS
Between SSp = 63.212 k-1=2 MSg = k—Bl MSg = 31.606
- SSw
Within SSyy = 38.956 n-— k=147 MSyy = —k MSy = 0.265
n —
TOTAL SST:= SSg+ SSyy  SSt = 102.168
Test Statistic:
MSg
Fi=—— F = 119.2649
MSw
Critical Valueof the Test:
o = 0.05 < Probability of Typel error must be explicitly set

CV:=gF1-a,(k-1),(n-k] CV=30576

Decision Rule;
IF F>C, THEN REJECT H,OTHERWISE ACCEPT H,
F=119.2649 CV = 3.0576

Probability Value:
P:= min[ pr[F, (k — 1),(n - k)], 1 — pF[F,(k - 1),(n - K)]] P=0

Note: Rejection of H, here allowsone to continue testing for values of specific o;'s



2007 Biostatistics 49 One-Way ANOVA t-Test
ORIGIN =0
t-Test for Hg: o = o versusHq: o <> ¢y
in One-Way ANOVA with Fixed Effects M odel

When the F-Teg for ANOVA rgectsthe null hypothesisthat all a;'s= 0, then oneusually
wantsto deter mine specifically which of the a;'s<> 0. Thistes allow usto dothiswithin the
context of multiple possbletestsin ANOVA.

Data Structure: One-Way ANOVA
. Treatment Classes:

k gr oup§W|th not Objects

necessar ily the same (Replicates)|  #1 #2 #3 ”
numbers of observations 1

and differ ent means. >

Let index i,j indicate 3

theith column -

(treatment class) and n nl n2 n3 nk
jth row (object). means: Xbar.1 | Xbar.2 | Xbar.3 Xbar.k

t-Test for Comparison of Means for Specific ClassPairs:

Model: p isthe grand mean of all objects.
Xij=ptao;tg; < Where: o, isthemean of i = p +a; for each classi.

— i isthe error term specificto each object i,

Restriction: il P JE
0 < allows estimation of k parameters.
Zni'a' = Other redtrictionsare also possble:
' Z aj=0 O  q=0 < See Rosner p. 558

Assumptions: i

; arearandom sample ~ N(0,6?)

One-Way ANOVA Table

g

Source: SS df MS
SSp
Between SSg k-1 -
k-1
SS
Within SSw n—k W
n-k
TOTAL Sst

Hypotheses:
Ho o = oy for pecifici & j < Meansintreatment classesi & j arethesameasgrand mean
Hy:a; <>o for specifici& | < Two sided test

Test Statistic:
Xbari - xbarj

jMSW. (i R
ALY

Distribution of the test Statistic t:

If Hyistruethen t ~t(n-k) where: k = number of classes
n = total number of obser vations

t=

< Normalized distance between mean of classi & |
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Critical Valueof the Test:
o = 0.05 < Probability of Typel error must be explicitly set

Cqp:= inversecbt(%) Co:= inversecbt(l - %)
u \ o \ Note degrees of freedom = (n-k)
Ci=qtl —,n-k Co=qtll-—,n-Kk
1 q ( > n ) 2 q ( > n )

Decision Rule;
IF |t| >C, THEN REJECT H,OTHERWISE ACCEPT H,

Probability Value:
P =minimum(2 @(t),1-2 ®,(t)
P:=min[2- pt(t,n - k),2- (1 - pt(t,n — Kk))]

Example: Vital Capacity dataset by group

R COMMANDS:

> V=read.table(" c:/2007BiostatsData/vital .txt" )

> summary(V)

group age vital.capacity

Min. :1.000 Min. :18.00 Min. :2.700
1st Qu.:2.000 1 Qu.:32.00 1t Qu.:3.935
Median :3.000 Median :41.00 Median :4.530
Mean :2.381 Mean :40.55 Mean :4.392
3rd Qu.:3.000 3rd Qu.:48.00 3rd Qu.:4.947

Max. :3.000 Max. :65.00 Max. :5.860
> attach(V)

> X1=vital.capacity[group=="1"] k:=3 < number of classes = groups
> X2=vital.capacity[group=="2"]

> X3=vital.capacity[group=="3"]

> summary(X1)

Min. 1¢ Qu. Median Mean 3rd Qu. Max.

2,700 2.955 3.865 3.949 4.737 5.520

[1]12 np=12 Xpar. = 3.949 < number of objects & mean of X1
1

> length(X1)

> summary(X2)
Min. 1¢ Qu. Median Mean 3rd Qu. Max.
> length(X2) 2.700 4.240 4.615 4.472 5.062 5.220

[1]28 ny:= 28
> length(X3)
[l] 44 ng:= 44

> Y=vital.capacity
> X=factor(group)
> anova(lm(Y~X))

One-Way ANOVA Table

Xpar = 4472 < number of objects & mean of X2
2

n:=nNny+ N2+ N3 n=284

FromR: Analyssof VarianceTable
Response: Y
Df Sum &g Mean Sq F value Pr(>F)
X 2 2.747 1.374 2.4785 0.09021 .
Residuals 81 44.894 0.554

MSyy = 0.554 < MSResduals
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Hypotheses:

Ho o = for pecifici & j < Meansintreatment classesi & j arethesameasgrand mean

H,: oy <>o for specifici& | < Two sided test
Test Statistic:

Xbarl - Xbarz
t:= t = —2.0365
1 1
MSw | — + —\\
ng ngz)

Critical Valueof the Test:

o = 0.05 < Probability of Typel error must be explicitly set

:

Cq = qt(%,n - k\ Cp=-19897 Cy:= qt(l - %,n -

)

Decision Rule;

IF |t| >C, THEN REJECT H,OTHERWISE ACCEPT H,,

t = —2.0365 Cy1=-19897  Cp= 19897
Probability Value:

P:=min[ 2 pt(t,n—k),2- (1 - ptt,n - Kk))] P=0.045

Prototypein SYSTAT:

Effects coding used for categorical variables in model.

Categorical values encountered during processing are:

GROUP (3 levels)
1, 2, 3

Dep Var: VITALCAPACI N: 84 Mul tiple R: 0.24014

Analysis of Variance

Source Sum-of-Squares df Mean-Square

GROUP 2.74734 2 1.37367

Error 44 .89362 81 0.55424

ROW GROUP

1 1

2 2

3 3
Using least squares means.
Post Hoc test of VITALCAPACI

Using model MSE of 0.554 with 81 df.
Matrix of pairwise mean differences:

1 2
1 0.00000
2 0.52262 0.00000
3 0.51288 -0.00974

Fisher®s Least-Significant-Difference Test.

Matrix of pairwise comparison probabilities:

1 2
1 1.00000
2 0.04516 1.00000

3 0.03747 0.95697

0.00000

1.00000

Cy = 1.9897

X - X = -0.523
bar1 bar2

Squared multiple R: 0.05767

F-ratio P

2.47846 0.09021

< values match for
difference in means

and Probability
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Prototypein R:

COMMANDS

> V=read.table(" c:/2007BiostatsData/vital .txt" )

>V

> attach(V)

> Y=vital.capacity Analysisof Variance Table

> X=factor(group)

> anova(Im(Y~X)) Response: Y

Df Sum Sq Mean Sq F value Pr(>F)

X 2 2.747 1.374 2.47850.09021 .
Residuals 81 44.894 0.554

Signif. codes: 0'***' 0.001'**' 0.01'*' 0.05'.'0.1"'" 1

> pairwise.t.tes(Y,X,p.adj="noiic " A ]
N valuesmatch SYSTAT above

Pairwise comparisons using t testswith pooled SD
data: Y and X

1 2
2 0.045 - < pairwise Probabilities match SYSTAT
30.037 0.957

P value adjusgment method: none

Another Example: Iris dataset
Sepal L ength:
R COMMANDS:
> iris=read.table(" c:/2007BiostatsData/iris.txt")
> summary(iris) Sepal.Length Sepal.Width Petal.Length Petal.Width

Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100

14 Qu.:5.100 1¢ Qu.:2.800 1 Qu.:1.600 1 Qu.:0.300
Median :5.800 Median :3.000 Median :4.350 Median :1.300
Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199
3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500

Joecies
stosa 50 k:=3 < number of classes = gpecies
verscolor:50 N1 = 50
vir ginica : 50 1=

> attach(iris)

> X1=Sepal.Length[Species=" setosa” |

> X2=Sepal.Length[Species=="virginica" ]
> summary(X1)

n:=ni+ny n=100 < number of objects

Min. 1¢ Qu. Median Mean 3rd Qu. Max.
4.300 4.800 5.000 5.006 5.200 5.800

Xpar. == 5.006
> summary(X2) !

Min. 1¢ Qu. Median Mean 3rd Qu. Max.
> Y=Sepal.Length 4,900 6.225 6.500 6.588 6.900 7.900

> X=Species Xpar_ := 6.588
> anova(lm(Y~X)) 2
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One-Way ANOVA Table:

From R: Analyssof VarianceTable
Response: Y
Df Sum &g Mean Sq F value Pr(>F)
X 2 63.212 31.606 119.26 <2.2e16 ***
Residuals 147 38.956 0.265

Signif. codes: 0'***' 0.001'**' 0.01'*'0.05'.'0.1'"' 1
MSy = 0.265 < MSRedduals

Hypotheses:
Ho ;= oy for specifici & j < Meansintreatment classesi & j arethesameasgrand mean
Hy:a; <>o for specifici & | < Two sided test
Test Statistic:
Xbar1 - ><bar2
t:= t = —15.3657 Xper, ~ Xpar, = ~1.582
MSy - 1 + i\
n ng)

Critical Valueof the Test:
o = 0.05 < Probability of Typel error must be explicitly set

Cy:= qt(%,n - k} Ci=-19847 Cp:= qt(l - %,n - k} C, = 1.9847
Decision Rule:
IF |t| >C, THEN REJECT H,OTHERWISE ACCEPT H,
t = —15.3657 C1=-19847  Cp=1.9847
Probability Value:
P:=min[2-pt(t,n—k),2- (1 - pt(t,n - Kk))] P=0
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Resultsin SYSTAT:

Effects coding used for categorical variables in model.

Categorical values encountered during processing are:
SPECIES$ (3 levels)

setosa, versicolor, virginica
3 case(s) deleted due to missing data.

Dep Var: SEPALLENGTH N: 150 Mul tiple R: 0.78658 Squared multiple R: 0.61871

Analysis of Variance

0.00000

Source Sum-of-Squares df Mean-Square F-ratio
SPECIES$ 63.21213 2 31.60607  119.26450
Error 38.95620 147 0.26501
Durbin-Watson D Statistic 2.043
First Order Autocorrelation -0.028
coL/
ROW SPECIES$
1 setosa
2 versicolor
3 virginica
Using least squares means.
Post Hoc test of SEPALLENGTH
Using model MSE of 0.265 with 147 df.
Matrix of pairwise mean differences:
1 2 3
1 0.00000
2 0.93000 0.00000
3 1.58200 0.65200 0.00000
Fisher"s Least-Significant-Difference Test.
Matrix of pairwise comparison probabilities:
1 2 3
1 1.00000
2 0.00000 1.00000
3 0.00000 0.00000 1.00000

A Although agreeing, the probabilities her ear esimply to small to useasprototype.
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ORIGIN = 0 _
t-Test for Linear ContrastsHg: L =0versusHq: L <>0

in One-Way ANOVA with Fixed Effects M odel

When the F-Tegs for ANOVA rgectsthe null hypothesisthat all a;'s= 0, then oneusually wants
to determine specifically which of the a;'s<> 0. Thistest isa generalization of the t-test
comparing pairs of means.

Hereany linear combination L = ¢c;Xbar, + c,Xbar, + cyXbar;+ ... + ¢ Xbar, can betested where
X1 Xy, X5 . X, represent samplesderived from different populations 1,2, 3 ..k.

Data Structure: One-Way ANOVA
K ith not Treatment Classes:
o oups_lthh no Objects
NECESSArily the same (Replicates)|  #1 #2 43 #k
numbers of observations 1
and differ ent means. >
Let index i,j indicate 3
theith column
(treatment class) and n nl n2 n3 nk
jth row (object). means: Xbar.1 | Xbar.2 = Xbar.3 Xbar.k
Linear Combination:
k-1
L= Z G Xbar <L =c¢Xbar, +c,Xbar, + c;Xbar;+ ... + ¢ Xbar,
i=0

With Further Condition asLinear Contrast:

k-1
Z c = 0 < coefficientsof the Linear combination must add to zero
i=0

t-Test for Linear ContrastsH; L = OversusHq: L <>0:
M odel:

XiJ:”+ai+8“

p isthe grand mean of all objects.
a; isthemean of i = p +a; for each classi.

¥ < where;
g istheerror term specificto each object i,]
L = ¢, Xbar, +c,Xbar, + cXbar;+ ... + ¢ Xbar, < definition of Linear Contrast
k-1
up = Z C.- 0 < mean of the Linear Contrast
i=0

Restrictions:

C w0 < allows estimation of k parameters.
Z i %= Other redtrictionsare also possble:

Z 0j:=0 O  og:=0 < See Rosner p. 558
i

|
k-1
Z C = 0
i~ 0o <restriction for thelinear contrast
Assumptions:

_arearandom sample ~ N(0,69)

8”
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One-Way ANOVA Table

ANOVA Contrasts t-Test

Sour ce: SS df MS
SSg
Between SSg k-1 —
k-1
SS
Within SSw n—k V\Ii
n —
TOTAL Sst
Hypotheses:
Hop =0 < Meansof Linear Contrast is zero
Hyp <>0 < Two sided test
Test Statistic:
t:= L < Linear Contrast nor malized by sandard Error

Distribution of the test Statistic t:

If Hyistruethen t ~t(n-k) where: k = number of classes

n = total number of obser vations

Critical Valueof the Test:

o = 0.05 < Probability of Typel error must be explicitly set
. a\ . a
Cq1 = inversed — Co:=inversedy 1 — —
1 t(2) 2 t( 2)

o \ Note degrees of freedom = (n-k)
Cp:= qt[l - =,n-k
27 )

o )
Ci=qtl —,n-k
= -]

Decision Rule:

IF |t| >C, THEN REJECT H,OTHERWISE ACCEPT H,
Probability Value:

P =minimum(2 @(t),1-2 ®(t)

P:=min[2- pt(t,n - k),2- (1 - pt(t,n — k))]

Example:  Rosner Pulmonary Disease Example 12.10 p. 572
MSyy := 0.636 < given from ANOVA Table 12.3 p. 564
3-78\ 200\ < means & number of observations 10 \
3.30 200 given from summary 0
Xpar = C:=
3.23 200 ) -0.1
Linear contrast vector

2.13 200 of coefficients > —0.7
259 200 ) -0.2)

ThelLinear Contrast:

L=c . Xpgr < Matrix algebra multiplication of vectors

k:=6 <number of classes

N:= Zn N = 1050 < total number of obser vations

L = (1.028)

< confirmed p. 572
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Standard Error of theLinear Contrast:
i=0.k-1

< confirmed p. 572

Hypotheses:
Hop =0 < Meansof Linear Contrast iszero
Hyp <>0 <Two sided test
Test Statistic:
L

=

t=(14.6899) < confirmed p. 572

2
MSy - ﬂ
=5

|
Critical Valueof the Test:
o = 0.05 < Probability of Typel error must be explicitly set

N N

Cp:= qt(%,N— ) Coi= qt(l—%,N— )

Cp=-1.9622 Co= 1.9622
Decision Rule:

IF |t| >C, THEN REJECT H,OTHERWISE ACCEPT H,

t = (14.6899) Cq1=-1.9622 Co = 1.9622
Probability Value:

P=minimum(2 @(t),1-2 ®,(t)

P:= min[2- pt(t,N - k),2- (1 — pt(t,N — K))] P=0 < confirmed p. 572

N - k = 1044 < confirmed p. 572

Another Example: Vital Capacity dataset by group

R COMMANDS:
> V=read.table(" c:/2007BiostatsData/vital .txt" )
> summary(V)
group age vital.capacity
Min. :1.000 Min. :18.00 Min. :2.700
14 Qu.:2.000 1¢ Qu.:32.00 1¢ Qu.:3.935

> attach(V) Median :3.000 Median :41.00 Median :4.530
> X1=vital.capacity[group=="1"] Mean :2.381 Mean :40.55 Mean :4.392
> X2=vital.capacity[group=="2"] 3rd Qu.:3.000 3rd Qu.:48.00 3rd Qu.:4.947
> X3=vital.capacity[group=="3"] Max. :3.000 Max. :65.00 Max. :5.860
> summary(X1) k:=3  <number of classes = groups

Min. 1¢ Qu. Median Mean 3rd Qu. Max.
> length(X1) 2.700 2.955 3.865 3.949 4.737 5.520

[1] 12 nng = 12 Xnpar = 3.949 < number of objects& mean of X1
0

> summary(X2)

Min. 1s Qu. Median Mean 3rd Qu. Max.
> length(X2) 2.700 4.240 4.615 4.472 5.062 5.220

[1] 28 nn, = 28 XNpar. = 4472 < number of objects & mean of X2
1
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> summary(X3) Min. 1¢ Qu. Median Mean 3rd Qu. Max.
> length(X3) 3.030 4.010 4.530 4.462 4.902 5.860
[1] 44 nn, := 44 Xnpar = 4462 < number of objects & mean of X3
2

Y=vital i 12\
> Y=vital.capacity 3 B B
> X=factor (group) N:= Znn N =84 n=| 28
> anova(lm(Y~X)) 44)

One-Way ANOVA Table:

From R: Analyssof VarianceTable
Response: Y
Df Sum &g Mean Sq F value Pr(>F)
X 2 2.747 1.374 2.4785 0.09021 .
Residuals 81 44.894 0.554

Signif. codes: 0'***'0.001'**' 0.01'*'0.05'.'0.1'"' 1
MSy = 0554 < MSRedduals

3.949) 12) < means& number of observations
XNpgr = | 4.472 nn=| 28 given from summary

4.462 ) 44) Table12.1 p. 558 1)

Linear contrast vector c=|-1
k=3 < number of classes of coefficients > 0 )
N=84 < total number of obser vations
TheLinear Contrast:
L=c - XNpar < matrix algebra multiplication of vectors L = (-0.523)
Standard Error of theLinear Contrast:
i=0.k-1 Standard Error of two-sample t-test in Biogtatistics 49:
2
() 1 1)
MS\N~Z—:O.2568 MSy- | — + — ' = 0.2568
- nni nnO nnlj
|
N
Hypoth : same result
Ho p =0
Hyip <>0 from two-sample t-test:
L t:=
fom - t = (-2.0365)
o t= (-2.0365) My [+ )
i nn nnlj

MSWZ_nI 0
l

Critical Valueof the Test:
o = 0.05 < Probability of Typel error must be explicitly set
Cy:= qt(g,N—k\ Coi= qt(l—g,N—k\
2 ) 2 ) < different again from the
Cq = -1.9897 Cp = 1.9897 two-sample case.

N same result
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Decision Rule;
IF [t| >C, THEN REJECT H,OTHERWISE ACCEPT H,

t = (-2.0365) Cq = -1.9897 Cp = 1.9897
Probability Value:
P =minimum(2 @(t),1-2 ®(t)
P:=min[2- pt(t,N - k),2- (1 - pt(t,N - k))] P=0.045

Prototypein SYSTAT:

UseGL M in the Satigtics Menu, Estimate M odel and under Category specify variable " group”
asa categorical variable. The Run estimate. Now go back to GLM HypothesisT est, specify
"group" intheEffectsbox, and select the Contrast Button. In the pop-up box, write the

contrast vector asc' above. Run Hypothesis.
Effects coding used for categorical variables in model.
Categorical values encountered during processing are:
GROUP (3 levels)

1, 2, 3

Dep Var: VITAL N: 84 Mul tiple R: 0.24014 Squared multiple R: 0.05767

Analysis of Variance

Source Sum-of-Squares df Mean-Square F-ratio P
GROUP 2.74734 2 1.37367 2.47846 0.09021
Error 44 .89362 81 0.55424

Durbin-Watson D Statistic 1.692

First Order Autocorrelation 0.126
Ted for effect called: GROUP
A Matrix
1 2 3
0.00000 1.00000 -1.00000
Ted of Hypothesis
Source S df MS F P

Hypothesis 229430 1 229430  4.13952 0.04516
Error 44.89362 81 0.55424

A equivalent Pr obability (P) reported here on the basis of an equivalent F test.



Assignment for Week 13 and 20 point Quiz

For your final assignment of thisterm —and a Quiz—Using a small data set of your own, |
want you to do the following using hand calculations (as calculations like this might be on
Exam 3):

1. Biostatistics 39 - Perform “simple” linear regression:

a. show calculationsfor: Ly, Lyy, and Lyy.

b. calculate o and B.

c. calculate regression predictions (Yhs) and residuals.
2. Biostatistics 40 — Calculate the ANOVA for Regression standard table:

a. show calculationsfor Sum of Squares: SS Total, SSRegression & SSerror.

b. Show the completed ANOVA chart with degrees of freedom & Mean Squares.
3. Biostatistics 40 — Perform the omnibus F test for the Regression

Show your work including assumptions, model, hypotheses, decision rule,
probability values & result.

4. Biostatistics 41 — Calculate the following confidence/pr ediction intervals for your
“simplée” regression:

a. Confidenceinterval for regression slope.
b. Confidenceinterval for your regression predictions.
c. Prediction interval for new observations based on your regression.
5. Biostatistics 42 — Calculate the following for your “simple” regression:
a. coefficient of correlation.
b. coefficient of determination.
6. Biostatistics 42 — Perform the following tests based on your “simple” regression:
a. Test for a specified value of regression slope (Bo).
b. Test for presence of correlation (p).

7. Biostatistics 43 — Perform a multiple regression using R based on a dataset that you
compose. Extract and report the ANOVA tablefrom R’sresults.

8. Biostatistics 44 — Using the output from R:
a. Perform the omnibus F test for the Regression — show all work.

b. Test each slope parameter (B) separately —show your work including calculation
of the test statistic.

9. Biogtatistics 47 — Perform a One-Way ANOVA for fixed effects. Show calculationsfor:
a. Sumsof Squares & Mean Squares
b. Show your ANOVA standard table



10.
11.

12.

13.

14.

15.

16.

17.

18.

Biostatistics 48 — Perform the omnibusF test for the One-Way ANOVA — show all work.

Biostatistics 49 — Perform the test for equivalence of means between specific pairs of
groupsin One-Way ANOVA —show your work.

Biostatistics 50 — Perform atest for a chosen Linear Contrast in One-Way ANOVA —
show all work.

Biostatistics 51 — Perform a Two-Way ANOVA with fixed effects:
a. Set up the ANOVA standard table — show your work.

Biostatistics 51 — Perform the omnibus F testsfor the Two-Way ANOVA — show all
work.

Biostatistics 52 — Perform an example Kruskal-Wallistest. Show all work.

Biostatistics 53 — Perform a specific Fishers L SD comparison between two meansin a
One-Way ANOVA. Show all work in thetest and calculate the associated
confidenceinterval.

Biostatistics 54 — Perform the omnibus F testsfor Repeated M easures One-Way
ANOVA —show all work.

Biostatistics 55 — Perform an example Kruskal-Wallistest. Show all work.
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ORIGIN =0 .
Two-Way ANOVA - Equal Sample Sizes

The ANOVA approach analyzes means from multiple populations with member ship in each
sample deter mined by discr ete values of a classification variable. The Two-Way (and higher)
ANOVA dategy extendsthe system of classficationsto two (or more) variables. Here we look at
analysis of fully randomized ballanced designsin which numbers of observatiosin each class (or
block) of dataare all the same.

. Treatment Two-Way ANOVA
Data Structure: Classes of Treatment Classes of Variable C:

Dataarestr_uctured asan Variable R: #1 H#2 #3 #
R.X C Contmgency.TabIe 41 . . . 0
with cellsrepr esenting

smultaneous classification #2 n n n n
by two variables. Numeric #3 n n n n
values Yij for nobjectsare

placed in each cell i n n n n

Let indexi,j indicatethe
ith row (treatment classes

of Variable R) and jth Also l€et: Ybar; =mean over all columnsfor rowi.
column (treatment classes '

of Variable C) zEarj_ =mean|c|)ver all rowsfor columnj.
ar_=overall mean.

Each cell consists of n replicates with means Ybar;

Model:
Yij S ptog Byt g where:

p isa congtant = grand mean of all objects.
o, iseffect coefficient for classesi in VariableR.
B; is effect coefficient for classesj in Variable C.
y;j isinteraction coefficient for classesi,j between VariablesR and C.

Restrictions: Eijk isthe error term specificto each object i,j,k

Za|=0 ZBI:O Z’yljzo Zyljzo fora”|&J
i i i i
Assumptions:

— &, arearandom sample ~ N(0,62)
— variance is homogeneousacross cells

Data in Each Cell:

Y. ik < k Observationsin each cell defined by rowsi, & columnsj

Number & Means:

N < Total number of observationsfound by multiplyingk by the number of cells

Ybar. < Cell means - aver ages of observations within acell
i.

Ypar. < Row means - aver ages for each row
I.

Y bar < Column means - aver ages for each column

Ybar < Grand mean - aver ageof all obser vations
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Sums of Squares.

|:=2 < total number of rows
J=2 < total number of columns
K:=5 < total number of replicates=n

2
SSRows = J- K- Z (Ybari = Ypar )
: .

2
SScols = |'K'Z(Ybarj = Ypar )
]

2
SSint = K- Y -Y -Y Y
Int E E ( barij bari‘ bar.j + bar”)
joi

SSEg:

22 Y Yo

k
N-1

SSt:= Z (Yijk - Ypar )2
k=0 "

< Sum of Squaresfor Rows

< Sum of Squaresfor Columns

< Sum of Squaresfor Interactions

< Sum of Squaresfor Error (Within)

< Total Sum of Squares

Example: Calcium Concentration measured with two factors: Sex & Hormone Treatment:

Z := READPRN("c:/2007BiostatsData/ZarExamplel2.1atxt") 1 165 0 0)
. 2 18400
Data in Each Cell:
3 12700
16.5) 14.5) 39.1) 32.0) 4 14 00
18.4 11.0 26.2 23.8 5 128 0 0
a.= 12.7 bZ: 108 C:.= 213 dZ: 288 6 145 1 0
14.0 14.3 35.8 25.0 7 11 10
12.8) 10.0) 40.2) 29.3) 8 108 1 0
Number & Means; 9 14310
. 10 10 10
n:=length(@dd n=5 < number in each cdl Z=
rotal ber of ob " 11 391 0 1
N:=4. N = 2 <10 numper or opser vations
n 0 12 262 0 1
mean(a) mean(b 14.88 12.12
VBoy (a) mean(b)) VB < means (Ybar, ) 13 213 0 1
mean(c) mean(d) ) 32,52 27.78 ) ' 14 358 0 1
i=0.1 j=0.1 k=0.n-1 15402 0 1
6 32 11
YR 1 YB YR 135 ) <row means (Ybar. ) 17 238 1 1
bari = > Z bari’j bar = 30_15) i -
i 18 288 1 1
1 23.7 ) | (Ybar ) 19 25 11
Y == YB Y = < column means ar .
Coar, = 5+ D VBoar, | Coar = 19,05 I 20 293 1 1)

v 7V Ypar:= mean(Y)  Ypg = 21.825 < Grand Mean (Ybar )
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Sums of Squares.
l:=2 < total number of rows
J=2 < total number of columns

K:=5 < total number of replicates=n

2
SSRi=J- K- Z (YRbari B Ybar) < Sum of Squares for Rows
i

2
SSe=1-K- z (charj B Ybar) < Sum of Squaresfor Columns
j

2
SSp = K- ZZ (YBbari’j ~ YRpar, - YCbafJ- * Ybar) < Sum of Squaresfor | nteractions
joi

sse= Y (3 \(Bbaro’o)2 + 3 (b YBbarO’:L)z =3 (% YBbarl’0>2 (o YBbarl,l)z
K

k k k
N-1 ) N Sum of Squares Error (Within)
SST:= Z (Yk N Ybar) < Total Sum of Squares
k=0
Two-Way ANOVA Table:
Source; SS df MS
SSR
Rows SSgr = 1386.1125 I-1=1 MSR = ﬁ MSR = 1386.1125
SSc
Columns SSc = 70.3125 J-1=1 MSc = ﬁ MSc = 70.3125
. SS
Interactions  SS; = 4.9005 1-1)-@-1)=1 M§=——— MS; = 4.9005
(I-1-0-1
- SSg
Within SSg = 366.372 1.J-(K-1)=16 MSgp:=———— MSE = 22.8983
1-J-(K-1)
SSt
TOTAL SSt = 1827.6975 I-J-K-1=19 MSt = m MST = 96.1946
; . COMMANDS
Prototype in R: > Z=read.table(" c:/2007BiostatsData/Zar Examplel2.1.txt")
>Z
> C=factor (Z$Sex)
> R=factor (Z$HormTR) < Notethat Z$Sex and Z$HormTR
> Y=z$CaConc are already factor shere, so the
> anova(lm(Y~R*C)) factor () function has no effect,

but is a safe approach anyway.
Analyssof VarianceTable

Response: Y

Df Sum &g Mean Sq F value Pr(>F)
R 1 1386.11 1386.11 60.5336 7.943e-07 ***
C 1 70.31 70.31 3.0706 0.09886 .
R:C 1 4.90 4.90 0.2140 0.64987
Residuals 16 366.37 22.90

Signif. codes: 0'***' 0.001'**' 0.01'*' 0.05'.'0.1"'" 1
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F-Testsin Two-Way ANOVA with Fixed Effects M odel:
Model:

Yi’j =utoy +ﬁj 1yt gk where:

p isa constant = grand mean of all obj ects.

o, is effect coefficient for classesi in Variable R.

B; is effect coefficient for classesj in Variable C.

Yij isinter action coefficient for classesi,j between VariablesR and C.
Restrictions: Eijk istheerror term specificto each object i,j,k

Z(xi:o ZBJ‘:O ZYU:O ZYU:O
i j i j

Assumptions:
—¢;; arearandom sample ~ N(0,62)
—variance is homogeneousacross cells

F-Test for Hy: All 0; =0

Hypotheses:
Hy a; =0foralli < All treatment class deviations from thegrand mean are 0
H,: Atleast oneq; <>0 < Two sided test
Test Statistic:
MSR H n " n 1 H "
Fp:= o < Ratioof " row" versus" within" Mean Squares
E

Critical Value of the Test:
o = 0.05 < Probability of Typel error must be explicitly set
cV = inversedp(1- o)  CVi=gH1-a,(1-1),1-3-(K-1)]  <Note df=1-1,13(K-1)
Decision Rule:
IF F,>C, THEN REJECT H,OTHERWISE ACCEPT H,
Probability Value:

P,=1-®(F)  Pp:=1-pHFp.l-11-3-(K- 1]

F-Test for Hg: All B; =0

Hypotheses:
Ho B = Ofor all j < All treatment class deviations from thegrand mean are 0
H,: At least oneB; <>0 < Two sided test

Test Statistic:
Foi= — < Ratioof " column" ver sus" within" Mean Squares

-~ MSg
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Critical Value of the Test:
o = 0.05 < Probability of Typel error must be explicitly set
CV = inversedp(1- o)  CVi=gH 1-a,(3-1),1-3-(K-1)]  <Note df = J-1, 1J(K-1)
Decision Rule:
IF F,>C, THEN REJECT H,OTHERWISE ACCEPT H,
Probability Value:

P,=1-®(F)  Pp=1-pHFpJ-1,1-J-(K-1)]

F-Test for Hg: All y;; =0

Hypotheses:
Ho: v;; =0 for all ij < All interactions between thetwo variablesis 0
H,: Atleast oney; <>0 < Two sided test
Test Statistic:
MS . " . .
F3:= e < Ratioof "interactions" versus" within" Mean Squares
E

Critical Value of the Test:
o = 0.05 < Probability of Typel error must be explicitly set
CV = inversedp(1- o)  CVi=gH1-a,(1-1) - (3-1),1-3- (K- 1)]
Decision Rule:
IF F;>C, THEN REJECT H,OTHERWISE ACCEPT H,
Probability Value:

A Note: df = (I-1)(3-1), 13(K-1)

P, =1- ®(Fy) P3:=1-pH F3,(1-1)-(3-1).1-3- (K- 1)]

Example:  Continuingthe Above ANOVA analysis on Sex and Hormone Treatment

F-Testsin Two-Way ANOVA with Fixed Effects M odel:

Model:
Yij Tty + B+t g where:

p isa congtant = grand mean of all objects.
a, iseffect coefficient for classesi in Variable R.
B; is effect coefficient for classesj in Variable C.
Yij isinter action coefficient for classesi,j between VariablesR and C.

Restrictions: & isthe error term speificto each object i,j,k

Zai:=o ZBj:zO zYij::O zYij::O
i i i i
Assumptions:

—g; arearandom sample ~ N(0,62)
— variance is homogeneousacross cells
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F-Test for Hy: All 0; =0

Hypotheses:
Hy a; =0for alli < All treatment class deviations from thegrand mean are 0
H,: Atleast oneq; <>0 < Two sided test

Test Statistic:

MSR
Fi:=—— F1 = 60.5336
MSg

Critical Value of the Test:
o = 0.05 < Probability of Typel error must be explicitly set
CV=gil-a,(-1),1-3-(K-1)] CV = 4.494
Decision Rule:
IF F,>C, THEN REJECT H,OTHERWISE ACCEPT H,
F1 = 60.5336 CV = 4.494
Probability Value:

Pr=1-pHFLI-11-3 (K-1)]  Pr=7.0431x 10 '

F-Test for Hp: All B; =0

Hypotheses:
Ho B; = 0for all | < All treatment class deviations from thegrand mean are 0
H,: At least onep; <>0 < Two sided test
Test Statistic:
M
Fo:= —SC Fo = 3.0706
MSg

Critical Value of the Test:
o = 0.05 < Probability of Typel error must be explicitly set
CVe=gfl-a,d-1),1-3-(K-1)] CV=449%
Decision Rule:
IF F,>C, THEN REJECT H,OTHERWISE ACCEPT H,
Fp = 3.0706 CV = 4.494

Probability Value:

P2::l—pF]:Fz,J—lJ'J'(K—l)] P> = 0.0989

F-Test for Hy: All yi =0
Hypotheses:

Ho: v;; =0 for all ij < All interactions between thetwo variablesis 0
H,: At least oney; <>0 < Two sided test
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Test Statistic:
MS . o N
|:3;:K F3 = 0.214 < Ratioof "interactions" versus" within" Mean Squares
E

Critical Valueof the Test:
o = 0.05 < Probability of Typel error must be explicitly set

CVi=qgil-a,(-1)-@-1),1-3-(K-1)] CV=4.49

Decision Rule;
IF F,>C, THEN REJECT H,OTHERWISE ACCEPT H,

F3=0.214 CV =4.494
Probability Value:

P3:=1-pH Fa.(l-1)-(3-1),1-J- (K- 1)] P3=0.6499

Prototypein R: ANOVA Tablefrom R above:

Analysisof VarianceTable

Response: Y

Df Sum g Mean Sq F value Pr(>F)
R 1 1386.11 1386.11 60.5336 7.943e-07 ***
C 1 70.31 70.31 3.0706 0.09886 .
R:C 1 4.90 4.90 0.2140 0.64987
Residuals 16 366.37 22.90

Signif. codes: 0'***' 0.001'**' 0.01'*' 0.05'.'0.1'" 1 A these values match
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ORIGIN =0
Kruskal-Wallis Test

The Kruskal-Wallisisanon-parametric analog tothe One-Way ANOVA F-Ted of means. It
isuseful when the k ssmples appear not to comefrom underlying Normal Distributions, or
when variancein the different samplesar eof greatly different magnitudes
(non-homogeneous). Aswith other rank-based tess, it does not have as much power asthe
fully parametrictests, but nevertheless enjoyswide use. Note that when the number of
samples k=2, thistest isidentical to the Mann-Whitney Test.

Data Structure: One-Way ANOVA
. Treatment Classes:
k gr oup§W|th not Objects
necessar ily the same (Replicates)|  #1 #2 #3 ”
numbers of observations 1
and differ ent means. >
Let index i,j indicate 3
theith column
(treatment class) and n nl n2 n3 nk
jth row (object). means: Xbar.1 = Xbar.2 = Xbar.3 Xbar.k

Assumptions:

- Observationsin each clasgblock) are a random sample.

- Observationsin each block are independent of obser vationsin other class.
- Underlying digtribution of obser vationsin each cell are continuous.

- Measurement scaleis at least or dinal.

Hypotheses:
Ho- A=0 < No population differencesin treatment
HiA<>0 <Two Sided Test

Criterion for Normal Approximation:

-IF nj > 5 THEN Normal Approximation Applies
OTHERW!I SE use Special Tablese.g. Rosner Table 15 p. 844

Normal Approximation:
Rank Data and Sum:

- Pool the data over all treatment classes - Total sample sizeN = Zn,

- Assgn Data to Ranks. In the caseof ties, t observationsin a rank ar eassgned the
appropriate average rank.
- Compute the Rank Sum (R;) for each treatment classi.

Test Statistic: (R)2
i <whereR, he Rank
He = 12 Z [ L3N+ 1) where R; arethe Ran Sl'JmS
N-(N+1) & n for each treatment classi
|
IF noties THEN: H:= Hg < nocorrection factor...
OTHERWISE: [t 3 tJ <trepresent the number of
Z (]) T observationsthat aretied
correctionfactor> .=1-4=% ingroups1tog
NN Hs

< Corrected Test Statistic
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Critical Valueof the Test:

o = 0.05 < Probability of Typel error must be explicitly set

C = inversed, o(1 - ) C:= gchisg(1 - o,k — 1) < Note: df = (k-1)
Decision Rule:

IFH>CTHENREJECT H,OTHERWISE ACCEPT H,

Probability Value:

P:=(1- @, o(H) P:= (1 - pchisg(Hk — 1))
Example: Zar Example 10.11 p. 199: pH was measur ed multiple times (n;'s) in Four ponds

(treatment classes):

k=4 <treatment classes Z := READPRN("c:/2007BiostatsData/ZarExample10.11.txt" )

© 768 7.71 7.74 7.71)
=Z = h =

Pondo ength(Pondo) =38 760 7.73 7.75 7.71
Pond := AV = length(Pond) n =8 7.7 774 777 1.74

) 77 774 7.78 7.79
Pondy := Z == length(Pondp) — 1 n =7 Z=

" 2 772 778 78 781
Pond := Z = length(Ponds) n,=8 7.73 7.78 7.81 7.85
N::Zn N=31 <total observations 773 78 184 187

7.76 7.81 9999 7.91)
Assumptions: 9999 = missing datapont *

- Observationsin each clasgblock) are a random sample.

- Observationsin each block are independent of obser vationsin other class.
- Underlying digtribution of obser vationsin each cell are continuous.

- Measurement scaleis at least or dinal.

Hypotheses:
Ho- A=0 < No population differencesin treatment
H:A<>0 .
! <Two Sided Test
Criterion for Normal Approximation: 8)
-IF nj>5THEN NormaI.ApprOX|mat|on Applies o 8 < =0 qualifiesfor
OTHERW!I SE use Special Tables 7 Normal Approximation
Normal Approximation: 1 6 135 6) 8)
Rank Data and Sum: 2 10 16 6

35 135 18 135
35 135 20 22

Rank of each observation:

(@ Ranks := j==0.n,-1
Ryi= Y _Ranks 8 20 235 26 ’ 2
10 20 26 29 R,:= Y Ranks.
= Z:Ranks< v 2 z .2

10 235 28 30 j
17 26 9999 31 _ &

55 ) Ry= Y Ranks

1325
| 145 < Rank Sumsfor each Pond (Tr eatment class)

1635 )
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Tied groups: 768 (=
2) 7.69
3 7.7 <2
3 7.7
t:=|4 g := length(t) .11 ,
7.71 <
3
2 g=7 7.71
3) 7.72
7.73
<3
Test Statistic: 7.73
i—0.k-1 773
2 7.74
12 (RO 74
Hg:= Z ~3-(N+1) :
N-(N+1) i n 774 <4
7.74
Hg = 11.8761 775
sort(stack(Z<O>,Z<1>,Z<2>, <3>)) =
IF noties, THEN: H:= Hqg 7.76
7.77
OTHERWISE: -
’ Hs 7.78 <3
> (e
j v 7.79
1- 3 7.8 <2
N"=N 7.8
H = 11.9435 < corrected test gatigic 7.81
" 7.81 <3
Critical Valueof the Test: Se1
o := 0.05 < Probability of Typel « 784 A 7 tied groups
C:= qohisq(1 - a.k - 1) C=7.8147 7.85
Decision Rule: 7.87
7.91

IFH>CTHENREJECT HyOTHER'
H = 11.9435 C=7.8147

Probability Value:
P:= (1 - pchisq(H,k — 1)) P = 0.0076

_ N all values confirmed by Zar p. 199
Prototypein R:

9999 )

COMMANDS
> Z=read.table(" c:/2007BiostatsData/Zar Examplel0.11a.txt" ,na.grings=" NA")
> kruskal.tex(2)

Kruskal-Wallisrank sum test

data: Z2Z
Kruskal-Wallis chi-squared = 11.9435, df = 3, p-value = 0.007579 < Valuesmatch
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ORIGIN =0

Single and Multiple Simultaneous Confidence Intervalsin ANOVA Tests

Similar to previous statistical t-Tests, Confidence | nter valsmay be specified to indicate values
of thetest gatisticin comparison with Critical Values (derived from the inversecumulative
probability t function qt) over which Hy will not be rejected, or equivalently, values of
probability greater than a previoudy specified a.. In usng ANOVA, however, an important
complication arises. In two population t-Tegs, only a single comparison between population
means (p, with p,) ismade. In ANOVA, greater than two populationsis standar d and multiple
pairwise or linear contrast comparisons (for instance p; with p, and p; with pg; and p, with pg
for three populations) are often of interest. In most cases, these comparisions are made
simultaneously, and are therefore dependent upon the same sample data. The existence of
multple dependent probabilities derived from each comparison impliesthat the joint probabity
of a family of comparisonstogether is gr eater than each oneseparately. Thus, if one specifies

o = 0.05 for one oneinterval (or test) then familywise o, for all together isalways greater (i.e.,
less significant).

Multiplet-Test / Fisher's LSD Test for Specific Treatment Pairs:

Model: p isthe grand mean of all objects.
Xij=p+o;+g; < where: o, isthemean of i = p +a; for each classi.
& isthe error term specificto each abject i,j

Restriction:
< allows estimation of k parameters.
Zni'ai =0 Other redtrictionsare also possble:
i Z aj:=0 or ak:=0 < See Rosner p. 558
Assumptions: i

jare ahomogeneous random sample~ N(0,62)

One-Way ANOVA Table

g

Source: SS df MS
SSg
Between SSg k-1 —
k-1
SS
Within SSw n—k W
n-k
TOTAL Sst
Hypotheses:
Ho o = oy for pecifici & j < Meansintreatment classesi & j arethesameasgrand mean
Hy:a; <>o for specifici& | < Two sided test
Test Statistic:
Xbari - xbarj

t=

< Normalized distance between mean of classi & |

jMSW. (i R
ALY

Critical Valueof the Test:
o = 0.05 < Probability of Typel error must be explicitly set

Cy1:= inversecbt(g Co:= inversecbt(l _Z

2) 2)

" \ “ \ Note degrees of freedom = (n-k)
Ci=qtl —,n-k Co=qtl1l-—,n-Kk
1 q[z ) 2 q[ 2 )
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Decision Rule:

ANOVA Confidence Intervals

IF |t| >C, THEN REJECT H,OTHERWISE ACCEPT H,

Probability Value:

P =minimum(2 @(t),1-2 ®(t)

P:=min[2- pt(t,n - Kk),2- (1 -

Confidence Interval:

pt(t,n - k)) ]

1 1

Xpar, = Xpar, + C2- [MSyy - 4 1)
nj)oor i)
~ Notethat C; & C, are explicitly evaluated above,
so added to the difference in sample means here.

N

Example: Vital Capacity dataset by group

R COMMANDS:

> V=read.table(" c:/2007BiostatsData/vital .txt" )

> attach(V)

> X1=vital.capacity[group=="1"]
> X2=vital.capacity[group=="2"]
> X3=vital.capacity[group=="3"]
> summary(X1)

> length(X1)

[1] 12

> summary(X2)

nq:= 12

> length(X2)
[1] 28

> summary(X3)

np = 28

> length(X3)
[1] 44 ng:= 44

> Y=vital.capacity
> X=factor(group)
> anova(lm(Y~X))

One-Way ANOVA Table

Xbar, = 3.949

Xpar, = 4472

Xpar, = 4462

n:=n1+ N2+ N3

k:=3 < number of classes = groups

Min. 1¢ Qu. Median Mean 3rd Qu. Max.
2.700 2.955 3.865 3.949 4.737 5.520

< number of objects& mean of X1

Min. 1 Qu.
2.700 4.240

Median Mean 3rd Qu. Max.
4.615 4.472 5.062 5.220

< number of objects & mean of X2
Min. 1¢ Qu. Median Mean 3rd Qu. Max.
3.030 4.010 4.530 4.462 4.902 5.860

< number of objects & mean of X3

n=284

FromR: Analyssof VarianceTable
Response: Y
Df Sum &g Mean Sq F value Pr(>F)
X 2 2.747 1.374 2.4785 0.09021 .
Residuals 8l 44.894 0.5%4
- MSyy = 0.554 < MSResduals
Hypotheses:

Ho o = oy for specifici & j
H,: a; <>y for specifici & |

< Meansin treatment classesi & j arethesameas grand mean

<Two sided test
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Critical Valueof the Test:
o = 0.05 < Probability of Typel error must be explicitly set

Cp:= qt(%,n i Cy=-19897 Cpi= qt(l - %,n i C, = 1.9897

) )
Single Comparisons:

Between populations1 & 2:

Test Statistic:
Xbarl - Xbarz
t:= t = —2.0365 Xpar. — Xpar. = —0.523
1 1 ‘\ 1 2
MSy- | — + —
o (55

Decision Rule;
IF [t| >C, THEN REJECT H,OTHERWISE ACCEPT H,

t = —2.0365 Cy=-19897  Cp= 19897
Probability Value:
P:=min[ 2 pt(t,n—k),2- (1 - ptt,n - Kk))] P=0.045
Confidence Interval:
1 1 1 1
Clyp:= (xbarl— xbarz) +C1- [MSw-|— + L) (xbar — Xpar ) +Co- [MSy | — + L)
n ng) 1 2 ng nz)
Clip = (-1.034 -0.012)
Between populations1 & 3:
Test Statistic:
Xbarl - Xbars
t= t=-2.1163 Xpar, — Xbar, = ~0.513
MSy - 1 + i\\
ng ng)
Decision Rule:
IF |t| >C, THEN REJECT H,OTHERWISE ACCEPT H,,
t=-2.1163 Cy=-19897  Cp= 19897
Probability Value:
P:=min[ 2 pt(t,n—k),2- (1 - ptt,n - Kk))] P=0.0374
Confidence Interval:
1 1 1 1
Clyz:= (xbarl— xbarg) +C1- [MSw-|— + L) (xbar — Xpar ) +Co- [MSy | — + 1)
n nz) 1 3 ng ng)

Cly3 = (-0.9953 —0.0307)
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Between populations2 & 3:

Test Statistic:
Xbar2 - ><bar3
t:= t = 0.0556 Xbar. — Xpar. = 0.01
1 1‘\ 2 3
MSy: | — + —
o (5

Decision Rule;
IF [t| >C, THEN REJECT H,OTHERWISE ACCEPT H,
t = 0.0556 Cq=-1.9897 Cp = 1.9897

Probability Value:
P:=min[ 2 pt(t,n—k),2- (1 - ptt,n - Kk))] P = 0.9558

Confidence Interval:

o[ o o 5 o e 53

Clyg = (~0.348 0.368)

Note that these are Separ ate and Single Confidence Intervals. Consdered asa joint

statement of probability, the familywise probability of Type |l error o ispotentially much
higher. From the mathematical end of things, statisticiansroutindy caution experimenters
about the potential pitfalls of " data snooping” (toborrow a term from Neter et al. 1996). By
this, they mean running a large number of smultaneoustestsor confidence intervals, and then
proceeding to report significant findings asif discovered outside the context of the other s, or
worse, astheresult of a strategically-chosen a priori experimental design. The problem isthat if
enough simultaneoustests are run, the laws of probability predict that sometestswill end up
showing significance merely dueto chance. This mathematically-based caution iscertainly
correct. Given this, are morethan one significant planned or unplanned result in ANOVA tests
tobe consdered valid or not? Much depends on what exactly is meant by the foundational
concept of o, in often widely differing theor etical and experimental contexts. Whereas
mathematicians might liketo draw a bright line between a priori and post hoc, in experimental
practicerarely isthe diginction so clear. All experimentsexist within aframework of
pre-existing literature and laboratory/field practice for data collection. So Of courSse biologists
regularly engage in " data snooping" in conceiving of problems, designing studies and analyzing
results. They could hardly do otherwise...

In my opinion, the a priori vs post hoc distinction is of interest fr om both theor etical and
practical sandpoints, and to be aware of theissuesinvolved makesit possible to constr uct
sronger scientific arguments. The digtinction also pointsto clear limitationsin gatistical
reasoning in thesciencesto the extent that all of it must be acknowledged to be nothing more
than an approximation. If one'sdata are over wealmingly clear, then difficultiesin the
approximation don't really matter. However, if the data ar eunclear, then how one employsthe
approximation may influence what onemight say within a test, but not necessarily what one
might conclude. The take-home message remains the same - the dataremain unclear, and
biological interpretation, and experimental r eplication, must necessar ily take precedence over
mathematical methodology.
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Simultaneous I nfer ence Procedures:

Sever al methods have been developed to adjust Probabilities of Testsand associated Confidence
Interval widthsto accomodate familywise assessments. Some methods explicitly per mit " data
snooping" whereas othersdo not. It will bebeyond the scope of thiscourse towor ry about how
these adjusments ar ecalculated, but it isimportant to be aware of how, and under what
circumstances, each procedureisemployed. Asa practical matter, of course, sandard statitical
packages offer a full battery of possibilitesand if thedata per mits, use of the" most conservative'
(i..e, widest confidence intervals) is often considered evidence of good experimental desgn.

Multiplet-Test / Fisher's LSD Test for Specific Treatment Pairs:

Although described abovein the context of sngletess, in fact, Fisher's LSD (Lead Significant
Difference) Tedsisoften available as oneof the available " multipletest” optionsin standard
gsatistical packages. It isuseful to know that they are the same. Fisher'sLSD isoften
employed when the researcher fedsthat " data snooping" isnot amajor issuein the study
and/or the number of multiplecomparisionsarereatively low. Of course, thisisa judgement
call. Soif the data permits, use of one of the proceduresbelow ismore " conservative' and is
often judged to bemore prudent. Many studiesreport both.

Prototypein SYSTAT:

Datacut & pasted from Excel to a SYSTAT Datasheet. Dependent Variable was named 'VC'
and I ndependent categorical variable named " GROUP". ANOVA option chosen and variables
assigned. Posthoc teststurned on with L SD as option.

Effects coding used for categorical variables in model.
Categorical values encountered during processing are:
GROUP (3 levels)
1, 2, 3
Dep Var: VC N: 84 Mul tiple R: 0.24014 Squared multiple R: 0.05767
Analysis of Variance
Source Sum-of-Squares df Mean-Square F-ratio P
GROUP 2.74734 2 1.37367 2.47846 0.0902
Error 44 .89362 81 0.55424

coL/s
ROW GROUP

1 1

2 2

3 3

Using least squares means.
Post Hoc test of VC

-Using model MSE of 0.554 with 81 df.
Matrix of pairwise mean differences:

1 2 3
1 0.00000
2 0.52262 0.00000 < differences match above
3 0.51288 -0.00974 0.00000

Fisher"s Least-Significant-Difference Test.
Matrix of pairwise comparison probabilities:

1 2 3
1 1.00000
2 0.04516 1.00000 < Probabilities match above

3 0.03747 0.95697 1.00000
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Bonferroni Multiple Comparisons Procedure:

If aspecific and relatively small set of simultaneous tests are desired, this procedur ewill often
give the narrowest confidence intervals, and ispreferred. Sincethe Bonferroni method requires

identifying a SPecific set of smultaneousteds, it isnot appr opriate for " data snooping" .
M ethodology:

Bonferr oni inter vals can be easly calculated given g- the number of simultaneoustests:
Critical Valueof the Test:

o = 0.05 < Probability of Typel error must be explicitly set

Cii= qt(L’n _ k\ Coi= qt(l _ % - k\ < critical values modified to account
2.9 ) 2-9 for number of tests g

Bonferroni ConfidenceInterval for Multiple Comparisons:

Ol = | Xoar — Xpar. + C1- [MSw-[ 2+ ) Ko — Xpar + o (M- [ £+ L)
[ i n n) i i N nj)

N same asfor Single Cl but with adjusted Critical Values
Example: Datafrom above.

Critical Valueof the Test:
o = 0.05 < Probability of Typel error must be explicitly set

g==3 < Threetests set explicitly (1-2, 1-3, 2-3)
Cy:= qt(i,n i Coi= qt(l -2 n- k) <critical values modified to account
29 ) 29 ) for number of tests g
Between populations1 & 2:
Test Statistic:
Xbarl - xbar2
t= t = —2.0365 Xbar, ~ Xpar, = ~0.523
MSy - 1 n 1)
ng ngz)

Decision Rule;
IF [t| >C, THEN REJECT H,OTHERWISE ACCEPT H,

t = —2.0365 Cq1 = —-2.4447 Co = 24447
Probability Value:
P:=min[2-g-pt(t,n—K),2-g- (1 - pt(t,n—k))] P=0.134899

Confidence Interval:

- 1.1 1,1
Clip:= {(xbarl— Xbar2)+ cl.jmsw.(nl + ) (xbarl— xbar2)+ cz.jmsw.(nl + nz)}

Clip = (-1.1508 0.1048)
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Between populations1 & 3:
Test Statistic:

Xbarl - xbar3
t:= t=-2.1163 Xbarl - Xbars = -0.513

jMSW' (i L)
n ng)
Decision Rule:

IF |t| >C, THEN REJECT H,OTHERWISE ACCEPT H,

t=-2.1163 Cq = -2.4447 Co = 2.4447
Probability Value:
P=min[2-g-pt(t,n—k),2-g- (1 - pt(t,n-k))] P=0.1122

Confidence Interval:

1 1 1 1
Cliz:= (xbarl— xbars) +Cq- [MSy-|— + 1) (xbar — Xbar ) +Co- [MSy | — + 1)
ng ng) 1 3 ng ng)
Cli3 = (-1.1056 0.0796)
Between populations2 & 3:
Test Statistic:
Xbarz— xbar3
t= t = 0.0556 Xpar. — Xpar_ = 0.01
1 1\ 2 3
MSw:| — + —
np ng)
Decision Rule:
IF |t| >C, THEN REJECT H,OTHERWISE ACCEPT H,,
t = 0.0556 Cp=-24447  Cp= 24447
Probability Value:
P=min[2-g-pt(t,n-—k),2-g- (1 - ptt,n—-Kk))] P= 28675
Confidence Interval:
1 1 1 1
Cliz:= (xbarz— xbars) +Cq- [MSy-|— + 1) (xbar — Xbar ) +Co- [MSy | — + 1)
n ng) 2 3 n ng)

Clyz = (~0.4299 0.4499)

Prototypein SYSTAT:

Bonferroni Adjustment.
Matrix of pairwise comparison probabilities:

1 2 3
1 1.00000
values are closebut don't exactly match > 2 0.13549 1.00000

3 0.11241 1.00000 1.00000
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Tukey Multiple Comparisons Procedure:

Thisprocedureisdesgned to providea smultaneous probability of a when comparing means
of all possible pairs of populationswithin the ANOVA data str ucture. When sample sizes

n, differ, this procedur eisalso called the Tukey-Kramer Procedure. "Datasnooping" is
permitted with this procedure aslongasoneisrestricts" snooping" to pairwisecomparisonsof
population means.

M ethodology:

Tukey intervals ar ecalculated by consulting a sudentized rangedistribution.
Tukey Test Statistic:
{2t om)
j MSyy - (i R
n ny)
Critical Valueof the Test:

Q:=

o = 0.05 < Probability of Typel error must be explicitly set

- 1 qstudentizedrange(l —a,k,n- k) < critical value constr ucted from

2 "sudentized" range digribution.

Decision Rule:
IF |Q| >C, THEN REJECT H,OTHERWISE ACCEPT H,

Probability Value:
P := min(pstudentizedrange(Q, k, n — k))

Tukey Confidence Interval for Multiple Comparisons:

C'Tiz{xbari—Xbarj—c'\/MSW'(i_+i_\ Xbari—xbarj+c'\/Mva-(i_+i\}

n; nJ)
Example:  Datafrom above.
Output from SYSTAT:

Post Hoc test of VC

Using model MSE of 0.554 with 81 df.
Matrix of pairwise mean differences:

1 2 3
1 0.00000
2 0.52262 0.00000
3 0.51288 -0.00974 0.00000

Tukey HSD Multiple Comparisons.
Matrix of pairwise comparison probabilities:

1 2 3
1 1.00000
2 0.11049 1.00000

3 0.09304 0.99839 1.00000
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Scheffé M ultiple Comparisons Procedure:

This procedureisdesigned to providea smultaneous probability of « for all possible linear
contrastswithin the ANOVA datastr ucture. Sinceall possible Linear Condrastsin a dataset
involves an infinite set of possible comparisonsincluding pairwise comparisons, the

Tukey procedure will typically give smaller Confidence I ntervalsfor only pairwise comparisons,
and the Bonfer roni procedure will give smaller Confidencelntervals, for a specific limited set of
any kind of comparisons. Thusthe Scheffé isaconser vative approach that allows" data
snooping" and isoften preferred for methodological reasons - if the datawill permit it. Often
the datadoesnot. In usingthistest, many researchersrelax the criterion of " acceptable'
familywise Typel error o alittle (o = 0.1 is often consdered acceptable for multiple
comparisonswhen o, = 0.05 is consder ed acceptable for single comparisons).

M ethodology:

Scheffé intervals ar ecalculated by constructing an unbiased point estimate of the mean
of a Linear Combination of interest L, 5, Sandard deviation s, , and Critical Values
calculated from the F distribution.

Critical Valueof the Test:
o = 0.05 < Probability of Typel error must be explicitly set

< where g isthe number of Populationsin the
S=V(n-1)-af1-a.g-1N-g ANOVA data structure, and N isthe total
number of observations n;.

Scheffé Confidence I nterval for Multiple Comparisons:

9 (c)° 9 (c)°
Clg:=| Lha - S- MSW-Z . Lhat + S- MSW-Z —
i=1 ! i=1 !
N where Mean Squares Within (Error) ismodified by
coefficients ¢; squared for the Linear combination
and sample sizesn,.

If the ANOVA F-Ted for Hy: All a; =0 rejects Hy then the Scheffé Procedureis guaranteed to
find at least one contrast such that H,: L; =0 isalso rejected.

Output from SYSTAT: Post Hoc test of VC

Using model MSE of 0.554 with 81 df.
Matrix of pairwise mean differences:

1 2 3
1 0.00000
2 0.52262 0.00000
3 0.51288 -0.00974 0.00000

Scheffe Test.
Matrix of pairwise comparison probabilities:

1 2 3
1 1.00000
2 0.13284 1.00000

3 0.11329 0.99854 1.00000
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Holm Simultaneous Testing Procedure:

Thisprocedureisan iterative refinement of the Bonferroni approach designed to providea
smultaneous probability of o for a gpecific set of tests. Holm sometimesreg ectsa null
hypothesisthat Bonferr oni would not with the same data and is, thus, more powerful.
However, Holm is computationally more complex and lacks direct computation of Confidence
Intervals. Although Holm may bethe pr eferred method for theor etical reasons, power

consder ation by itself may not necessarily be a good reason for chosngthetest. Aswith
Bonferr oni, thismethod is unsuitable for " data shooping" .
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ORIGIN =0

Repeated M easures One-Way Analysisof Variancewith Fixed Effects M odel

Asindicated previoudy, One-Way ANOVA with Fixed Effects Model (also termed " Single
Factor" and " Between Groups' ANOVA) represents an extenson of the Two-Samplet-Teg with
equal var ianceto analysesinvolving k > 2 groups (often termed " treatments" or " factor levels').
The ANOVA extension of the Paired t-Ted, in which data are matched exactly acr oss groups
("treatments" or " factor levels'), are called Repeated One-Way ANOVA designs (also termed
"Within-Subjects' Single-Factor ANOVA). They are also sometimes called " Radomized Block"
studies emphasizing the impor tance of proper experimental design in the presentation of
treatmentsto multiple individuals (" objects' or " replicates") within the study. Such concerns
wer ealso present in the Paired t-Test but become much mor esoin Repeated-Measures ANOVA.

Data Structure:

k gr oups (treatments) exactly matched within individuals (objects). Typically, the order in
which specific treatments ar epresented toindividualsis randomized and exactly matched over
thenreplicates.

Repeated Measures One-Way ANOVA
Treatment Classes:
. L Objects
Let index i,] indicate (Replicates)|  #1 #2 43 #k
theith column
1
(treatment class) and >
jth row (object). 3
n n n n n
means: Xbar.1 | Xbar.2 = Xbar.3 Xbar.k
Model:
isthe grand mean of all objects.
X..=u+p +tao +s. u. . .
ijTRTP oy tE; < where: J isa random effect for each object

o, isaconstant effect for each classi.

Restriction: ) - o
g istheerror term specificto each object i,]

Z aj:= 0 < allows estimation of k parameters.
i

Assumptions:
p; arearandom sample ~ N(O, cpz)

g; arearandom sample ~ N(0,6?)
p; and g; are independent.

Number & Means:
< total number of objects= matched obser vations

n
N:=n-k < Total number of observations
1 .
GM = —- X . < grand mean - sample estimate of
N [ZZ 5 J P #
i)
Xbar; := mean(x<'>) < meansfor individuals across tr eatments
T \ L
Xbarj =m (X ) < meansfor treatments acr ossindividuals

(usng matrix transpose function)
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Sums of Squares.
sstoT= 3" 3" (%~ M)
i

sy i= k- 3 (Xbar; - GM)2
]

SST~iZ (Xbari - GM)2

SSg = ZZ (X, — Xbar, - Xbar, + GM)2
i

< Total Sum of Squares

< Sums of Squaresfor Individuals

(Objectsor Subjects)

< Sumsof Squaresfor Treatments

< Between (Treatment) Sum of Squares

Repeated M easures One-Way ANOVA Table:
Source: SS df
Individuals SS n-1
Treatment SSt k-1
Error SSE (k-1)-(n-1)
TOTAL SStoT
Example:
WineTed.txt Datain thisweek's Datafolder -
6 Judges each rate4 winesin a taste test (Neter et al p 1169):
W := READPRN("c:/2007BiostatsData/WineTest.txt" )
X = submatrix(W,0,5,1,4) < extracting
only the
Number & Means: data
n := rows(X) k:=cols(X) i:=0.cols(X)-1 j:=0.rowsX)-1
N:=n-k
1 n==6
GM ~—N(ZZXJ-,D k=4 GM = 23.6667
i)
XbarT = mean(x7) 20 ) 25)
22 20
(j XbarT = 21
Xbarl, = mear[(XT) J 26.6667 Xbarl =
26 } 28
25
individual meansfor each treatment

23)

(k-1)-(n-1)

X =

o O A W N

20
15
18
26
22
19

20
15
18
26
22
19

24
18
19
26
24
21

24
18
19
26
24
21

28
23
24
30
28
27

28 28)
23 24
24 23
30 30
28 26
27 25)

28)
24
23
30
26
25)

< treatment means for
each individual
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Sums of Squares.

sstor=3" 3 (X, ;- GM)2 SSToT = 3733333
i

SS; =k - Z (Xbarlj - GM)2 SS, = 173.3333
i

sS7i= 3 n- (XbarT, - GM)2
i

SSt = 184
2
SSg = ZZ (xj!i ~ XbarT, - Xbarl + GM) SSg = 16
P

Repeated M easures One-Way ANOVA Table:
Source: SS df MS

. SS|
Individuals SS| = 173.3333 n-1 MS; = — MS) = 34.6667

n —
SSt
Treatment SStT = 184 k-1 MST := PR MST = 61.3333
E SSg =16 k-1 1) MS =SE MSg = 1.0667
rror = -1)-(n- - = -1
E ( )~ ( ) E k-1 (D E

TOTAL SStoT = 373.3333 A values confirmed Neter et al. p. 1171

F Test for Overall Comparison of Class Means:

Hypotheses:
Hy a; =0foralli < All treatment class deviations from thegrand mean are 0
H,: At least oneq; <>0 < Two sided test
Test Statistic:
MSt .
Fi.= e < Ratioof "treatment” versus" error” Mean Squares
E
Distribution of the test Statistic F:
If Hyistruethen F ~F((k-1),(k-1)(n-1)) where: k = number of classes

n = number of individuals
Critical Valueof the Test:
o = 0.05 < Probability of Typel error must be explicitly set

CV = inversedp(1- o)  CVi= g 1-a,(k-1),(k-1)-(n-1)]
Decision Rule:

IFF>C, THENREJECT H,OTHERWISE ACCEPT H,
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Probability Value:
P = minimum(®.(F),1-®(F)
P:= min[ pF[F,(k — 1),(n - 1)],1 - pF[F,(k = 1),(N - 1)]]

~ Notethat C, & C, are explicitly evaluated above,
Example: so added to the difference in sample means here.

Continuing our Examplefrom Above...

F Test for Overall Comparison of Class Means:

Hypotheses:
Hy a; =0foralli < All treatment class deviations from thegrand mean are 0
H,: Atleast oneq; <>0 < Two sided test
Test Statigtic:
MSt :
Fr= — F=575 < confirmed Neter et al. p. 1170
MSg

Critical Valueof the Test:
o = 0.01 < Probability of Typel error must be explicitly set

V=g 1-a,(k-1),(k-1)-(n-1)] CV=5417

Decision Rule;
IF F>C, THEN REJECT H,OTHERWISE ACCEPT H,

F=575 CV = 5417 < values confirmed Neter et al. p. 1170

Probability Value:

P-— min[ pF[F, (k = 1),(n = 1)],1 - pF[F,(k = 1),(k = 1) - (= 1)]] P= 1.8538 x 10 °
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ORIGIN =0

Friedman Two-Way Analysisof Variance by Ranks Test

The Friedman Two-Way ANOVA by Ranks Test isthenon-parametric analog tothe One-Way
Repeated Measures ANOVA. The object hereisto compare obser vations exactly matched
acr osstreatment classesfor replicate individuals.

Data Structure:

k gr oups (treatments) exactly matched within individuals (objects). Typically, the order in
which specific treatments ar epresented toindividualsis randomized and exactly matched over
thenreplicates.

. C Friedman's Two-Way ANOVA by Ranks

Let index i,j indicate Treatment Classes:

theith column Individuals

(treatment class) and (Replicates)|  #1 #2 #3 ”

jth row (object). X;; 1

representsthe rank or >

aver agerank of the 3

treatment for each

individual. n = = - -
Assumptions: means: Xbar.1 | Xbar.2 = Xbar.3 Xbar.k

- Then Individualsr epresent ar andom sample.
- Underlying digtribution of obser vationsin treatment cells are continuous.
- Observations are of at least ordinal scale.

Hypotheses:
Ho- A=0 < No population differencesin treatment
HiA<>0 <Two Sided Test

Criterion for Approximation:
-IF nj > 8 THEN Approximation AppliesOTHERWISE theted is conservative.

Rank Data and Sum:

- n =number of individuals, k = number of treatment classes

- Assign Data for treatment classto a Ranks considering each I ndividual. In the case of
ties t observationsin a rank ar eassigned the appr opr iate averager ank.

- Compute the Rank Sum (R;) for each treatment classi.

Test Statistic:
<whereR he Rank sum
Fro = 12 ' Z(R')z C3on-(k+ 1) where R, arethe Ran su s
n-k-(k+1) &\ ! for each treatment classi
|
IF noties THEN: Fr:= Frg < nocorrection factor...
OTHERWISE:
Frg
Fr .=
9 3
cor rection factor > [(tj) —IJ < trepr esent the number of
j=1 observationsthat are tied

1- ingroups1tog

n (k3 k)
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Critical Valueof the Test:
o = 0.05 < Probability of Typel error must be explicitly set

C = inversed, o(1 - ) C:= gchisg(1 - o,k — 1) < Note: df = (k-1)

Decision Rule;
IF Fr > C THEN REJECT H,OTHERWISE ACCEPT H,

Probability Value:

P:=(1- @,5(H) P:= (1 - pchisg(Frk — 1))
Example.  Shesin Table 19.1 p. 455 6 Individuals (Subjects) ranked 197 4)
for three Tr eatments (Conditions) : 2 10 87
Z := READPRN("c:/2007BiostatsData/Sheskin.txt" ) 974y ,_[3753
X := submatrix(Z,0,5,1,3) 10 8 7 41087
© 7 5 3 57 52
n := length\ X n==6 X=
g ( )<O> 10 8 7 6 8 6 6)
k= Iength[(XT) } k=3 5 2
_ 8 66)
Assumptions:

- The n Individualsr epresent ar andom sample.
- Underlying digtribution of obser vationsin treatment cells are continuous.
- Observations are of at least ordinal scale.

Hypotheses:
Ho- A=0 < No population differencesin treatment
HiA<>0 <TwoSided Test
Criterion for Approximation:
-IF nj>8 THEN Approximation AppliesOTHERW!ISE the ted is conservative.

Rank Data and Sum:

n=6 k=3 9 7 4) 32 1) , :
< rankingsare deter mined
10 8 7 3 2 .
by numerical values of
¥ - 753 X e 3 2 1 treatments seen for each
10 8 7 R 32 1 individual separ ately.
52 32 1
1:=0.k-1 66) 3 15 15)
W
R. = X
| Z " 18 ) k f h col f X
<
R-l| 115 rank sumsfor each column of Xy
.. 6.5
Test Statistic: /

12 2
Frg:= TR0 D z (Ri> -3-n-(k+1)  Frg= 110833
[ ~ confirmed Shekin p. 456

IF noties THEN: Fr:= Frg < nocorrection factor...
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g=1 t1:: 2
OTHERWISE:
Frg

Fri= . <t represent the number of
[(t_>3 _ tj] observationsthat aretied

cor rection factor > _ J ingroupsltog

1121
n (kK% k) Fr — 11.5652
o ~ Fr and correction
Critical Valueof the Test: factor confirmed

o= 0.05 < Probability of Typel error must be explicitly set Sheskin p. 457
C = qehisg(1 - o,k — 1) C = 5.9915

Decision Rule;
IF Fr > C THEN REJECT H,OTHERWISE ACCEPT H,

Fr = 11.5652 C = 5.9915
Probability Value:
P:= (1 - pchisg(Fr,k — 1)) P = 0.0031

Prototypein R:

COMMANDS

X=read.table(" c:/2007BiostatsData/Shekin.txt" )
X

Y=as.matrix(X)

Y

friedman.test(Y)

Friedman rank sum test

data: Y
Friedman chi-squared = 11.5652, df = 2, p-value = 0.003081

 valuesthe same asthe cor rected version Fr above.





