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Welcome to Biostatistics!

Please fill out a card with:
- Name
- Major & Class (i.e., year)
- A way to contact you if necessary

             such as email or telephone #
- Brief reason for taking this class...

Also, please fill out the survey... 

Class Syllabus & Organization:
- This course is above all "hands on"!
- Attendance is key to success...
- Textbook will be the prime narrative.
- Read assignment each day/week before 

lecture:
- Reading assignments can be found in the

              Tentative Schedule on Blackboard
- Worksheets will be posted on Blackboard.

print them out and bring to class...
- Weekly Projects due on Tuesday in class.   

Grading:
- See syllabus for breakdown.
- Note: be prepared for a quiz at any time!
- Grad students: We'll talk about this later...

Building a portfolio:
- a good strategy for using statistical materials.
- importance of "prototyping" 
- beware the "black box"! 
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Mathophobia:
"Mathophobia is an irrational and impeditive 
dread of mathematics. For any of a variety of 
reasons a student can develop this emotional 
and intellectual block, making further progress 
in mathematics and closely related fields very 
difficult." Mitchell Lazarus (ERIC)

In my opinion:
- important to realize the fears are irrational
- everyone has them
- failure normally happens to everyone.
- math is a tool, not an IQ test.
- math represents power in academics & life
- the pathetic role of the 'phobe' in ceding

            initive & a role in decision making...
- math is fun to both fail and succeed in doing

Definition of Statistics:
"a branch of applied mathematics concerned with the collection and 
interpretation of quantitative data and the use of probability theory 
to estimate population parameters" (wordnet.princeton.edu)

"Statistics is the science and practice of developing knowledge 
through the use of empirical data expressed in quantitative form. 
It is based on statistical theory which is a branch of applied 
mathematics. Within statistical theory, randomness and 
uncertainty are modelled by probability theory. Because one aim 
of statistics is to produce the "best" information from available 
data, some authors consider statistics a branch of decision 
theory." (wikipedia.org)

Lies, Damned Lies, and Statistics 
(e.g., http://www.bklein.de/statistics/)
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(

Read Rossner Chapter 1 for a general motivation...

- Statistics have always been important in fields filled with
      lots of data requiring summary but having exceptions.

- Varying usefulness in fields such as Physics versus Biology.

- Many traditional uses in Psychology, Evolution & Ecology

- Growing importance in Molecular Biology & Bioinformatics

Read Rossner Chapter 2 ASAP

- We will begin addressing these topics on Thursday.

- Check Blackboard and download available Lecture
     worksheets and Thursday computer pod assignment.

- Follow instructions ...

- Assignments will be due in class 
      on the following Tuesday.
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Handling Data:
- Computer-based data Manipulation is key to 
    working with modern forms of statistics.

- We will begin using:

     Microsoft Excel - a spreadsheet - check for tutorial
      on the cd disk accompaning your text.

     SPSS - In the pod.  If you have reason to use another
      program such as SAS, Systat, Minitab 
      please feel free.  

     R - a free web-resource (S & S-plus are similar but
       not free!).  This is rapidly gaining a major following
       among many different workers including theoretical
       mathematicians, biological researchers working in
       bioinformatics and many other fields. 



#GETTING STARTED WITH THE R INTERPRETER 
 
# Useful functions for summarizing statistical data in R: 
# Note that anything prefaced by # is ignored by the R interpreter. 
 
# Examples of dataset come already installed with R that may be consulted right away. 
# For instance, the famous iris dataset of Anderson. 
#  Type or cut and past the following line into the R interpreter and see what happens: 
 
iris 
 
# Note the structure of this data table with rows (each flower often called statistical  
"objects" or "individuals") and columns (variables). One column includes the species  
name for each individual. 
 
# This kind of data is typical in statistics.  In R, the structure  is given a special name.   
Try: 
 
class(iris) 
 
# the class "data.frame" is R's way of specifying flexible kinds of data including both  
numbers and character information (as in the species column) along with labels for rows  
and columns. 
# Now, for summary information on the iris dataset, try: 
 
summary(iris) 
 
#Now, each variable (column) of the iris dataset is summarized with minimum and maximum 
values, means and medians, quantiles – all good statistical information.  Note also that the Species 
column contains counts for each of the three species names in the  
iris dataset. 
 
# For pairwise plots of all variables, try: 
 
plot(iris) 
 
#Now, you get pairwise plots of all columns.  Note that some plots don't make much sense!  Why?  
In all statistical analysis, your job will be to interpret reports such as this and decide which are 
meaningful and which are not. 
 
# It is often useful to be able to extract particular pieces of data from larger data tables.   
In R, you can extract the columns using the symbol$.  Type: 
 
iris$sepal.length 
 



# What you get is an error message "NULL" meaning that R reports nothing!  It is important to 
compare this line with the column variable label "Sepal.Length" reported above.  Note the 
difference?  Now try: 
 
iris$Sepal.Length 
 
# The R statistical language requires that you be specific about the case for all names.  It turns out 
we were lucky in the first place that "iris" was all in lower case letters.  However, "Sepal.Length" 
has both upper and lower case letters, and we must type things correctly.  "Sepal.Length" is 
different from "Sepal.length" and so on.  Irritating, perhaps, but not a big problem now that you 
have been warned! 
 
# To avoid much typing, it is possible to simplify names for different data columns by “attaching” a 
datafile to the current environment.  Type: 
 
Sepal.Length 
 
#The interpreter returns the complaint: “Error: object "Sepal.Length" not found”.  
But if you: 
 
attach(iris) 
 
#and then: 
 
Sepal.Length 
 
# you can now view each data column by name directly. In R, the opposite of “attach” is “detach”.  
Try it an see what happens. 
 
# Now, let's do something useful with a single column of the iris dataset.  After attaching the iris 
datafile to the environment, try: 
 
hist(Petal.Length) 
 
# A histogram like this is useful for investigating the distribution of the individual measurements of 
this variable (called "values" in this "sample" of measurements) in order to make a guess at the 
distribution of all possible values (called the "population" of measurements).  This distinction is 
very important in statistics. 
 
#To make you histogram more useful, you can specify the number of bins using “nclass” and 
colors to the bars as follows: 
 
hist(Petal.Length,nclass=25,col=”gray”,border=”red”) 
 
#Now, let's make a scatter plot of two variables.  We will place Sepal.Length on the x axis and 
Sepal.Width on the y axis: 



 
plot(Sepal.Length,Sepal.Width,col=”red”,pch=21,bg=”green”) 
 
# Note that in R, as with many statistical programs, a single column of data such as Sepal.Length is 
called a "vector".  A vector is simply an ordered list of numbers (sometimes other things) with the 
order indicated by an "index" indicating placement within the list.  
 
# To access individual items within a vector in R, we use [].  For instance, try: 
 
Sepal.Length[7] 
 
#What does this number mean?  Compare this with the entire data frame, and find the 7th item in 
vector Sepal.Length.   
# An entire list of data numbers, consisting of vectors side by side is called a data "matrix".  The 
data frame "iris" consists of a data matrix of four variable vectors plus a vector of species names. 
# To access any piece of this information, [] may be used as well.  Here, however, you must specify 
both row and column indices: 
 
iris[3,4] 
 
# Can you find this number in the data matrix? 
# Now try: 
 
iris[3,5] 
 
# Here the R interpreter tell you that the word "setosa" sits in this spot and is one of three possible 
alternatives (called "levels") including "setosa", "versicolor" and "virginica". 
# For a little more fun, multiple values in the data frame can be extracted by using a vector we 
make on the fly, using the c (concatenation function): 
 
iris[c(3,4,5,6,7,),2]  
 
# Compare with the entire iris data set to see how this works. Here's a powerful (and cool) way to 
make a vector by specifying start and end points of series of numbers incrementing by one using 
":".  Try this and see what it does: 
 
iris[c(1:6),3] 
 
# One of the powerful features of R, like many programming languages, is the ability to name new 
variables and load them with new values.  This is done by use of an "assignment" operator.  In R, 
the assignment operator "<-" or "=" (two different ways to say the same thing) place values you 
give it into a variable you name.  Let's name a new vector variable called "NewVar" and assign it 
the values "1,3,5,7": 
 
NewVar <- c(1,3,5,7) 
 
#Now "evaluate" the variable you have just made: 



 
NewVar 
 
#The evaluation shows that you have placed the values in the concatenation function c()inside 
NewVar.  Now let's make another: 
 
NewVar2 = c(5,6,7,8) 
 
# and evaluate: 
 
NewVar2 
 
# Easy.  We can now use "functions" to do many important things.  For instance, to calculate the 
"mean" (average) of a vector, use the built-in R function "mean()" placing whatever variable you 
want within the parentheses: 
 
mean(NewVar) 
 
# How about the median, with "median()": 
 
median(NewVar2) 
 
# Can you find the median of Sepal Length in iris: 
 
median(Sepal.Length)?  
 
Or, how about the mean of the first 50 rows in of iris for Petal Width? 
 
mean(iris$Petal.Width[1:50]) 
 
# There are many other useful functions in R, such as: 
 
min(NewVar)                    # minimum value in vector  
max(NewVar2)                  # maximum value in vector  
sum(NewVar)                                           # adding the elements of the vector. 
length(NewVar2)                # finding how many numbers occur in the vector. 
var(Petal.Length[1:50])  # for the variance of Petal Length for iris setosa. 
 
# Many more functions may be found by typing: 
 
help.start() 
 
# As you have probably noticed, learning about and remembering the syntax of a programming 
language such as R is a major challenge and fundamental to using it effectively.  To find more 
information about any built in function in R, type a "?" followed by function name, eg: 
 



?var  
 
#It is often very useful to look at some variables according to values exhibited by another.  For 
instance, looking at the iris dataset: 
 
iris 
 
# one can see that data for iris species “setosa” are found in the first 50 lines, data for “versicolor” 
in the next 50 lines, and for “virginica” in the last 50 lines.  We can calculate the number of lines, 
minimum value, maximum value, mean value, standard deviation, and variance for one variable by 
applying the above functions.  For Sepal.Length in species “versicolor”, try: 
 
length(Sepal.Length[51:100]) 
min(Sepal.Length[51:100]) 
max(Sepal.Length[Species==”versicolor”]) 
mean(Sepal.Length[Species==”versicolor”]) 
sd(Sepal.Length[Species==”versicolor”]) 
var(Sepal.Length[Species==”versicolor”]) 
 
# As you can see, this is somewhat tedious, and requires manually checking rows in the iris dataset 
to determine which belong to the species “versicolor”.  Alternatively, one can use “==” (double 
equal sign indicating logical evaluation rather than assignment) and allow R to do the counting for 
you.  An easier way to combine such functions is to use the function called “tapply” creating 
variables like this: 
 
xbar=tapply(Sepal.Length,Species,mean) 
n=tapply(Sepal.Length,Species,length) 
mn=tapply(Sepal.Length,Species,min) 
mx=tapply(Sepal.Length,Species,max) 
s=tapply(Sepal.Length,Species,sd) 
v=tapply(Sepal.Length,Species,var) 
 
# and then using the “column combine: function: 
 
cbind(“NUMBER”=n,  
“MINIMUM”=mn, 
“MAXIMUM”=mx, 
“MEAN”=xbar, 
“STD DEV”=s, 
“VARIANCE”=s)   #Note use of multiple lines only to make this more readable! R doesn’t care. 
 
# The result is a tabulation of these variables for each species in turn.  Note in the command above, 
that words in “ ” are used to specify labels; the symbol ‘ ‘ work also, but should not be intermixed. 
 
# We can histogram each now by making the following Sepal.Length variables: 
 
 



SL.setosa=Sepal.Length[Species=="setosa"] 
SL.versicolor=Sepal.Length[Species=="versicolor"] 
SL.virginica=Sepal.Length[Species=="virginica"] 
 
# Then formatting using the function”mfcol” for making 3 rows and 1 column: 
 
 par(mfcol=c(3,1)) 
 
# followed by making the histograms: 
 
hist(SL.setosa,nclass=15,col="red") 
hist(SL.versicolor,nclass=15,col="blue") 
hist(SL.virginica,nclass=15,col="green") 
 
# After that, it is a good practice to reset the plotter back to a single plot: 
 
par(mfcol=c(1,1)) 
 
# unless you intend to continue plotting graphs in groups of three indefinitely.  A similar function 
“mfrow” allows graphing in rows instead of columns: 
 
par(mfrow=c(1,3)) 
hist(SL.setosa,nclass=15,col="red") 
hist(SL.versicolor,nclass=15,col="blue") 
hist(SL.virginica,nclass=15,col="green") 
par(mfrow=c(1,1)) 
 
hist(SL.setosa,nclass=15,col="red") 
hist(SL.versicolor,nclass=15,col="blue") 
hist(SL.virginica,nclass=15,col="green") 
 
# To allow comparison between histograms, limits based on maximum and minimum values 
(observed on the graphs or calculated above) can be applied to the x and y axes: 
par(mfcol=c(3,1)) 
hist(SL.setosa,nclass=15,col="red", 
xlim=c(4,8),ylim=c(0,10)) 
hist(SL.versicolor,nclass=15,col="blue", 
xlim=c(4,8), ylim=c(0,10)) 
hist(SL.virginica,nclass=15,col="green", 
xlim=c(4,8), ylim=c(0,10)) 
par(mfcol=c(1,1)) 
 
# Now for making scatter plots with multiple coded points, we make variables by extracting 
Sepal.Width for each Species: 
 
 
SW.setosa=Sepal.Width[Species=="setosa"] 



SW.versicolor=Sepal.Width[Species=="versicolor"] 
SW.virginica=Sepal.Width[Species=="virginica"] 
 
# Now for we make a plot using function “plot”.  Limits xlim and ylim are specified to allow 
plotting of all points in the graph.  We then add points for the others using function “points”: 
 
plot(SL.setosa,SW.setosa,pch=19,col="red", 

xlim=c(4,8),ylim=c(2,4.5)) 
points(SL.versicolor,SW.versicolor,pch='v',col="blue", 

xlim=c(4,8),ylim=c(2,4.5)) 
points(SL.virginica,SW.virginica,pch=22,col="green", 

xlim=c(4,8),ylim=c(2,4.5)) 
 
# Of course, points are color coded using “col” and different symbols are used using “pch”.  To 
find available options, enter: 
 
# SAVING PLOTS: 
 
# To save your histograms or plots, it is a simple matter of cutting and pasting them into your 
favorite word processor such as MS Word.  They can then be printed out in the normal way. 
 
?points 
 
# READING AND WRITING DATA: 
 
# Writing and Reading data from external files is an important aspect of any statistical analysis.  
Simple text files are the most general way to exchange data between formats and programs as 
nearly all have ability to do this in one way or another.  To write the “iris” data table to a text file, 
the easiest way is to cut and paste.  Open a text file editor, and then cut and paste normally.  Be 
sure to include the first line containing names of the variables.  Use your text editor to make a 
simple text file named “iris.txt” and place this within R’s working directory.  You can find out 
where the working directory is located by looking under “File/Change dir” on the R console. 
 
# After writing the file, let’s see how to read it back into R.   For this, we will make a new variable 
called “newIris”.  Use the function “read.table” and then list the file. 
  
newIris=read.table(“iris.txt”) 
newIris  
 
# As you can see, read.table in R has correctly interpreted you “iris.txt” file and read all the data 
points into the appropriate columns.  From this, you can obtain summary information like before: 
 
summary(newIris) 
 
# To convert import iris.txt in to MS Excel, open the program and then under “File/Open” choose 
R’s working directory, and “All Files” in the “Files of type” box.  Open “iris.txt” and follow 
Excel’s formatting instructions.  Click the “Delimited” radio button with “Start import at row 1” 



then, click “Next”.  Check the “Space” box and now fields delimitation is shown by vertical lines.  
The lines should correctly separate each data point is in its own field.  Now click “Next”.  Now you 
can change data format or just accept the defaults, click “Finish”.  At this point, everything should 
look like the original and you can save the file as a normal Excel worksheet.  To reverse the 
process and import a data file into R from Excel, it’s best to have Excel write a simple text file.  
Open your data in Excel, and choose “File/Save As…” Make a new name for your file such as: 
“IrisFromExcel” and “Tab delimited Text” in the “Save as type” box. Excel then complains that 
changing to text format may loose formatting information, but say “Yes” anyway. Now exit Excel 
WITHOUT SAVING (this preserves your original file in Excel).  Now, on the R console, make a 
new variable and use function “read.table” again: 
 
Iris2=read.table(“IrisFromExcel.txt”) 
 
# And to verify all went well: 
 
summary(Iris2) 
Iris2 
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var3 4.514=var3
5 3+( )

π
:=

var2 4.667=var2 6
7
9

⋅:=

^ evaluation^ assignment

Var 78=Var 78:=

Assignment versus Evaluation: <- Variables may be named at any time.  
     Note, however, that there are two distinct
     meanings here for what we normally term
     "equals"!

Assignment (indicated by use of : and shown on 
the worksheet as :=) means "put the numerical 
value 79 into a variable I now name Var".

Evaluation (indicated by use of =) means "tell 
me what value is placed in the already named 
variable Var".

This distinction is important and common to most 
programming languages... 

<- Some common mathematical values are built in the program...π 3.142=

6 5⋅ 30=

35
5

7=

<- Calculations are done in the normal way using familiar symbols.2 2+ 4=

Calculations:

^ OK, so now you see how I normally label things...

ORIGIN 0≡
<- I normally put this in all my worksheets to standardize use of index
     variables across all my worksheets.  It is an example of  
     "global assignment" (using the symbol ~ on the keyboard).  
      Don't worry about what it means at this point.

For classes such as this, where it is useful to make documents with math symbols, graphs, etc, I 
find the program MathCad to be quite useful.  This program makes available an extensive 
library of  mathematics functions allowing import, export, and manipulation of data in 
real-time.  It also allows me to document what I have done using familiar mathematics symbols 
directly comparable to that seen in the text, and lots of words in the worksheet itself.  For the 
purpose of prototyping statistical procedures and tests, I find the combination ideal.  

Note, however, that I do not require that you buy MathCad as I will make these sheets available 
to you in both MathCad  (*.mcd) and in Adobe Acrobat (*.pdf) formats. 

To get started, this worksheet is designed to provide an overview of what you might expect to 
see in  lecture worksheets from now on.

Interpreting MathCad Worksheets:

Descriptive Statistics
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Data Input:

iris READPRN "c:/2007BiostatsData/iris.txt"( ):=

^ This is easy using the built-in READPRN() function for simple text format data.  When 
prototyping, using an existing worksheet, I can read in different data files and calculate 
things in exactly the same way.  A worksheet showing how to do a specific statistical test, for 
instance, is critical for evaluating output from canned programs that might otherwise appear 
to be a "BLACK BOX".

<- Evaluation of variable iris. 

 Note that the display is often a partial list that may be 
scrolled in the normal manner like a spreadsheet.  The 
variable might also be displayed in matrix form...

iris

0 1 2 3 4
0
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1 5.1 3.5 1.4 0.2
2 4.9 3 1.4 0.2

3 4.7 3.2 1.3 0.2

4 4.6 3.1 1.5 0.2

5 5 3.6 1.4 0.2

6 5.4 3.9 1.7 0.4

7 4.6 3.4 1.4 0.3

8 5 3.4 1.5 0.2

9 4.4 2.9 1.4 0.2

10 4.9 3.1 1.5 0.1

11 5.4 3.7 1.5 0.2

12 4.8 3.4 1.6 0.2

13 4.8 3 1.4 0.1

14 4.3 3 1.1 0.1

15 5.8 4 1.2 0.2

16 5.7 4.4 1.5 0.4

=

<- New variables are now named and assigned to the values in different 
columns of the dataset iris.  Note that columns start their numbering 
with '0'.  This is the result of my ORIGIN assignment above.  The first 
column of numbers is merely the row number.  Scrolling down one can 
see that there are 150 rows.  Species names in column 5 didn't import 
here as MathCad interpreted the data to be numeric...  Statistics 
programs such as R will do a better job with this.  However, we won't 
worry about it for our purposes here.

SL iris 1〈 〉:=

SW iris 2〈 〉:=

PL iris 3〈 〉:=

PW iris 4〈 〉:=

length SL( ) 150= <- using built-in function length() to evaluate the number 
      of rows (i.e., objects = flowers)  inside our variable SL.  
      This is useful.

length SW( ) 150= <- Evaluating the other variables.  The result is hardly a
     surprise, but a useful check anyway in case something went
     wrong in using function READPRN() above.

length PL( ) 150=

length PW( ) 150=
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midpoint
n
2

:= midpoint 75= <- figuring the midpoint (i.e., halfway) index

medianSL
1
2

SLsortmidpoint
SLsortmidpoint 1+

+( ):= <- variable SL.sort indexed by midpoints

^ When the number of values in a variable are even, the definition of 
median requires that we average the two closest points.

prototype for median:
medianSL 5.8= <- our explicit calculation matches MathCad's

       built-in function median().median SL( ) 5.8=

mean SL( ) 5.843= median SL( ) 5.8=
<- Having prototyped one, we now have
     confidence that we know how to
     calculate ALL of these!

mean SW( ) 3.057= median SW( ) 3=

mean PL( ) 3.758= median PL( ) 4.35=

mean PW( ) median PW( ) 1.3=

Descriptive Statistics:

mean:

n length SL( ):= n 150=

i 0 n 1−..:= <- sets up a list of numbers from 0 to 149.

                    Scroll on the evaluation here ->
                    to see them all!

i
0
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

=

SL2 4.7=

^ Note: this is the value in row 2 of variable SL, called by
    using the index ('[' left bracket on the keyboard). 

Xbar
1
n

i

SLi( )∑⋅:= <- X.bar is the name of the variable.  The
       bar part is shown as a subscript...

^ Sum values of SL over all rows and
     divide by n. 

prototype for mean:

Xbar 5.843= <- Evaluation of X.bar

<- compare with MathCad's built-in
      function mean().  Our method for
      calculating a mean is confirmed.

mean SL( ) 5.843=

median:

<- using MathCad's sort() function to
     rearrange the values of SL in order.SLsort sort SL( ):=
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where c is the multiplication constant in scaling, and b is the translation constant.

You might recognize this formula as the equation for a line.  As a result,  
transformations of this kind are often called linear transformations.

In statistics, we are interested in what happens to means and variance when original 
measurements are modified in this way.

y a x⋅ b+:= b

Often, one has a choice in the units employed in measuring or counting a property.  For 
instance, one might decide to measure temperature in either degrees Celsius or 
Fahrenheit.  Conversion from one measurement to the other typically involves 
translation (adding or subtracting a constant)  and scaling (multiplying a 
measurement by a constant).  Translation and scaling together may be summarized by 
the following fomula, where x is the original measurment and y is a measurement 
"transformed" by translation and scaling.   

Properties of Mean and Variance: 

This section displays the value and power of making prototypes!  In statistical analysis, it 
is very important to understand exactly what you are doing using a computer-based 
statistical program.  For minor reasons like here, a program may be doing something 
subtly different different than you  expect.  Without making a prototype the first time 
you use a procedure, you might end up reporting, and perhaps trying to publish, an 
ERROR...  THIS CAN BE VERY EMBARRASSING!

<- Again converting to population standard deviation.n
n 1−

var SL( )⋅ 0.828=

<- Again, doesn't match for same reason.stdev SL( ) 0.825=standdevSL 0.828=

<- This converts population variance into sample variance.
     Matches our calculation and confirms what MathCad 
     is doing.

n
n 1−

var SL( )⋅ 0.686=

<- Note the difference.  MathCad's built-in function 
must be calculating population variance!

var SL( ) 0.681=varSL 0.686=

prototype:

<- Standard deviation is the square root of variancestanddevSL varSL:=

varSL
1

n 1−
i

SLi mean SL( )−( )2



∑







⋅:=
<- applying formula for sample variance.
     Variable SL is indexed by previously
     defined index i. with mean(SL) as
     prototyped above for mean.

sample variance and sample standard deviation:

Descriptive Statistics:
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standdevSL c⋅ 4.14=

<- scaling multiplies observed
     standard deviation by factor c.

standdevSLs 4.14=standdevSLs varSLs:=

<- scaling multiplies observed variance by factor c2.  varSL c2
⋅ 17.142=varSLs 17.142=

varSLs
n

n 1−( )
var scaledSL( )⋅:=

varSL 0.686=

^ scaling multiplies the mean by 
    the same factor c as each of
    the values in SL

mean SL( ) c⋅ 29.217=

mean scaledSL( ) 29.217=
scaledSL

0
0
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

25.5
24.5

23.5

23

25

27

23

25

22

24.5

27

24

24

21.5

29

28.5

=SL

0
0
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

5.1
4.9

4.7

4.6

5

5.4

4.6

5

4.4

4.9

5.4

4.8

4.8

4.3

5.8

5.7

=
mean SL( ) 5.843=

^ Let c = 5 in the linear
     transformation above ->

translation:

b 5:=

translatedSL SL b+:=

^ Let b = 5 in the linear
    transformation above ->

SL

0
0
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

5.1
4.9

4.7

4.6

5

5.4

4.6

5

4.4

4.9

5.4

4.8

4.8

4.3

5.8

5.7

= translatedSL

0
0
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

10.1
9.9

9.7

9.6

10

10.4

9.6

10

9.4

9.9

10.4

9.8

9.8

9.3

10.8

10.7

=
mean SL( ) 5.843=

mean translatedSL( ) 10.843=

mean SL( ) b+ 10.843=

^ translation shifts the
    mean value by b

varSL 0.686=

varSLt
n

n 1−( )
var translatedSL( )⋅:=

varSLt 0.686=

^ translation does nothing to variance.  Since standard deviation is the square root of
      variance, translation does nothing to standard deviation as well.

scaling:
c 5:=

scaledSL c SL⋅:=
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standdevSL c⋅ 1.491=

<- scaling multiplies observed standard deviation
      by factor c and translation in b has no effect.

standdevSLtrans 1.491=

standdevSLtrans varSLtrans:=

<- scaling multiplies observed variance by factor c2

     and translation in b has no effect.
varSL c2

⋅ 2.222=varSLtrans 2.222=

varSLtrans
n

n 1−( )
var transformedSL( )⋅:=

varSL 0.686=

^ scaling multiplies the mean by 
    the same factor c as each of
    the values in SL and adds factor b

c mean SL( )⋅ b+ 42.518=

transformedSL

0
0
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

41.18
40.82

40.46

40.28

41

41.72

40.28

41

39.92

40.82

41.72

40.64

40.64

39.74

42.44

42.26

=SL

0
0
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

5.1
4.9

4.7

4.6

5

5.4

4.6

5

4.4

4.9

5.4

4.8

4.8

4.3

5.8

5.7

=mean transformedSL( ) 42.518=

mean SL( ) 5.843=

^ Let c = 1.8 & b = 32 in the
    linear transformation above ->

transformedSL c SL⋅ b+:=

<- note that these values would convert a degree measurement
     in Celsius in to the equivalent value on the Fahrenheit scale.

b 32:=c 1.8:=

linear transformation:
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varSW 0.19= stdSW varSW:= stdSW 0.436=

varPL
n

n 1−
var PL( )⋅:= varPL 3.116= stdPL varPL:= stdPL 1.765=

varPW
n

n 1−
var PW( )⋅:= varPW 0.581= stdPW varPW:= stdPW 0.762=

range:

min SL( ) 4.3= max SL( ) 7.9=

min SW( ) 2= max SW( ) 4.4= <- using built-in minimum and maximum functions
min PL( ) 1= max PL( ) 6.9=

min PW( ) 0.1= max PW( ) 2.5=

coefficient of variation:

cvSL
stdSL

mean SL( )
:= cvSL 0.142= cvPL

stdPL

mean SL( )
:= cvPL 0.302=

cvSW
stdSW

mean SL( )
:= cvSW 0.075= cvPW

stdPW

mean SL( )
:= cvPW 0.13=

Graphic Display of Data

ORIGIN 0≡

iris READPRN "c:/2007BiostatsData/iris.txt"( ):= <- Input iris same dataset as before

SL iris 1〈 〉:=

SW iris 2〈 〉:= <- Column variables as before
PL iris 3〈 〉:=

PW iris 4〈 〉:=

n length SL( ):= n 150= Evaluation of variable iris. -> 

i 0 n 1−..:=

iris

0 1 2 3 4
0
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1 5.1 3.5 1.4 0.2
2 4.9 3 1.4 0.2

3 4.7 3.2 1.3 0.2

4 4.6 3.1 1.5 0.2

5 5 3.6 1.4 0.2

6 5.4 3.9 1.7 0.4

7 4.6 3.4 1.4 0.3

8 5 3.4 1.5 0.2

9 4.4 2.9 1.4 0.2

10 4.9 3.1 1.5 0.1

11 5.4 3.7 1.5 0.2

12 4.8 3.4 1.6 0.2

13 4.8 3 1.4 0.1

14 4.3 3 1.1 0.1

15 5.8 4 1.2 0.2

16 5.7 4.4 1.5 0.4

=Descriptive Statistics:

mean and median:

mean SL( ) 5.843= median SL( ) 5.8=

mean SW( ) 3.057= median SW( ) 3=

mean PL( ) 3.758= median PL( ) 4.35=

mean PW( ) median PW( ) 1.3=

sample variance and sample standard deviation:

varSL
n

n 1−
var SL( )⋅:= varSL 0.686= stdSL varSL:= stdSL 0.828=

varSW
n

n 1−
var SW( )⋅:=
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Scatter Plots:

4 4.5 5 5.5 6 6.5 7 7.5 8
2

2.5

3

3.5

4

4.5

SW

SL

^ Any pair of variables can be plotted to look for patterns...

SL SW, PL,( )
^ Same idea looking a three variables at a time...
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Histograms:

plot histogram 15 SL,( ):=

^ variable plot contains two columns:

   column 0: x axis = number of bins
   column 1: y axis = count in each bin

plot

0 1
0
1

2

3

4

5

6

7

8

9

10

11

12

13

14

4.133 0
4.4 5

4.667 11

4.933 16

5.2 14

5.467 19

5.733 15

6 15

6.267 13

6.533 14

6.8 15

7.067 2

7.333 5

7.6 5

7.867 1

=

4 4.5 5 5.5 6 6.5 7 7.5 8
0

5

10

15

20

plot 1〈 〉

plot 0〈 〉

Check text for definitions of positively vs negatively 
skewed distributions... What do you think here?

Stem & Leaf Plots and Box plots:

Plots of this kind generally require a more sophisticated system more directly 
related to statistical analysis than MathCad worksheets.  

Go to SPSS, Systat, or R...



Assignment for Week 2 
This week’s reading assignment is admittedly a difficult one.  The chapter goes well beyond 
what’s really necessary for an introduction to biostatistics, but please read it anyway!  At this 
point, I do not expect that you will be able to remember all of it, or that you will be able to work 
many of the more difficult problems at the end of the chapter.  This material is waiting for you in 
the future as your experience with statistics increases, or when needed.  Personally, I do this 
often - usually learning something new (or forgotten) each time I return to a subject – and it’s 
nice to have somewhere familiar to start.   

The purpose in reading this section now is to become familiar with some of the basic 
terminology associated with probability, and to get a feel for how probability is used in real-life 
clinical studies and other situations.  For our purposes, please familiarize yourself with the basic 
logic of probability seen in the first part of the chapter and in Lecture Worksheet 05.  As you can 
see, calculations of multiplied, added, or conditional probabilities are central to many of these 
endeavors, as are concepts of mutually exclusive, potentially co-occurring events, and 
dependent versus independent variables.  Care in framing probabilities with regard to the above 
concepts, and in setting up appropriate study questions, are key to obtaining important results in 
each case.  The text provides a wealth of examples about how to compute derived calculations 
for different real-life situations.  The examples and problems thus serve as templates waiting for 
you as the need may arise.  In conducting your own statistical analysis, there may be a problem 
that has a similar basic structure to one or more of these.  At that point, the examples become 
critically relevant.  You should work through the problems to master the appropriate calculations 
in a prototype sheet.  After that, the techniques you have learned can be applied to the problem at 
hand with confidence. 

In reading this chapter for the first time, it is also interesting to see how debate about the use of 
statistics is framed, such as between the “Frequentist” versus “Bayesian” views of probability 
and statistical inference.  I found this interesting as I am increasingly asked about these topics 
(usually missing from introductory texts) motivated by recent developments in different 
biological fields.  I spent some time working through this material, so Lecture Worksheets 06-08 
are intended as beginning prototypes for those who may wish to delve into the topic further.  
Some of you, especially graduate students, may have already encountered Bayesian risk 
assessments, already.  If interested, I will be happy to assist in these areas.  We’ll have to learn 
together! 

For our project this week, I would like us to turn our attention to some practical aspects of data 
simulation and analysis.  Consult Lecture Worksheet 04 for a beginning discussion of probability 
distributions.  Next week and the following, we will look at particular distributions such as the 
Binomial Distribution, Poisson Distribution, Normal Distribution and Chi-Square 
Distribution in much greater detail.  At this point, I think it would be useful for us to become 
familiar with their basic properties by constructing simulated populations, graphing them, and 
calculating a few descriptive statistics.  We can then compare our simulated samples with the 
theoretical properties of a perfectly distributed population for each distribution.  The R 
statistical system is ideal for this, as it has built-in a wide range of functions, so this is an 
opportunity to become more familiar with this powerful tool also.  Excel will do some of what 
we have in mind here, but a lot more would have to be done by hand. 



For this week, divide into groups of two or three.  Make sure at least someone has a working 
version of R.  If not, let’s spend some time trying to get R going on your machines.  Please bring 
your computer to class if possible.  Don’t worry if that’s not possible, since you will be working 
in groups…  However, since everyone said they had access to their own computers at home, now 
is the time to get R installed and running.  I can help you with this in lab if necessary. 

The project this week is a simple one!  Consult the html Help section of the R console for 
definition and syntax of the statistical functions you will use.  For each distribution below, use 
the appropriate function (prefaced with ‘r’) to generate 1000 data random data points and assign 
the vector created to a variable name.  Now using whatever program(s) you wish, histogram the 
data and investigate each set of data points using appropriate descriptive statistics.  Try different 
parameter values for these distributions to see what they do.  At this point, don’t worry very 
much about what they mean.  We will look into that shortly.   

Now use the appropriate function (prefaced with ‘d’) to construct a population distribution using 
the parameter values you have used before.  For this function you will have to construct a vector 
containing a series of X variables for which the function returns P(X).  Plot this function and 
compare with your histograms.    

For the Binomial Distrubution: parameters you will have to specify n = number of trials, k = 
number of “successes” & p = probability of successes.  Try different values of each in turn 
(keeping the others constant) and see what you get! 

For the Poisson Distribution: you will have to specify parameter λ (lambda) the expected 
number of events over unit time.  Vary λ to see its effect on the distribution of your points. 

For the Normal Distribution: you will have to specify µ = mean, and σ2 = variance of the 
distribution. Try different values of each holding the other constant to see the effect. 

For the Chi-Square Distribution: you will have to specify df = degrees of freedom.  Vary this 
to see the distribution change.   

Due next Tuesday in Class. 
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<- Two classes in x have
       equal numbers

1 1.5 2
49.9

49.95

50
E

x

E
50

50







=E2 50:=
For 100 coin tosses, expected number of H = 100(1/2) = 50
                               expected number of T = 100(1/2) = 50 

E1 50:=

For a fair coin:           P(H) = 1/2
                                  P(T) = 1/2

x
1

2






=x2 2:=

There are two possible observations:  H <- "heads"  = 1
                                                          T <- "tails"    = 2

x1 1:=
coin toss:

Example Discrete Probability Density functions:

In either case, specific observations (x) are associated with probability P(x) using 
Probability Density functions where the area under the curve gives the 
probabilty for each value of x.

Models of probability differ depending on what's being analyzed and are 
generally of two types:

          Discrete   <- Here only a limited number of values are expected such as "heads"
                              versus "tails" in a coin toss, or "1", "2", "3", "4", "5", or "6" in 
                              a roll of a single die.

          Continuous <- Here an infinite (or nearly so) number of observations are possible
                                 as in measuring temperature, length, weight, etc. of some animal.

Statistics is typically based on a pair of quantities:

           x       <- observed sample values
          P(x)   <- probability of the sampled values under some model of probability.

eductive: "Tending to draw out; extractive."
                                 http://www.thefreedictionary.com/Eductive

Eductive Inference:

Statistics is based upon comparisons of measurements collected from one or more limited 
samples, with what might be the expected values characterizing the underlying population from 
which the samples have been drawn.  In fact, these expected values are sometimes/always not 
easily determined.  Important assumptions are always involved linking samples with populations 
and these assumptions underlie the usefulness of descriptive statistics, such as mean and 
variance.   

ORIGIN 1:=

Probability Distributions
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<- It is unlikely to find 0 or
     20 heads as outcome of
     20 coin tosses. An
     intermediate number is
     much more likely.

0 10 20
0

0.1

0.2

EB

k

EB

0
0
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

9.537·10    -7

1.907·10    -5

1.812·10    -4

1.087·10    -3

4.621·10    -3

0.015

0.037

0.074

0.12

0.16

0.176

0.16

0.12

0.074

0.037

0.015

=
EB dbinom k n, p,( ):=Expected probability for each k: (Ek):

ki i:=

i 0 n 1−..:=
number of times one obtains a "heads"
Note that this is a range of discrete
 possibilities (ranging from 0 to n)

p
1
2

:=
probability of obtaining a heads (p)
(more genererally termed "success")

n 20:=total number of trials (n): 

If one conducts multiple trials with two possible outcomes, such as tosing a coin 
resulting in either a "heads" or "tails", the expected number of "heads" in a set of 
trials follows the binomial distribution.

ORIGIN 0:=

Binomial distribution:

<- Six classes in x with equal
      values that need not be
      whole numbers

0 2 4 6
16.64

16.66

16.68

E

x

E

16.667

16.667

16.667

16.667

16.667

16.667



















=Ei P 100⋅:=

For 100 die tosses, expected number for each: 

P 0.167=P
1
6

:=
For a fair die, all probabilities are 1/6 for 
obtaining one of the numbers on any throw:

x

1

2

3

4

5

6



















=xi i:=

i 1 6..:=

There are six possible observations:   "1"  = 1
                                                          "2" = 2
                                                          "3" = 3
                                                          "4" = 4
                                                          "5" = 5
                                                          "6" = 6 

single die:
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C

3 2 1 0 1 2 3
0

0.2

0.4

0.6

0.8

ENA

ENB

ENC

END

ENE

x

ENE dnorm x µ 1−( ), 0.5 σsq⋅( ), :=

END dnorm x µ 1+( ), σsq, :=

ENC dnorm x µ, 0.5σsq( ), :=

<- The Normal distribution is family of curves
     defined by different values of µ and σ2.

ENB dnorm x µ, 2σsq( ), :=

ENA dnorm x µ, σsq,( ):=

<- parameters of the standard normal curve where µ is the
     mean of the distribution and σ2 = σsq is the variance 

σsq 1:=µ 0:=

<- Individual scaled values we plot on our x axis below.xi c i b+( )⋅:=

<- Arbitrary scaling factors so we can see things in the plot.c 0.1:=b
1
2

n⋅





−:=

i 0 n..:=

<- Out of all possible values, we will arbitrarily look at a set of n points.
     At the scale we plot things here, this might as well be continuous... 

n 50:=

Many forms of data are continuous, so the probability function is continuous and the 
area under the curve represents probability (often called "probability density"). 
Normal distributions are common, and underly many statistical methods.

Normal Distribution:

Example Continuous Probability Density functions:
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0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

ECA

ECB

ECC

ECD

ECE

x

ECE dchisq x d 10+( ),[ ]:=

ECD dchisq x d 5+( ),[ ]:=

ECC dchisq x d 3+( ),[ ]:=

χ2 family plotted below.  As above, probability density the 
area under each curve.

ECB dchisq x d 1+( ),[ ]:=

ECA dchisq x d,( ):=

<- d is a parameter for the χ2 distribution called
      "degrees of freedom".  Thus χ2 is also a family of curves.

d 1:=

<- Individual scaled values we plot on our x axis below.xi c i b+( )⋅:=

<- Arbitrary scaling factors so we can see things in the plot.c 0.3:=b 1.4:=

i 0 n..:=

<- Out of all possible values, we will arbitrarily look at a set of n point.
     At the scale we plot things here, this might as well be continuous... 

n 50:=

This distribution is commonly encountered in statistics, especially in what is known as 
"Goodness of Fit" tests.  We will work with it later, but it is interesting here to see that 
χ2 density distributions exhibit a different shape. 

Chi-Square (χ2) Distribution:

Example Continuous Probability Density functions:
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Standard & Conditional Probability
ORIGIN 0:=

Statistics is typically based on a pair of quantities:

           x       <- observed sample values
          P(x)   <- probability of the sampled values under some model of probability.

In fact, associating these two quantities is not at all straightforward and is often a point of  
controversy as both a theoretical and practical matter.  There are two important perspectives:

- Frequentist (or Standard) Statistical Methods - mostly what we will do in this course.
- Bayesian Inference - increasingly prominent in several biological & biomedical fields.

Frequentist Method:
" The probability of an event is the relative frequency of a set of outcomes over an
    indefinitely (or infinite) large number of trials."  Rosner p. 44 Definition 3.1

Sometimes, for theoretical reasons, aspects of the probablity distributions are known or are 
assumed.  More commonly in practice, however, one takes a reasonably large empirical 
sample and compares it with known theoretical distributions, such as the Normal Distribution.

x rnorm 100 0, 1,( ):= <- For example drawing 100 values values from a Normal
     population distribution by a random number generator
     gives the following histogram...plot histogram 30 x,( ):=

3 2 1 0 1 2 3 4
0

5

10

15

plot 1〈 〉

plot 0〈 〉

^ From this limited sample, one might conclude that the population from 
which it was drawn has a Normal distribution... 
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x rnorm 5000 0, 1,( ):= <- But what if we draw a bigger sample, say 5000 values, 
     and plot it with 100 bins instead of 30? plot histogram 100 x,( ):=

4 3 2 1 0 1 2 3 4
0

50

100

150

200

plot 1〈 〉

plot 0〈 〉

<- Conclusion: a bigger sample is usually better... 
But other factors usually come into play including cost/time in 
conducting the study, and small scale bias of one sort or another.

 Bayesian Inference:

Here two kinds of probability are distinguished:

"The prior probability of an event is the best guess by the observer of an event's 
probability in the absence of data.  This prior probability may be a single number, or it 
may be a range of likely values for the probability, perhaps with weights attached to 
each possible value." Rosner p. 63, Definition 3.16.

"The posterior probability of an event is the probability of an event after collecting 
some empirical data.  It is obtained by integrating information from the prior probability 
with additional data related to the event in question."  Rosner p. 64, Definition 3.17.

We'll look at aspects of Bayesian Inference shortly...
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^ multiply all of them for multiple events
P A1 A2∧ A3∧ ....Ai∧( ) P A1( ) P A2( )⋅ P A3( )⋅ .... P Ai( )=

< multiply the separate probabilities to find the
     probability of both events occuring simultaneously.

P A B∧( ) P A( ) P B( )=

Intersection of events - the Law of Multiplied probabilities applies:

The probilities of two events, i.e., P(A) & P(B) have no bearing on each other.

1. Independent events:

Two events may occur simultaneously.  There are two kinds:

Potentially co-ocurring events:
^ for multiple exclusive events, add them all.

P A1 A2∨ A3∨ ....Ai∨( ) P A1( ) P A2( )+ P A3( )+ ....+ P Ai( )+( )=

<- Probability of either A or B happening are their
     separate probabilities added together...

P A B∨( ) P A( ) P B( )+=

Union of events - The Law of Addition of probabilities applies:

< for two or more events iP A1 A2∧ ....Ai∧( ) φ=

<- for two events (the smallest number where intersection
                                                 has a meaning)

P A B∧( ) φ=

Intersection of events is the empty set:

Two events, A & B are mutually exclusive if they can not both happen simultaneously.

Mutually exclusive events:

sample space = the set of all possible outcomes
an event = any specific set of outcomes
P(x) = probability of event x, where 0 P x( )≤ 1≤
compliment of x = (1-P(x)) = P(~x).  Compliment is the probability of x
                                                                              not happening.

Terminology:

Under either of the above views, probability (both as a concept and a property) obeys 
fundamental logical (or mathematical) rules.  These rules are very important to all aspects 
of statistical inference and in direct prediciton of outcomes.

The general logic of probability:



2007 Biostatistics 05 Standard & Conditional Probability 4

^ A plot of Sepal Length (SL) and Petal Length (PL) shows dependence. 
   Measuring one variable gives important information about the probable
   values of the other.

4 4.5 5 5.5 6 6.5 7 7.5 8
1

2

3

4

5

6

7

PL

SL

PW iris 4〈 〉:=PL iris 3〈 〉:=
<- Reading the Famous Iris data again...

SW iris 2〈 〉:=SL iris 1〈 〉:=

iris READPRN "c:/2007BiostatsData/iris.txt"( ):=

The probabilities of two events are related such that knowing the outcome of one 
event influences the probability of the other.

2. Dependent events:

Note that Union for multiple independent events greater than two is not given...

Check the Venn diagrams in the text to puzzle this out!

Note: the compliment here ^ 
= P(~A) or P(~B)

P A B∨( ) P B( ) P A( ) 1 P B( )−( )⋅+=
<- The probability of A or B happening is
     the probability of one plus the
     simultaneous occurrence of the other
     but not the first!

P A B∨( ) P A( ) P B( ) 1 P A( )−( )⋅+=

Alternate equivalent forms
for Independent events only:

< The probability of A or B happening is
    the separate probabilities added
    together minus the probability that
    both A & B occur together 

P A B∨( ) P A( ) P B( )+ P A B∧( )−=

Union of events - Expanded Law of Addition applies:: 



2007 Biostatistics 05 Standard & Conditional Probability 5

^ For more than three events...

P A1 A2∧ A3∧ ....Ai∧( ) P A1( ) P
A2

A1( )








⋅ P
A3

A2 A1∧( )








⋅ ..⋅ P
Ai

A i 1−( ) A3∧ A2∧ A1∧








⋅=

<- For three events...P A1 A2∧ A3∧( ) P A1( ) P
A2

A1( )








⋅ P
A3

A2 A1∧( )








⋅=

<- For two events....P A B∧( ) P
B
A






P A( )⋅=

2. More general Dependent case:

P A B∧( ) P A( ) P B( )⋅=
< Equalities here makes the Law of Multiplied 
probabilities a special case of the more general one 
below...

P(B|A) = P(B) = P(~A)

1. Independent case:

Calculating Intersection with Conditional Probability:

^ This is the conditional probability for B 
      given prior knowledge of A...

also written  P(B|A) with no difference in meaning.P B( )
P A B∧( )

P A( )
=

Rearranging the Law of Multipied Probabilities to solve for one of the individual 
probabilities (i.e., P(B)), gives the definition for conditional probability:

Definition of Conditional Probability:

The concept of conditional probability can be applied to both the independent and dependent 
cases of potentially simultaneous events above, so I'll give both here..

Conditional Probability:

* See below for more than two events!

P B A∧( ) "P(A|B)" P B( )⋅=

<- intersection in terms of conditional probability.
     Note that you can switch the roles of A & B
     depending on which is prior probability = known
     versus posterior probability = unknown.

P A B∧( ) "P(B|A)" P A( )⋅=

To proceed at this point, one needs a concept of conditional probability...

<- This is a more formal statement of what dependence
     actually means.  In practical terms, one often assesses
     the separate probabilities for A and B, and then
     compares their product with a separately estimated
     probability of both events occuring simultaneously to
     see if they match. 

P A B∧( ) P A( ) P B( )≠

Intersection of events - the Law of Multiplied probabilities fails:

2. Dependent events:
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false positive for the symptoms or test(A|~Bi)

false negative for the symptoms or test(~A|Bi)

Specificity of the symptoms or testP(~A|~Bi)

Sensitivity of the symptoms or testP(A|Bi)

Predictive value negative of the test (PV-)P(~Bi|~A)

Predictive value positive of the test (PV+)P(Bi|A)

Relative RiskP(B|A) / P(B|~A)

Clinical Terminology often used with Bayes' Rule:

In clinical situations, A represents symptoms or results of a test, and the B's 
represent patient condition(s) such as a disease.   Known conditional probabilites 
P(A|Bi) can be estimated from the portion of patients with a known condition(s) Bi 
showing positive test results.  Total probablility P(Bi) for the condition(s) can be 
estimated from the population at large.  Bayes' Rule allows the researcher to 
estimate the conditional probability that the symptoms or test results indicate any 
particular condition or disease.  Powerful stuff!

Calculating Total Probability from Conditional Probability:

This formulation is commonn to both the Independent and Dependent cases:

P(A) = P(A|B)*P(B) + P(A|~B)*P(~B)  <- For two possibilities A & B...
      Note that the roles of A & B 
      are interchangeable

P(B) = P(B|A)*P(A) + P(B|~A)*P(~A)

P(A) = Σι P(A|Bi)*P(Bi) <- For A given multiple prior probabilities Bi

1. Independent case:

The formulas simply reduces to multiplying P(B) or P(Bi) depending on 
number of B's

2. Dependent case:

The formula doesn't reduce and conditional probabilties must be used as 
stated above.

Bayes' Rule:

The point of this procedure for two events A & B is to estimate one conditional 
probability P(B|A) from the other conditional probability P(A|B) and one total 
probablity P(B). 

<- Of course, as above, the defined
     roles of A & B here can be reversed.P

B
A






P
A
B






P B( )⋅

P
A
B






P B( )⋅ P
A

notB






P notB( )⋅+

=

<- General form of Bayes' Rule giving multiple 
conditional probabilities for the B's given 
knowledge of multiple conditional probabilites 
P(A|Bi) and multiple total probabilites P(Bi).

P
Bi

A







P
A
Bi








P Bi( )⋅

i

P
A
Bi








P Bi( )⋅∑
=
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false positive for the symptoms or test(A|~Bi)

false negative for the symptoms or test(~A|Bi)

Specificity of the symptoms or testP(~A|~Bi)

Sensitivity of the symptoms or testP(A|Bi)

Predictive value negative of the test (PV-)P(~Bi|~A)

Predictive value positive of the test (PV+)P(Bi|A)

Relative RiskP(B|A) / P(B|~A)

Clinical Terminology often used with Bayes' Rule:

In clinical situations, A represents symptoms or results of a test, and the B's 
represent patient condition(s) such as a disease.   Known conditional probabilites 
P(A|Bi) can be estimated from the portion of patients with a known condition(s) Bi 
showing positive test results.  Total probablility P(Bi) for the condition(s) can be 
estimated from the population at large.  Bayes' Rule allows the researcher to 
estimate the conditional probability that the symptoms or test results indicate any 
particular condition or disease.  Powerful stuff!

P
Bi

A







P
A
Bi








P Bi( )⋅

i

P
A
Bi








P Bi( )⋅∑
=

<- General form of Bayes' Rule giving multiple 
conditional probabilities for the B's given 
knowledge of multiple conditional probabilites 
P(A|Bi) and multiple total probabilites P(Bi).

P
B
A






P
A
B






P B( )⋅

P
A
B






P B( )⋅ P
A

notB






P notB( )⋅+

=

<- Of course, as above, the defined
     roles of A & B here can be reversed.

The point of this procedure for two events A & B is to estimate one conditional 
probability P(B|A) from the other conditional probability P(A|B) and one total 
probablity P(B). 

Bayes' Rule:

"The posterior probability of an event is the probability of an event after collecting 
some empirical data.  It is obtained by integrating information from the prior probability 
with additional data related to the event in question."  Rosner p. 64, Definition 3.17.

"The prior probability of an event is the best guess by the observer of an event's 
probability in the absence of data.  This prior probability may be a single number, or it 
may be a range of likely values for the probability, perhaps with weights attached to 
each possible value." Rosner p. 63, Definition 3.16.

Here two kinds of probability are distinguished:

 Bayesian Inference:

ORIGIN 1:=

Examples using Bayes' Rule:
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CPAB .84:= < Sensitivity: P(A|B) - Probability that hypertensives (B) are 
                                   classed hypertensive by the machine (A)

CPAnB .23:= < (1 - Specificity): P(A|~B) - Probability that NON hypertensives 
                                          are classed hypertensive by the machine

Bayes' Rule:

CPBA
CPAB PB⋅

CPAB PB⋅ CPAnB PnB⋅+
:= CPBA 0.477=

^ Note that this corresponds to calculating PV+ above and in the text.

The conditional (posterior) probability that the machine properly classes hypertensives 
as hypertensives is 0.477

Bayes' Rule using the above terminology:

sensitivity .84:=

specificity .77:=

CVplus
sensitivity PB⋅

sensitivity PB⋅ 1 specificity−( ) 1 PB−( )⋅+
:= CVplus 0.477=

^ Different variable names, same result...

Bayes' Rule for Predictive Value Negative (PV-):

CVminus
specificity 1 PB−( )⋅

specificity 1 PB−( )⋅ 1 sensitivity−( ) PB⋅+
:= CVminus 0.951=

^ It is important to note that PV- serves to ask the same question as PV+

     except in the opposite sense for the meaning of condition B.  The 0's or 1's
    can be reversed above, or the interpretation of PV+ vs PV- reversed, giving
    the same result.

HYPERTENSIONExample 3.26 Rosner p. 61:
The Data in Matrix Form: Terminology:

< Sensitivity: P(A|B)

< (1- Specificity)
M

1

1

0

0

1

0

1

0

.84

.23

1 .84−

1 .23−












:= M

1

1

0

0

1

0

1

0

0.84

0.23

0.16

0.77












=
< (1 - Sensitivity)

< Specificity P(~A|~Bi)
A B #

Given unconditional (prior) probabilities:

PB .2:= PB 0.2= < Probability that an adult in the population 
     generally is hypertensive 

PnB 1 PB−:= PnB 0.8= < Probability NOT hypertensive (1-PB)

Conditional probabilities:
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P
Bi

A







P
A
Bi








P Bi( )⋅

i

P
A
Bi








P Bi( )⋅∑
=

PB1 .2:= <- P(B1): probability of hypertensives

PB2 .8:= <- P(B2): probability of NOT hypertensives

Conditional probabilities:

PAB1 .84:= <- P(A|B1): Probability of positive test for hypertensives

PAB2 0.23:= <- P(A|B2): Probability of positive test for NON hypertensives 

Applying Bayes' Rule in its general form:

For P(B1|A): 

PB1A
PAB1 PB1⋅

PAB1 PB1⋅ PAB2 PB2⋅+
:= PB1A 0.477=

^ Same result as the first PV+ test above.
For P(B2|A): 

PB2A
PAB2 PB2⋅

PAB1 PB1⋅ PAB2 PB2⋅+
:= PB2A 0.523=

^ Note that this is NOT the same probability as for PV- above as the 
conditional probability is dependent on A here (whereas above it was ~A)!

So if: Terminology:

< Specificity P(~A|~Bi)

< (1 - Sensitivity)
M

0

0

1

1

0

1

0

1

.84

.23

1 .84−

1 .23−












:= M

0

0

1

1

0

1

0

1

0.84

0.23

0.16

0.77












=
< (1- Specificity)

< Sensitivity: P(A|B)

sensitivity .77:= < Meanings are now turned around.
specificity .84:=

PB 0.8:= < This is turned around also...

CVplus
sensitivity PB⋅

sensitivity PB⋅ 1 specificity−( ) 1 PB−( )⋅+
:= CVplus 0.951=

^ Same result as for PV- above now that everything is turned around.

Bayes' Rule in general form as above:Applying Bayes' Rule in its general form:

For this problem i = 2

Unconditional (prior) probabilities:
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< P(B3|A)

Example 3.28 Rosner p. 63:

Unconditional (prior)
probabilities:

Conditional 
probabilities:

PB1 .98:= PAB1 .001:=

PAB2 .9:=PB2 .015:=

PAB3 .9:=PB3 .005:=

PB1A
PAB1 PB1⋅

PAB1 PB1⋅ PAB2 PB2⋅+ PAB3 PB3⋅+
:= PB1A 0.052= < P(B1|A)

PB2A
PAB2 PB2⋅

PAB1 PB1⋅ PAB2 PB2⋅+ PAB3 PB3⋅+
:= PB2A 0.711= < P(B2|A)

PB3A
PAB3 PB3⋅

PAB1 PB1⋅ PAB2 PB2⋅+ PAB3 PB3⋅+
:= PB3A 0.237= < P(B3|A)

Example 3.27 Rosner p. 62: Bayes' Rule in general form as above:

Unconditional (prior)
probabilities:

Conditional 
probabilities:

PB1 .99:= PAB1 .001:= P
Bi

A







P
A
Bi








P Bi( )⋅

i

P
A
Bi








P Bi( )⋅∑
=

PB2 .001:= PAB2 .9:=

PB3 .009:= PAB3 .9:=

PB1A
PAB1 PB1⋅

PAB1 PB1⋅ PAB2 PB2⋅+ PAB3 PB3⋅+
:= PB1A 0.099= < P(B1|A)

PB2A
PAB2 PB2⋅

PAB1 PB1⋅ PAB2 PB2⋅+ PAB3 PB3⋅+
:= PB2A 0.09= < P(B2|A)

PB3A
PAB3 PB3⋅

PAB1 PB1⋅ PAB2 PB2⋅+ PAB3 PB3⋅+
:= PB3A 0.811=
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Determining Risk for Families using Pedigree Analysis:
ORIGIN 1:=

Bayes' Rule:

The point of this procedure for two events A & B is to estimate one conditional 
probability P(B|A) from the other conditional probability P(A|B) and one total 
probablity P(B). 

<- Of course, as above, the defined
     roles of A & B here can be reversed.P

B
A






P
A
B






P B( )⋅

P
A
B






P B( )⋅ P
A

notB






P notB( )⋅+

=

<- General form of Bayes' Rule giving multiple 
conditional probabilities for the B's given 
knowledge of multiple conditional probabilites 
P(A|Bi) and multiple total probabilites P(Bi).

P
Bi

A







P
A
Bi








P Bi( )⋅

i

P
A
Bi








P Bi( )⋅∑
=

In clinical situations, A represents symptoms or results of a test, and the B's 
represent patient condition(s) such as a disease.   Known conditional probabilites 
P(A|Bi) can be estimated from the portion of patients with a known condition(s) Bi 
showing positive test results.  Total probablility P(Bi) for the condition(s) can be 
estimated from the population at large.  Bayes' Rule allows the researcher to 
estimate the conditional probability that the symptoms or test results indicate any 
particular condition or disease.  Powerful stuff!

Pedigree Analysis:

In genetic counseling, potential parents in a family with history of a genetic disease 
often ask about the risk they face in deciding whether to have additional children or 
not.  Use of Bayes' Rule (also called Bayes theorem) is standard practice in providing 
them with this information. 

Example:

Two sisters, Kim and Ann, are in a family with a history of Hemophilia A as shown in 
the following pedigree.  Hemophilia A is a sex-linked recessive trait (gene located on 
the X chromosome).  Of course, given their family history, each woman wants to know 
her risk of being a carrier for this genetic trait.

KIM ANN
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So even given their common genetic history from their mother, knowledge about the children 
each woman has borne substantially modifies our interpretion of her risk of being a carrier!

< P(B1|A)PB1A 0.058824=
PB1A

PAB1 PB1⋅

PAB1 PB1⋅ PAB2 PB2⋅+
:=

< probability her sons are normal given she's NOT a carrier - her condition is B2 PAB2 1.0:=

< probability her sons are normal given that she's a carrier (her condition is  B1) 
   and Sons are event A (a test) 

PAB1 .54
:=

conditional probability

< probability she's not a carrierPB2 .5:=

< probability she's a carrierPB1 .5:=
P

Bi

A







P
A
Bi








P Bi( )⋅

i

P
A
Bi








P Bi( )⋅∑
=

unconditional probability ("prior"):

ANNA

Because brothers of both women exhibit the trait, they must have received it from their 
mother (sex-linked).  Since their mother doesn't exhibit symptoms she must be a 
carrier - that is, one of her X chromosomes carries the allele for Hemophilia A but it is 
masked by a normal allele on the other chromosome.  So mother is indicated as a 
carrier by gray on the pedigree above.

From simple Mendelian inheritance, we know that both Kim and Ann have a 50% 
chance of receiving the Hemophilia A allele from their mother.  We call this their 
common or unconditional probability of being a carrier for the trait.

However, each woman has already had children whose traits we can assess, so we know 
something more that is specific for each.  We call this their conditional probability of 
being a carrier given knowledge about their children.

So we have all the information we need to perform a Bayesian analysis.  

Using Bayes' Rule: KIM

unconditional probability ("prior"): P
Bi

A







P
A
Bi








P Bi( )⋅

i

P
A
Bi








P Bi( )⋅∑
=

PB1 .5:= < probability she's a carrier

PB2 .5:= < probability she's not a carrier

conditional probability

PAB1 .25:= < probability her sons are normal given that she's a carrier (her condition is  B1) 
   and Sons are event A (a test) 

PAB2 1.0:= < probability her sons are normal given she's NOT a carrier - her condition is B2 

PB1A
PAB1 PB1⋅

PAB1 PB1⋅ PAB2 PB2⋅+
:= PB1A 0.2= < P(B1|A)
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PB1A<-

PAB2 PB2⋅PAB1 PB1⋅<-

PAB2PAB1<-

PB2PB1<-

Compare with above:Probability: Ann is a carrier  Ann is NOT a carrier

prior:  0.5 0.5

conditional: 0.0625 = 0.54 1.0
(four normal sons)

joint: 0.03125 0.5

posterior: 0.03125/(0.03125+0.5)  =  0.058824 or 5.8%

For Hemophilia A: ANN

PB1A<-

<- PAB2 PB2⋅PAB1 PB1⋅

<- PAB2PAB1

PB2PB1<-

Compare with above:Probability: Kim is a carrier Kim is NOT a carrier

prior:  0.5 0.5

conditional: 0.25 = 0.52 1.0
(two normal sons)

joint: 0.125 0.5

posterior: 0.125/(0.125+0.5)  = 0.2  or 20%

Hemophilia A KIM:

The above analyses have been set up in exactly the same way as our other examples.  From 
what I understand, geneticists often present their analysis in a slightly different tabular 
form.  Same results, but it looks a little different: 

Bayesian Analysis in Tabular Form:
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true status
< criteria (1-6)

- Normal >

1

33

3

36

2

6

2

8

3

6

2

8

4

11

11

22

5

2

33

35

6

58

51

109












+ Abnormal >

< Column Totals

^ Row Totals

Interpreting the results of the test under the different criteria:

Criterion (1): "definitely normal"

test
+  -  totals

actual
+
-
totals

sensitivity1 1.0:=

oneplus

51

58

109

0

0

0

51

58

109









:= M

1

1

0

0

1

0

1

0

51
51

58
58

0
51

0
58






















:= M

1

1

0

0

1

0

1

0

1

1

0

0












=

specificity1 0.0:=

Receiver Operating Characteristic (ROC) Curves:
ORIGIN 1:=

In previous examples, we treated the tests (column A) as strictly binary, that is, + versus -, 0 
versus 1, or "yes" versus "no".  In real life, of course the results of a test may involve a "grey 
area" such as numerical results in which a cut-off for "test-positive" versus "test-negative" 
must be established.

HYPERTENSIONExample 3.26 Rosner p. 61:
The Data in Matrix Form: Terminology:

< Sensitivity: P(A|B)

< (1- Specificity)
M

1

1

0

0

1

0

1

0

.84

.23

1 .84−

1 .23−












:= M

1

1

0

0

1

0

1

0

0.84

0.23

0.16

0.77












=
< (1 - Sensitivity)

< Specificity P(~A|~Bi)
A B #

^ "grey area" in deciding 0 vs 1 in column A???

Example 3.32-3.34 Rosner p.64-66: RADIOLOGY

Roc curves are a graphic display of the peformance of a test given that the test allows 
different criteria for deciding "test-positive" versus "test-negative".  In this example, five 
different dividing points between "test-positive" versus "test-negative" were proposed.  For 
each criterion, sensitivity and specificity (as defined above) were determined: 

Table 3.3 p. 65:
-    test   +
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Criterion (5): "definitely abnormal"
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specificity5 0.966:=

Criterion (6): "everyone abnormal"
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specificity6 1.0:=

Criterion (2): "probably normal"
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specificity2 0.569:=

Criterion (3): "questionable"
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Criterion (4): "probably abnormal"
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actual
+
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sensitivity4 0.863:=
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Collecting Sensitivity & Specificity:
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ROC plot:
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In comparing different test methods, the area under this curve may be estimated using 
the Trapezoidal Method or compared visually...  The greater the area under the curve the 
better.

For references on how to employ the Trapezoidal Method for determining areas 
under curves, search Google or see:

http://metric.ma.ic.ac.uk/integration/techniques/definite/numerical-methods/trapezoidal-rule/

http://www.geocities.com/rsrirang2001/Mathematics/NumericalMethods/trape/trape.htm

http://www.kent.k12.wa.us/staff/DavidWright/calculus/book/46/index.html
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What happens if:

n 20:= < n things...

k 7:= < taken k at a time
n! 2.4329 1018

×=

k! 5040=nPk
n!

n k−( )!
:= nPk 3.907 108

×= n k−( )! 6.227 109
×=

^ number of Permutations of n things take k at at time

Fortunately we have this formula, because listing all of the possilities
and counting them up would take some time...

Combinations: "The number of combinations of n things taken k at a time ... 
represents the number of ways of selecting k objects out of n where the order of 
selection does NOT matter." Rosner Definition 4.11, p. 93.

For example with same n & k as the first one above:

n 3:= < n things...

k 2:= < taken k at a time
n! 6=

k! 2=nCk
n!

k! n k−( )!⋅
:= nCk 3= n k−( )! 1=

^ number of Combination of n things take k at at time

Note that this is half the number of Permutations with n=3, k=2.

Working with the Binomial Probability Distribution
ORIGIN 0≡

The Binomial probability distribution, also called 'Binomial probability-mass' function is 
a commonly employed theoretical distribution for data taking on discrete values.  It is 
derived from considerations of permutations and combinations:

Permutations: "The number of permutations of n things taken k at a time ... 
represents the number of ways of selecting k items out of n where the order of 
selection is important."  Rosner Definition 4.8, p. 91. 

n 3:= < n things... meaning of factorials (!)

k 2:= < taken k at a time n! 6= 3 2⋅ 1⋅ 6=

k! 2= 2 1⋅ 2=
nPk

n!
n k−( )!

:= nPk 6= n k−( )! 1=

^ number of Permutations of n things take k at at time

For example, let the n things be the letters: A, B, C.  How many pairs of letters can we 
make where the order of letters is important?

AB AC BC
< fortunately the number n is relatively small, six!

BA CA CB
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Important symmetry in calculation of Combinations:

combin n k,( ) 77520= combin n n k−( ),[ ] 77520= < k or (n-k) give
    the same result  
    for combination 
    but NOT   
    permutation.

permut n k,( ) 3.907 108
×= permut n n k−( ),[ ] 4.8272 1014

×=

The Binomial Distribution:

Statistics is typically based on a pair of quantities (Note greater precision here in statement):

          X       <- A "random variable" some of whose values may be observed in a dataset. 
          P(X)   <- probability of all values of X under some model of probability.

The binomial distribution is an example of a probability function linking specific values X 
with a probability P(X) where X takes on only discrete values, such as 1,2,3, ...

"The distribution of the number of successes in statistically independent trials, where 
the probability of success on each trial is p, is known as the binomial distribution..." 
Rosner Equation 4.5 p. 96.

n & k take on the same meaning as above for Combinations:

n 20:= < total number of things - usually called "trials" in this context.

k 7:= < our X above = number of "successes" - where "success" versus "failure"
                                                                 take on two arbitrary states such as
                                                                "heads" vs "tails",  or "present" 
                                                                 vs "absent" etc.one additional consideration:

p 0.5:= < the probability of "success" for any one time.  In a coin flip, p = 0.5, 
    but this is one of several possibilities one might want to investigate 
    for instance if the coin were thought to be 'not fair'...

q 1 p−:= < probability p for "success" implies probability q for "failure"... 

What about the larger example above?

n 20:= < n things...

k 7:= < taken k at a time
n! 2.4329 1018

×=

k! 5040=nCk
n!

k! n k−( )!⋅
:= nCk 77520= n k−( )! 6.227 109

×=

^ number of Combination of n things take k at at time
nPk

nCk
5040= < a somewhat larger difference here!

Most software packages contain built-in functions for Permutations and Combinations:

n 20:=

k 7:=

permut n k,( ) 3.907 108
×= nPk 3.907 108

×= < and match our 
calculations above so 
serve as prototype...combin n k,( ) 77520= nCk( ) 77520=
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PB2k
combin n k,( ) pk

⋅ qn k−
⋅:=

q 1 p−:=p .3:=k 0 n..:=n 7:=

Of course, different values of n, k & p give different results:

^ Remember here, k represents the values that random 
     variable X can have, and PB represents the associated
     probability P(X=k).  This is the Binomial "probability
     distribution" or "probability-mass function" named above.
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And Plot PB:

PBk
combin n k,( ) pk

⋅ qn k−
⋅:=

k 0 20..:=

We can look at PB(X) for other values of k if we like.  Since n = 20 is not too large, let's
     look at all values of {k = 0.1.2.3 ... 20} here:

^ This is the probability that k "successes" will be found in n trials.

PB 0.0739=PB combin n k,( ) pk
⋅ qn k−

⋅:=

We employ the binomial probability function - let's call it PB(X = k):

So, having specified a value for the random variable X as k:
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Note that these functions make obsolete traditional standard tables, such as Table 1 in 
the Rosner's Appendix.  However, it is important to know what these functions are 
actually doing, so consulting the this table serves as an important prototype.  

Use the table to verify whether we obtained the correct values for:

 n=7, p = 0.3 and k = {0,1,2, ... n}.

^ Compare PB3 with CB3 above. The 
cumulative distribution simply adds the 
probabilities P(X=k) as k goes from 0 to n.

CB3
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0.9998

1

























=

0 5
0

0.5

1

CB3k
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p 0.3=n 7=CB3k
pbinom k n, p,( ):=

They also have functions calculating the cumulative distribution also:

Software calculation of the Cumulative Binomial Distribution:

^ This protype gives us confidence in the meaning of the
      built-in function dbinom(k,n,p) ...

P(X=k)X
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k

PB3k
dbinom k n, p,( ):=

q 1 p−:=p .3:=k 0 n..:=n 7:=

Most computer packages have built-in functions for calculating the Binomial distribution:

Software calculation of the "exact" Binomial Distribution:
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p .3:= q 1 p−:= q 0.7= < parameters of the binomial distribution

k 0 n..:= < values of X = k

µ

k

k dbinom k n, p,( )⋅∑:= µ 2.1= n p⋅ 2.1= < µ = n*p verified!

^ general formula for calculating the mean of a discrete distribution

Variance of the binomial population:

Var

k

k n p⋅−( )2 combin n k,( )⋅ pk
⋅ qn k−

⋅∑:= Var 1.47= n p⋅ q⋅ 1.47=

^ variance = n*p*q verified!

^ general formula for calculating variance of a discrete distribution

Software calculation of the Inverse Cumulative Binomial Distribution:

Most computer  packages also include functions for calculating the inverse of standard 
probability distribution functions.  In other workds, they are designed to allow us to go 
backwards and recover X from the cumulative distribution of P(X). 

n 7= p 0.3=

QB3k
qbinom p n, CB3k

,( ):=
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
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^ cumulative probability distribution Here QB3 are the values ̂
of X recovered from f(X=k) for 
different values of k as above.

^ "exact" probability distribution

As you can see, this inverse function works, but not all that well...  One is attempting 
to convert probabilities P(X) which MIGHT be viewed as continuous into discrete values 
X.  This invariably involves deciding on boundaries in P(X) to assign to each X.  Still, 
one might have hoped for a better implimentation - so I wil be very careful in using this 
function in the future - thus the value of prototyping!  Perhaps another software 
package does a better job...

Calculating Mean and Variance of a Binomial Distribution:

Mean of the binomial population also known as "Expected Value":

n 7:=
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If we collect a larger sample, then we might expect the sample and population mean and 
variance to be closer - assuming the random number generator is up to the task!

n 7:= p .3:= < We must specify these parameters for our intended
      binomial distribution.

m 5000:= < We must also tell the pseudo-random number generator
      how many datapoints we want.

R2 rbinom m n, p,( ):= < Our random sample is placed in variable R, so let's
       evaluate it!

Binomial Distribution (population)Sample R:

mean > XbarR2 mean R2( ):= XbarR2 2.1206= µ n p⋅:= µ 2.1=

variance > SsqR2
m

m 1−
var R2( )⋅:= SsqR2 1.518359= varR n p⋅ q⋅:= varR 1.47=

^ close, but certainly not stellar...

Generating Pseudo-Random Samples of a Binomial Distribution:

Most computer packages provide a function for generating a "random" sample of data 
using a built-in random number generator.  These samples are very useful in comparing 
"real" data and prototyping procedures.  It must be noted, however, that no "random" 
number generator implemented by instructions in a computer can be truly random.  So, 
we call them "pseudo-random".  In the better programs, however, pseudo-random data 
nevertheless can be very realistic.

n 7:= p .3:= < We must specify these parameters for our intended
      binomial distribution.

m 100:= < We must also tell the pseudo-random number generator
      how many datapoints we want.

R1 rbinom m n, p,( ):= < Our random sample is placed in variable R1, so let's
       evaluate it!

Binomial Distribution (population)Sample R:

mean > XbarR1 mean R1( ):= XbarR1 1.95= µ n p⋅:= µ 2.1=

variance > SsqR1
m

m 1−
var R1( )⋅:= SsqR1 1.3207= varR n p⋅ q⋅:= varR 1.47=
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PB4

0.3585

0.3774

0.1887









= < "exact" values of P(X)

k

PB4k∑ 0.9245= < summing probabilites gives P(X < 3)

1

k

PB4k∑− 0.0755= < since we know that 1-P(X<3) = P( X 3≥ ) 

Note that the cumulative function will calculate the sums for us automatically:

n 20:= p 0.05:=

k 0 2..:=

CB4k
pbinom k n, p,( ):= CB4

0.3585

0.7358

0.9245









=

or even more directly:

k 2:=

pbinom k n, p,( ) 0.9245= < summing probabilites gives P(X < 3)

1 pbinom k n, p,( )− 0.0755= < since we know that 1-P(X<3) = P( X 3≥ ) 

Binomial Distribution - prototyping examples from Rosner text

ORIGIN 0≡

Example 4.26, p. 96: INFECTIOUS DISEASE

n 10:= p 0.2:= < binomial distribution parameters

k 2:= < value of X

dbinom k n, p,( ) 0.302= < "exact" value of P(X)

Example 4.27, p. 97: PULMONARY DISEASE

n 20:= p 0.05:= < binomial distribution parameters

k 0 2..:= < value of X

PB4k
dbinom k n, p,( ):=
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PB5k
dbinom k n, p,( ):= PB5

0.0102

0.0768

0.2304

0.3456

0.2592

0.0778



















= < "exact" values of P(X)

<- P(X=5)

But also:

n 5:= q 1 p−:= q 0.4= < binomial distribution parameters using q

k 0 n..:= < value of X

<- P(Y=0)

PB5Qk
dbinom k n, q,( ):= PB5Q

0.0778

0.2592

0.3456

0.2304

0.0768

0.0102



















= < "exact" values of P(Y)

<- P(Y=5)

^ Same values as above, but reversed in order...

Visualizing the cumulative probabilities as areas under the curve:

n 20:= p 0.05:=

k 0 n..:=

CBB4k
pbinom k n, p,( ):= < Entire probability curve for k = {0,1,2 ... 20}

0 5 10 15 20
0.2

0.4

0.6

0.8

CBB4k

CB4k

k

< Red  : P(X < 3)

< Blue : P( X 3≥ )

Example 4.28, p. 98: INFECTIOUS DISEASE

Direct calculation:

n 5:= p 0.6:= < binomial distribution parameters

k 0 n..:= < value of X

<- P(X=0)
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< This is the cumulative probability of >9 deaths1 pbinom k n, p,( )− 0.000034=

< This is the cumulative probability of 1-9 deathspbinom k n, p,( ) 0.999966=

k 9:=

p 0.020:=n 100:=

but if we evaluate ten deaths instead of five:

< This is the cumulative probability of >4 deaths1 pbinom k n, p,( )− 0.0508=

< This is the cumulative probability of 1-4 deathspbinom k n, p,( ) 0.9492=

< value of Xk 4:=

< binomial distribution parametersp 0.020:=

Example 4.29, p. 98: PULMONARY DISEASE

n 1500:= p 0.05:= < binomial distribution parameters

k 75:= < value of X

dbinom k n, p,( ) 0.0472= < Exact value for X = k = 75 cases in 1500 trials

k 74:=

pbinom k n, p,( ) 0.4835= < This is the cumulative probability of obtaining
     74 or fewer cases

1 pbinom k n, p,( )− 0.5165= < This is the cumulative probability of obtaining
     75 or greater cases... The only tricky thing is
      placing the cut off in the distribution...

Example 4.30, p. 99: INFECTIOUS DISEASE

n 100:=
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< remainder P( X 6≥ )1

i

PP1i∑− 0.03=
< "exact" Poisson probability
     P(X=6) for 7th time interval 

< summing intervals 0-6
i

PP1i∑ 0.97=

PP1

0.1

0.231

0.265

0.203

0.117

0.054

0.021






















=
i 0 5..:=

< "exact" Poisson probabilities
     P(X=k) for time intervals k

0! 1=PP1k
e µ− µ

k

k!
⋅:=

k

0

1

2

3

4

5

6






















=
< looking at deaths over monthly intervals 0-6.k 0 6..:=

< total expected number of events over 0.5 year.µ 2.3=µ λ t⋅:=

< analyzed time interval 6 months = 0.5 yeart 0.5:=

< 4.6 deaths per year expected rateλ 4.6:=

INFECTIOUS DISEASE

For 6 month time interval:

Example 4.33, Rosner p. 104:

As with other Probability Distributions, the Poisson Distributions associates "events" X with 
the probability of occurrence P(X=k) - in this case over intervals of time (or space) ∆t.  It has 
a single parameter that must be specified that occurs in one of two forms λ or µ with:
 µ = the expected number of events over interval (of time or space) t.
 λ = the the expected number of events over unit (of time or space) t.
 µ = λt

The Poisson Probability Distribution (also called probability-mass function) is a discrete 
distribution designed to simulate very rare events in time or highly spacially separated 
occurrences in space.

The idea of "rare events" here depends on the following assumptions (see Rosner p. 103):

 - The probability of observing 1 event is directly proportional to the length of time
      interval (or space) ∆t so that the probability of the event P(X) is approximately λ∆t
      for some constant λ.

 - The probability of observing 0 events over ∆t is approximately 1-λ∆t.

 - The probability of observing more than one event over λ∆t is approximately 0.

The Poisson Distribution is also based on these assumptions:

 - Stationarity - The average or total number of events over time stays constant.

 - Independence - The occurrence of an event in one time interval has no bearing on
                                   the occurrence of an event in a subsequent time (or space) interval. 

ORIGIN 0≡

The Poisson Distribution
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Plot:

0 1 2 3 4
0

0.1

0.2

0.3

0.4

PP2k

k

< remainder P( X 4≥ )1

i

PP2i∑− 0.03=

< "exact" Poisson probability
     P(X=4) for 5th time interval 

< summing intervals 0-4
i

PP2i∑ 0.97=

PP2

0.317

0.364

0.209

0.08

0.023

















=
i 0 3..:=

< "exact" Poisson probabilities
     P(X=k) for time intervals k

0! 1=PP2k
e µ− µ

k

k!
⋅:=

< looking at deaths over monthly intervals 0-4.k

0

1

2

3

4

















=k 0 4..:=

< total expected number of events over 0.25 yearµ 1.15=µ λ t⋅:=

< analyzed time interval 3 months = 0.25 yeart 0.25:=

< 4.6 deaths per year expected rateλ 4.6:=

For 3 month time interval:

Plot:

0 1 2 3 4 5 6
0

0.1

0.2

0.3

PP1k

k
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CP3k
ppois k µ,( ):= k

0

1

2

3

4

5

6






















= PP1

0.1003

0.2306

0.2652

0.2033

0.1169

0.0538

0.0206






















= CP3

0.1003

0.3309

0.596

0.7993

0.9162

0.97

0.9906






















=

Prototype confirmed although 
terminology in the help section of 
the program confuses λ and µ.
This function sums the "exact" 
probabilities as one might expect.

result of built-in function ̂

^ explicitly calculated above

Built-in Software functions: Inverse Cumulative Probabilities:

Equivalent functions for the Poisson Distribution appear in most software packages:

λ 4.6:= t 0.5:= µ λ t⋅:=

k 0 6..:=

PP3k
qpois CP3k

µ,( ):= k

0

1

2

3

4

5

6






















= CP3

0.1003

0.3309

0.596

0.7993

0.9162

0.97

0.9906






















= PP3

0

1

2

3

4

5

6






















=

Prototype confirmed although 
terminology in the help section of 
the program confuses λ and µ.
This function recovers the k 
categories quite well...

result of built-in function ̂

^ explicitly calculated above

Built-in Software functions: Exact Probabilities:

Equivalent functions for the Poisson Distribution appear in most software packages:

λ 4.6:= t 0.5:= µ λ t⋅:=

k 0 6..:=

PP3k
dpois k µ,( ):= k

0

1

2

3

4

5

6






















= PP1

0.1003

0.2306

0.2652

0.2033

0.1169

0.0538

0.0206






















= PP3

0.1003

0.2306

0.2652

0.2033

0.1169

0.0538

0.0206






















=

Prototype confirmed although 
terminology in the help section of 
the program confuses λ and µ.

result of built-in function ̂

^ explicitly calculated above

Built-in Software functions: Cumulative Probabilities:

Equivalent functions for the Poisson Distribution appear in most software packages:

λ 4.6:= t 0.5:= µ λ t⋅:=

k 0 6..:=
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µ 2.3=

^ OK

Generating a LARGER Pseudo-random Poisson Distribution:

λ 4.6:= t 0.5:= µ λ t⋅:= < parameter of the poisson distribution

m 5000:= < number of points

R4 rpois m µ,( ):=
Poisson Distribution (population)Sample R4:

mean > XbarR4 mean R4( ):= XbarR4 2.3332= µ 2.3=

variance > SsqR4
m

m 1−
var R4( )⋅:= SsqR4 2.369452= µ 2.3=

^ better but still just OK

Mean (Expected Value) and Variance of the Poisson Distribution: 

Both mean and variance of a Poisson Distribution  = µ Rosner p. 107

µ 2.3= < from the previous examples...

Generating a Pseudo-random Poisson Distribution:

λ 4.6:= t 0.5:= µ λ t⋅:= < parameter of the poisson distribution

m 100:= < number of points

R3 rpois m µ,( ):=
Poisson Distribution (population)Sample R3:

mean > XbarR3 mean R3( ):= XbarR3 2.04= µ 2.3=

variance > SsqR3
m

m 1−
var R3( )⋅:= SsqR3 1.917576=



2007 Biostatistics 11 Poisson Distribution 5

λ 4.6:= < rate per year

t 1.0:= < interval analyzed

µ λ t⋅:= µ 4.6= < expected number over total interval t

k 0 8..:= < events (0 up to 8)

< P(X=0)

dpois k µ,( )

0.0101

0.0462

0.1063

0.1631

0.1875

0.1725

0.1323

0.0869

0.05

























= ppois k µ,( )

0.0101

0.0563

0.1626

0.3257

0.5132

0.6858

0.818

0.9049

0.9549

























=

< P(X=8) < cumulative P( X 8≤ )exact cumulative

1 ppois 8 µ,( )− 0.0451= < cumulative P(X>8)

More Poisson Examples for Prototype from Rosner:

Example 4.35, p. 106: COMPARE WITH TABLE 2 IN APPENDIX

µ 3:= < expected number over total interval t

k 0 4..:= < events (0 up to 4)

< P(X=0)

dpois k µ,( )

0.0498

0.1494

0.224

0.224

0.168

















= ppois k µ,( )

0.0498

0.1991

0.4232

0.6472

0.8153

















=

< P(X=4) < cumulative P( X 4≤ )
exact cumulative

1 ppois 4 µ,( )− 0.1847= < cumulative P(X>4)

Example 4.36, p. 106: INFECTIOUS DISEASE
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µ λ t⋅:= µ 1= < expected number over total interval t

k 0 3..:= < events (0 up to 4)

< P(X=0)

dpois k µ,( )

0.3679

0.3679

0.1839

0.0613












= ppois k µ,( )

0.3679

0.7358

0.9197

0.981












=

< P(X=3) < cumulative P( X 3≤ )

exact cumulative

1 ppois 3 µ,( )− 0.019= < cumulative P(X>3)

Example 4.40, p. 110: INFECTIOUS DISEASE

λ 3.67:= < rate per unit time or space - average rate per month over 18 months

t 1.0:= < interval analyzed - looking at an unusual one month

µ λ t⋅:= µ 3.67= < expected number over total interval t - expected rate in that
     unusual month

1 ppois 13 µ,( )− 3.0924 10 5−
×= < cumulative P( X 14≥ )

Example 4.38, p. 108: OCCUPATIONAL HEALTH

λ 5.8:= < rate per unit time or space

t 1.0:= < interval analyzed

µ λ t⋅:= µ 5.8= < expected number over total interval t

k 0 6..:= < events (0 up to 6)

< P(X=0)

dpois k µ,( )

0.003

0.0176

0.0509

0.0985

0.1428

0.1656

0.1601






















= ppois k µ,( )

0.003

0.0206

0.0715

0.17

0.3127

0.4783

0.6384






















=

< P(X=6) < cumulative P( X 6≤ )
exact cumulative

1 ppois 6 µ,( )− 0.3616= < cumulative P(X>6)

Example 4.39, p. 109: CANCER GENETICS

λ 1.0:= < rate per unit time or space

t 1.0:= < interval analyzed



Assignment for Week 4 
The readings in our text this week and last, involve the fundamental relationship between 
data we might collect (generally termed X) and the probability different values of data 
might have (termed �P(X)�).  In real world situations, of course, we don�t usually know 
what the probability of X might be.  In general, one usually consults one or several �exact 
probability functions� for discrete variables or �probability density functions� for 
continuous variables that have proven over the years to be very useful.  For each of these 
probability functions, it is important to understand the basic rationale underlying the use 
of the distributions and the parameters that define specific P(X) given X from a family of 
similar curves.  Deciding the suitability of fit between real data with theoretical 
distributions often involves comparing histograms of real data with what might be 
theoretically expected of the distributions or simulated, such as through R�s �r� statistical 
functions.  If the fit seems good, one then proceeds to use the standard probability 
distributions to estimate probability of particular values of X, probability cutoffs, and 
probability intervals.  In essence, this is all that statistics does in the design of 
confidence intervals and statistical tests.    

Because associating values of X with P(X) is so important, all statistics texts include 
tables like those in Rosner�s Appendix designed to simplify calculations of otherwise 
complex formulae.  Standard software packages, such as R, include explicit �d�, �p� & �q� 
functions to do the same thing, often with greater precision.  To proceed with statistics, it 
is essential that you understand how these tables and functions work.  It is also 
important to be able to use this theoretical apparatus to work boundaries in either X or 
P(X). 

So, this week your assignment is to complete your prototype of five important probability 
distributions: Binomial, Poisson, Normal, Student’s t, and Chi-square. 

1. Set up a range of X�s and use the �d� function to calculate P(X).  To do this, you will 
have to pick �reasonable� values of each distribution�s parameters. 

2. Plot P(X) vs X to visualize each distribution.  Compare this �exact� curve with a 
histogram of simulated data generated by each distribution�s corresponding �r� 
function.  Notice the fit of simulated data with the theoretical P(X) vs X function 
� or lack thereof. 

3. Calculate the cumulative function Φ(X) for each X using a corresponding �p� function. 
and plot Φ(X) vs X.  Show the relationship between P(X) and Φ(X) for each X. 

4. Now show how to retrieve X from Φ(X) using the inverse cumulative probability �q� 
function.  Interpret in words what this function allows you to do. 

5. For each plot of P(X) vs X, characterize the distribution�s shape.  Note whether the 
distribution is symmetrical or non symmetrical.  Note its central tendency or 
mode versus tail(s). 

6. For each distribution, find the values of X below or above which P(X) < 5%.  Annotate 
your graph of P(X) vs X to show what this means. 

7.  For each distribution, find lower Xlower and upper Xupper bound values of X such that 
P(X) is at least 95% 

Welcome to the world of Confidence Intervals � Chapter 6! 



Here are the R Documentation Pages for the distributions we are trying 
to prototype: 
 
Normal {stats} R Documentation

The Normal Distribution 

Description 

Density, distribution function, quantile function and random generation for the normal 
distribution with mean equal to mean and standard deviation equal to sd.  

Usage 

dnorm(x, mean=0, sd=1, log = FALSE) 
pnorm(q, mean=0, sd=1, lower.tail = TRUE, log.p = FALSE) 
qnorm(p, mean=0, sd=1, lower.tail = TRUE, log.p = FALSE) 
rnorm(n, mean=0, sd=1) 

Arguments 

x,q vector of quantiles. 
p vector of probabilities. 
n number of observations. If length(n) > 1, the length is taken to be the 

number required. 
mean vector of means. 
sd vector of standard deviations. 
log, log.p logical; if TRUE, probabilities p are given as log(p). 
lower.tail logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > 

x]. 

Details 

If mean or sd are not specified they assume the default values of 0 and 1, respectively.  

The normal distribution has density  

f(x) = 1/(sqrt(2 pi) sigma) e^-((x - mu)^2/(2 sigma^2))  

where mu is the mean of the distribution and sigma the standard deviation.  

qnorm is based on Wichura's algorithm AS 241 which provides precise results up to about 
16 digits.  



Value 

dnorm gives the density, pnorm gives the distribution function, qnorm gives the quantile 
function, and rnorm generates random deviates. 

Source 

For pnorm, based on  

Cody, W. D. (1993) Algorithm 715: SPECFUN – A portable FORTRAN package of 
special function routines and test drivers. ACM Transactions on Mathematical Software 
19, 22–32.  

For qnorm, the code is a C translation of  

Wichura, M. J. (1988) Algorithm AS 241: The Percentage Points of the Normal 
Distribution. Applied Statistics, 37, 477–484.  

For rnorm, see RNG for how to select the algorithm and for references to the supplied 
methods.  

References 

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. 
Wadsworth & Brooks/Cole.  

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate 
Distributions, volume 1, chapter 13. Wiley, New York.  

See Also 

runif and .Random.seed about random number generation, and dlnorm for the 
Lognormal distribution.  

Examples 

dnorm(0) == 1/ sqrt(2*pi) 
dnorm(1) == exp(-1/2)/ sqrt(2*pi) 
dnorm(1) == 1/ sqrt(2*pi*exp(1)) 
 
## Using "log = TRUE" for an extended range : 
par(mfrow=c(2,1)) 
plot(function(x) dnorm(x, log=TRUE), -60, 50, 
     main = "log { Normal density }") 
curve(log(dnorm(x)), add=TRUE, col="red",lwd=2) 
mtext("dnorm(x, log=TRUE)", adj=0) 
mtext("log(dnorm(x))", col="red", adj=1) 
 



plot(function(x) pnorm(x, log=TRUE), -50, 10, 
     main = "log { Normal Cumulative }") 
curve(log(pnorm(x)), add=TRUE, col="red",lwd=2) 
mtext("pnorm(x, log=TRUE)", adj=0) 
mtext("log(pnorm(x))", col="red", adj=1) 
 
## if you want the so-called 'error function' 
erf <- function(x) 2 * pnorm(x * sqrt(2)) - 1 
## (see Abrahamowitz and Stegun 29.2.29) 
## and the so-called 'complementary error function' 
erfc <- function(x) 2 * pnorm(x * sqrt(2), lower = FALSE) 
 



 
TDist {stats} R Documentation

The Student t Distribution 

Description 

Density, distribution function, quantile function and random generation for the t 
distribution with df degrees of freedom (and optional noncentrality parameter ncp).  

Usage 

dt(x, df, ncp = 0, log = FALSE) 
pt(q, df, ncp = 0, lower.tail = TRUE, log.p = FALSE) 
qt(p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE) 
rt(n, df, ncp = 0) 

Arguments 

x, q vector of quantiles. 
p vector of probabilities. 
n number of observations. If length(n) > 1, the length is taken to be the 

number required. 
df degrees of freedom (> 0, maybe non-integer). df = Inf is allowed. For qt 

only values of at least one are currently supported. 
ncp non-centrality parameter delta; currently for pt() and dt(), only for 

abs(ncp) <= 37.62. 
log, log.p logical; if TRUE, probabilities p are given as log(p). 
lower.tail logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > 

x]. 

Details 

The t distribution with df = n degrees of freedom has density  

f(x) = Gamma((n+1)/2) / (sqrt(n pi) Gamma(n/2)) (1 + x^2/n)^-((n+1)/2) 

for all real x. It has mean 0 (for n > 1) and variance n/(n-2) (for n > 2).  

The general non-central t with parameters (df,Del) = (df, ncp) is defined as the 
distribution of T(df, Del) := (U + Del) / (Chi(df) / sqrt(df)) where U and Chi(df) are 
independent random variables, U ~ N(0,1), and Chi(df)^2 is chi-squared, see Chisquare.  



The most used applications are power calculations for t-tests: 
Let T= (mX - m0) / (S/sqrt(n)) where mX is the mean and S the sample standard deviation 
(sd) of X_1,X_2,...,X_n which are i.i.d. N(mu,sigma^2). Then T is distributed as non-
centrally t with df= n-1 degrees of freedom and non-centrality parameter ncp= (mu - 
m0) * sqrt(n)/sigma.  

Value 

dt gives the density, pt gives the distribution function, qt gives the quantile function, 
and rt generates random deviates.  
Invalid arguments will result in return value NaN, with a warning. 

Source 

The central dt is computed via an accurate formula provided by Catherine Loader (see 
the reference in dbinom).  

For the non-central case of dt, contributed by Claus Ekstrøm based on the relationship 
(for x != 0) to the cumulative distribution.  

For the central case of pt, a normal approximation in the tails, otherwise via pbeta.  

For the non-central case of pt based on a C translation of  

Lenth, R. V. (1989). Algorithm AS 243 — Cumulative distribution function of the non-
central t distribution, Applied Statistics 38, 185–189.  

For central qt, a C translation of  

Hill, G. W. (1970) Algorithm 396: Student's t-quantiles. Communications of the ACM, 
13(10), 619–620.  

altered to take account of  

Hill, G. W. (1981) Remark on Algorithm 396, ACM Transactions on Mathematical 
Software, 7, 250–1.  

The non-central case is done by inversion.  

References 

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. 
Wadsworth & Brooks/Cole. (Except non-central versions.)  



Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate 
Distributions, volume 2, chapters 28 and 31. Wiley, New York.  

See Also 

df for the F distribution.  

Examples 

1 - pt(1:5, df = 1) 
qt(.975, df = c(1:10,20,50,100,1000)) 
 
tt <- seq(0,10, len=21) 
ncp <- seq(0,6, len=31) 
ptn <- outer(tt,ncp, function(t,d) pt(t, df = 3, ncp=d)) 
image(tt,ncp,ptn, zlim=c(0,1),main=t.tit <- "Non-central t - 
Probabilities") 
persp(tt,ncp,ptn, zlim=0:1, r=2, phi=20, theta=200, main=t.tit, 
      xlab = "t", ylab = "noncentrality parameter", zlab = "Pr(T <= 
t)") 
 
plot(function(x) dt(x, df = 3, ncp = 2), -3, 11, ylim = c(0, 0.32), 
     main="Non-central t - Density", yaxs="i") 
 
 



 
Chisquare {stats} R Documentation

The (non-central) Chi-Squared Distribution 

Description 

Density, distribution function, quantile function and random generation for the chi-
squared (chi^2) distribution with df degrees of freedom and optional non-centrality 
parameter ncp.  

Usage 

dchisq(x, df, ncp=0, log = FALSE) 
pchisq(q, df, ncp=0, lower.tail = TRUE, log.p = FALSE) 
qchisq(p, df, ncp=0, lower.tail = TRUE, log.p = FALSE) 
rchisq(n, df, ncp=0) 

Arguments 

x, q vector of quantiles. 
p vector of probabilities. 
n number of observations. If length(n) > 1, the length is taken to be the 

number required. 
df degrees of freedom (non-negative, but can be non-integer). 
ncp non-centrality parameter (non-negative). 
log, log.p logical; if TRUE, probabilities p are given as log(p). 
lower.tail logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > 

x]. 

Details 

The chi-squared distribution with df= n > 0 degrees of freedom has density  

f_n(x) = 1 / (2^(n/2) Gamma(n/2)) x^(n/2-1) e^(-x/2) 

for x > 0. The mean and variance are n and 2n.  

The non-central chi-squared distribution with df= n degrees of freedom and non-
centrality parameter ncp = λ has density  

f(x) = exp(-lambda/2) SUM_{r=0}^infty ((lambda/2)^r / r!) dchisq(x, df + 2r)  



for x >= 0. For integer n, this is the distribution of the sum of squares of n normals each 
with variance one, λ being the sum of squares of the normal means; further,  
E(X) = n + λ, Var(X) = 2(n + 2*λ), and E((X - E(X))^3) = 8(n + 3*λ).  

Note that the degrees of freedom df= n, can be non-integer, and for non-centrality λ > 0, 
even n = 0; see Johnson et al. (1995, chapter 29).  

Note that ncp values larger than about 1e5 may give inaccurate results with many 
warnings for pchisq and qchisq.  

Value 

dchisq gives the density, pchisq gives the distribution function, qchisq gives the 
quantile function, and rchisq generates random deviates.  
Invalid arguments will result in return value NaN, with a warning. 

Source 

The central cases are computed via the gamma distribution.  

The non-central dchisq and rchisq are computed as a Poisson mixture central of chi-
squares (Johnson et al, 1995, p.436).  

The non-central pchisq is for ncp < 80 computed from the Poisson mixture of central 
chi-squares and for larger ncp based on a C translation of  

Ding, C. G. (1992) Algorithm AS275: Computing the non-central chi-squared 
distribution function. Appl.Statist., 41 478–482.  

which computes the lower tail only (so the upper tail suffers from cancellation).  

The non-central qchisq is based on inversion of pchisq.  

References 

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. 
Wadsworth & Brooks/Cole.  

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate 
Distributions, chapters 18 (volume 1) and 29 (volume 2). Wiley, New York.  

See Also 



A central chi-squared distribution with n degrees of freedom is the same as a Gamma 
distribution with shape a = n/2 and scale s = 2. Hence, see dgamma for the Gamma 
distribution.  

Examples 

dchisq(1, df=1:3) 
pchisq(1, df= 3) 
pchisq(1, df= 3, ncp = 0:4)# includes the above 
 
x <- 1:10 
## Chi-squared(df = 2) is a special exponential distribution 
all.equal(dchisq(x, df=2), dexp(x, 1/2)) 
all.equal(pchisq(x, df=2), pexp(x, 1/2)) 
 
## non-central RNG -- df=0 is ok for ncp > 0:  Z0 has point mass at 0! 
Z0 <- rchisq(100, df = 0, ncp = 2.) 
graphics::stem(Z0) 
 
## Not run:  
## visual testing 
## do P-P plots for 1000 points at various degrees of freedom 
L <- 1.2; n <- 1000; pp <- ppoints(n) 
op <- par(mfrow = c(3,3), mar= c(3,3,1,1)+.1, mgp= c(1.5,.6,0), 
          oma = c(0,0,3,0)) 
for(df in 2^(4*rnorm(9))) { 
  plot(pp, sort(pchisq(rr <- rchisq(n,df=df, ncp=L), df=df, ncp=L)), 
       ylab="pchisq(rchisq(.),.)", pch=".") 
  mtext(paste("df = ",formatC(df, digits = 4)), line= -2, adj=0.05) 
  abline(0,1,col=2) 
} 
mtext(expression("P-P plots : Noncentral  "* 
                 chi^2 *"(n=1000, df=X, ncp= 1.2)"), 
      cex = 1.5, font = 2, outer=TRUE) 
par(op) 
## End(Not run) 



 
Binomial {stats} R Documentation

The Binomial Distribution 

Description 

Density, distribution function, quantile function and random generation for the binomial 
distribution with parameters size and prob.  

Usage 

dbinom(x, size, prob, log = FALSE) 
pbinom(q, size, prob, lower.tail = TRUE, log.p = FALSE) 
qbinom(p, size, prob, lower.tail = TRUE, log.p = FALSE) 
rbinom(n, size, prob) 

Arguments 

x, q vector of quantiles. 
p vector of probabilities. 
n number of observations. If length(n) > 1, the length is taken to be the 

number required. 
size number of trials (zero or more). 
prob probability of success on each trial. 
log, log.p logical; if TRUE, probabilities p are given as log(p). 
lower.tail logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > 

x]. 

Details 

The binomial distribution with size = n and prob = p has density  

p(x) = choose(n,x) p^x (1-p)^(n-x) 

for x = 0, ..., n.  

If an element of x is not integer, the result of dbinom is zero, with a warning. p(x) is 
computed using Loader's algorithm, see the reference below.  

The quantile is defined as the smallest value x such that F(x) >= p, where F is the 
distribution function.  



Value 

dbinom gives the density, pbinom gives the distribution function, qbinom gives the 
quantile function and rbinom generates random deviates.  
If size is not an integer, NaN is returned. 

Source 

For dbinom a saddle-point expansion is used: see  

Catherine Loader (2000). Fast and Accurate Computation of Binomial Probabilities; 
available from http://www.herine.net/stat/software/dbinom.html.  

pbinom uses pbeta.  

qbinom uses the Cornish–Fisher Expansion to include a skewness correction to a normal 
approximation, followed by a search.  

rbinom is based on  

Kachitvichyanukul, V. and Schmeiser, B. W. (1988) Binomial random variate generation. 
Communications of the ACM, 31, 216–222.  

See Also 

dnbinom for the negative binomial, and dpois for the Poisson distribution.  

Examples 

# Compute P(45 < X < 55) for X Binomial(100,0.5) 
sum(dbinom(46:54, 100, 0.5)) 
 
## Using "log = TRUE" for an extended range : 
n <- 2000 
k <- seq(0, n, by = 20) 
plot (k, dbinom(k, n, pi/10, log=TRUE), type='l', ylab="log density", 
      main = "dbinom(*, log=TRUE) is better than  log(dbinom(*))") 
lines(k, log(dbinom(k, n, pi/10)), col='red', lwd=2) 
## extreme points are omitted since dbinom gives 0. 
mtext("dbinom(k, log=TRUE)", adj=0) 
mtext("extended range", adj=0, line = -1, font=4) 
mtext("log(dbinom(k))", col="red", adj=1) 
 



 
Poisson {stats} R Documentation

The Poisson Distribution 

Description 

Density, distribution function, quantile function and random generation for the Poisson 
distribution with parameter lambda.  

Usage 

dpois(x, lambda, log = FALSE) 
ppois(q, lambda, lower.tail = TRUE, log.p = FALSE) 
qpois(p, lambda, lower.tail = TRUE, log.p = FALSE) 
rpois(n, lambda) 

Arguments 

x vector of (non-negative integer) quantiles. 
q vector of quantiles. 
p vector of probabilities. 
n number of random values to return. 
lambda vector of (non-negative) means. 
log, log.p logical; if TRUE, probabilities p are given as log(p). 
lower.tail logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > 

x]. 

Details 

The Poisson distribution has density  

p(x) = lambda^x exp(-lambda)/x! 

for x = 0, 1, 2, .... The mean and variance are E(X) = Var(X) = λ.  

If an element of x is not integer, the result of dpois is zero, with a warning. p(x) is 
computed using Loader's algorithm, see the reference in dbinom.  

The quantile is left continuous: qgeom(q, prob) is the largest integer x such that P(X <= 
x) < q.  



Setting lower.tail = FALSE allows to get much more precise results when the default, 
lower.tail = TRUE would return 1, see the example below.  

Value 

dpois gives the (log) density, ppois gives the (log) distribution function, qpois gives the 
quantile function, and rpois generates random deviates.  
Invalid lambda will result in return value NaN, with a warning. 

Source 

dpois uses C code contributed by Catherine Loader (see dbinom).  

ppois uses pgamma.  

qpois uses the Cornish–Fisher Expansion to include a skewness correction to a normal 
approximation, followed by a search.  

rpois uses  

Ahrens, J. H. and Dieter, U. (1982). Computer generation of Poisson deviates from 
modified normal distributions. ACM Transactions on Mathematical Software, 8, 163–
179.  

See Also 

dbinom for the binomial and dnbinom for the negative binomial distribution.  

Examples 

-log(dpois(0:7, lambda=1) * gamma(1+ 0:7)) # == 1 
Ni <- rpois(50, lam= 4); table(factor(Ni, 0:max(Ni))) 
 
1 - ppois(10*(15:25), lambda=100)               # becomes 0 
(cancellation) 
    ppois(10*(15:25), lambda=100, lower=FALSE)  # no cancellation 
 
par(mfrow = c(2, 1)) 
x <- seq(-0.01, 5, 0.01) 
plot(x, ppois(x, 1), type="s", ylab="F(x)", main="Poisson(1) CDF") 
plot(x, pbinom(x, 100, 0.01),type="s", ylab="F(x)", 
     main="Binomial(100, 0.01) CDF") 
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< MathCad's function asks us provide
    standard deviation rather than variance...

σ
2

100=Y2i dnorm Xi µ, σ,( ):=

Now, let's compare with Mathcad's built-in function:

Y1i
1

σ 2 π⋅⋅
e

1−

2σ2⋅
Xi µ−( )2⋅






⋅:=

< Formula for Normal distribution.  Here we
     have computed P(X) for each of our X's.
     Careful reading Definition 5.5 p. 126....

Xi i:=

< Defining a bunch of X's ranging in value from 0 to 100.  Remember 
that the range of X is infinite, but we'll plot 101 point here.  That should 
give us enough points to give us an idea of the Gaussian function shape!

i 0 100..:=

< specifying variance (σ2)σ
2

100=σ 100:=

< specifying mean (µ)µ 50:=

Making the plot of N(50,100) in Rosner Fig. 5.5 p. 127:

Prototyping the Normal Function using the Gaussian formula:

The Normal Distribution, also known as the "Gaussian Distribution" or "bell-curve", is the 
most widely employed function relating observations X with probabilty P(X) in statistics.  
Many natural populations are approximately normally distributed, as are several important 
derived quantitities even when the original population is not normally distributed. 

Properly speaking, the Normal Distribution is a continuous "probability density function" 
meaning that values of a random variable X may take on any numerical value, not just 
discrete values.  In addition, because the values of X are infinite the "exact" probabiliy P(X) 
for any X is zero.  Thus, in order to determine probabilities one typically looks at invervals of 
X such as X >2.3 or 1< X < 2 and so forth.  It is interesting to note that because the 
probability P(X) = 0, we don't have to worry about correctly interpreting pesky boundaries, 
as seen in discrete distributions, since X > 2 means the same thing as X 2≥  and X < 2 is the 
same as X 2≤ . 

As described previously, the Normal distribution consists of a family of curves that are 
specified by supplying values for two parameters:

µ = the mean of the Normal population, and

σ2 = the variance of the same population.  

ORIGIN 0≡

The Normal Distribution
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< Cumulative probability Φ(X) for each XY4i pnorm Xi µ, σ,( ):=

< P(X) for each XY3i dnorm Xi µ, σ,( ):=

< parameters of the Normal N(0,1) distribution...σ
2

1=σ 1:=µ 0:=

< scaling 101 X's to a reasonable scale...Xi
i 50−

10
:=

i 0 100..:=

Cumulative Normal Distribution N(0,1):

Location of mode changes (translation of µ) and width of hump changes showing 
greater or lesser variance - see Biostatistics Lecture Worksheet 04. 

What happens when µ or σ2 is changed:

^ The two approaches give the same probability function P(X) for X, 
     so this prototype confirms the built-in function.

0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

Y1i

Y2i

Xi

Plotting the two sets of Y's:
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< P(X)

pnorm 2.576− µ, σ,( ) 0.005= pnorm 2.576 µ, σ,( ) 0.995= < Φ(X)

pnorm 2.576 µ, σ,( ) pnorm 2.576− µ, σ,( )− 0.99= < Calculating MAX cut-off - MIN cut-off

^ cumulative value at MIN of interval 99%
^ cumulative value at MAX of interval

Probability that X ranges between -1.96 and 1.96

dnorm 1.96− µ, σ,( ) 0.0584= dnorm 1.96 µ, σ,( ) 0.0584= < P(X)

pnorm 1.96− µ, σ,( ) 0.025= pnorm 1.96 µ, σ,( ) 0.975= < Φ(X)

pnorm 1.96 µ, σ,( ) pnorm 1.96− µ, σ,( )− 0.95= < Calculating MAX cut-off - MIN cut-off

^ cumulative value at MIN of interval 95%
^ cumulative value at MAX of interval

Plots of Normal Distribution and Cumulative Normal Distributions

6 4 2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

Y3i

Y4i

Xi

N(0,1)

Calculating Intervals of the Cumulative Distribution Rosner, p. 129-130:

µ 0= σ 1= < Normal distribution parameters (change these if needed)

Probability that X ranges between -1 and 1:

dnorm 1− µ, σ,( ) 0.242= dnorm 1 µ, σ,( ) 0.242= < P(X)

pnorm 1− µ, σ,( ) 0.1587= pnorm 1 µ, σ,( ) 0.8413= < Φ(X)

pnorm 1 µ, σ,( ) pnorm 1− µ, σ,( )− 0.6827= < Calculating MAX cut-off - MIN cut-off

^ cumulative value at MIN of interval
68.27%^ cumulative value at MAX of interval

Probability that X ranges between -2.576 and 2.576:

dnorm 2.576− µ, σ,( ) 0.0145= dnorm 2.576 µ, σ,( ) 0.0145=
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Most computer programs have functions showing this distinction...

Var X( ) 97.0097=
< Note: mathcad has two functions: var(X) = population variance
                                                       Var(X) = sample mean

< both sample means - here as calculated in previous worksheetsn
n 1−

var X( )⋅ 97.0097=

mean X( ) 49.4025=

n 1000=n length X( ):=

Descriptive Statistics for X:

0 20 40 60 80 100
20

40

60

80

100

Xi

i

X rnorm 1000 µ, σ,( ):=

σ
2

100=σ 100:=µ 50:=

Simulation of Normally Distributed Data:

< Z's are now Standardized ~N(0,1)Zi

Xi µ−( )
σ

:=

Xi i:=

i 0 100..:=

< original distribution ~N(50,100)σ
2

100=σ 100:=µ 50:=

In many instances, we will have a sample that we may compare to a Normal 
Distribution, normally indicated like this: ~N(µ,σ2).  Using computer-based functions as 
above, one has little difficulty calculating probabilities P(X) and cumulative probabilities 
Φ(X).  However, in comparing variables it is often useful to compare probabilities for 
each to those expected of the Standard Normal Distribution ~N(0,1).  

This is done by Standardizing the Data:

Given your X's ~N(µ,σ2) you create a new variable Z ~N(0,1) by means of a Linear 
Transformation: 

Standardizing the Normal Distribution:
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Histogram of X:

plot histogram 10 X,( ):=

0 20 40 60 80
0

100

200

300

plot 1〈 〉

plot 0〈 〉

plot

18.3

24.9

31.5

38.1

44.7

51.3

57.9

64.5

71.1

77.7

6

8

54

140

238

252

182

94

22

4































=

Standardizing our Sample Data:

Z
X µ−

σ
:=

Descriptive Statistics for Z:

n length Z( ):= n 1000=

mean Z( ) 0.0598−=

Var Z( ) 0.9701=

plot histogram 10 Z,( ):=

4 2 0 2 4
0

100

200

300

plot 1〈 〉

plot 0〈 〉
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^ This linear combination (LC2) "contrasts" 
     sepals (SL+SW) versus petals (PL+PW).  
    As you can see many such "contrasts" are possible by
     specifying different values for the contrast matrix.

LC2i c0 SLi⋅ c1 SWi⋅+ c2 PLi⋅+ c3 PWi⋅+:=

c

0.25

0.25

0.25−

0.25−












:=

^ This linear combination (LC1) is made by
     adding each of the original variables together. 

LC1i c0 SLi⋅ c1 SWi⋅+ c2 PLi⋅+ c3 PWi⋅+:=

c

1

1

1

1












=c3 1:=
< the values of linear coefficients cj in vector form, 
     often called the "contrast matrix"

c2 1:=

c1 1:=
< constants called "linear coeffieients"

c0 1:=

< index (i) of the values in each variable SL, SW, PL,PW abovei 0 149..:=

< index (j) of the constants: c0, c1, c2 & c3 because ORIGIN=0j 0 3..:=

A linear combination is any NEW variable we make that consists of a constant cj (for each 
original variable) times each original variable all added together.  We do this for each of the 
values i representing instances of the original variables:

n 150=n length SL( ):=

PW iris 4〈 〉:=

PL iris 3〈 〉:=

SW iris 2〈 〉:=

SL iris 1〈 〉:=

iris READPRN "c:/2007BiostatsData/iris.txt"( ):=

So let's grab some familiar data:

In data analysis of real-life situations, it is often the case that data on multiple variables 
are collected.  The task of the statistical researcher is then to construct important 
questions that might be asked of the data, and then choose an appropriate statistical 
technique.  One common approach is to construct new variables that combine the original 
collected variables in a meaningful way that summarizes, and hopefully simplifies, the 
issues involved.  This approach is often performed by constructing Linear Combinations 
(also known as "linear contrasts") of the original variables.

ORIGIN 0≡

Linear Combinations of Variables
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^ important COVARIATION is noticed between some pairs of variables here!

So this accounts for why the variance of the Linear Combination does not match the 
sum of the individual variances...

0 2 4 6 8
0

1

2

3

PW

PL
2 3 4 5

0

1

2

3

PW

SW

2 3 4 5
0

5

10

PL

SW
4 6 8

0

1

2

3

PW

SL

4 6 8
0

5

10

PL

SL
4 6 8

2

3

4

5

SW

SL

< figuring the number of pairwise graphs 4 variables two at a timecombin 4 2,( ) 6=

^ theory for INDEPENDENT variables says that these variances should be the same...

c0( )2 Var SL( )⋅ c1( )2 Var SW( )⋅+ c2( )2 Var PL( )⋅+ c3( )2 Var PW( )⋅+ 4.573=Var LC1( ) 9.7579=

^ mean of the linear combination is the sum of each mean times its linear coefficient.

c0 mean SL( )⋅ c1 mean SW( )⋅+ c2 mean PL( )⋅+ c3 mean PW( )⋅+ 13.858=mean LC1( ) 13.858=

Var PW( ) 0.581=mean PW( ) 1.1993=

< means and sample variances for each of the
    original variables in iris...

Var PL( ) 3.1163=mean PL( ) 3.758=

Var SW( ) 0.19=mean SW( ) 3.0573=

Var SL( ) 0.6857=mean SL( ) 5.8433=
< contrast matrixc

1

1

1

1












:=

Mean and Variance of Linear Combinations:
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These graphs look random ... >

20 0 20
50

0

50

X 2〈 〉

X 1〈 〉

50 0 50
50

0

50

X 2〈 〉

X 0〈 〉
50 0 50

20

0

20

X 1〈 〉

X 0〈 〉

< figuring the number of pairwise graphs 3 variables two at a timecombin 3 2,( ) 3=

^ These are closer, although you can still see a difference.  The SAMPLE of 1000 
random points for each variable Xj still has some unintentional variable dependence. 

^ theoretical variance for INDEPENDENT
    POPULATIONS calculated by Rosner Eq 5.9 p. 141

^ variance calculated from 
   this SAMPLE of linear 
   contrasts directly

Var LC( ) 236.3934=
j

c j( )2 Var X j〈 〉( )⋅∑ 243.8951=

Var LC( ) 236.3934=

Var X 2〈 〉( ) 51.3127=

Var X 1〈 〉( ) 23.8932=

Var X 0〈 〉( ) 97.0097=

LC

0
0
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

6.7319
-1.7888

9.4905

-5.0321

-20.1211

3.9282

-8.7155

10.4065

-2.7163

14.0104

9.9356

18.7565

5.3552

26.837

-10.1637

-3.0801

=X

0 1 2
0
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0.6103 5.1717 4.2218
-1.7941 3.4605 6.9156

0.2671 2.7073 -3.8088

-4.5147 3.7385 7.9945

-11.8568 0.0829 8.4299

5.4353 1.6503 4.8077

3.7937 -2.819 6.8711

10.5643 -0.7961 -1.4344

26.9179 -8.2845 13.065

13.0873 1.1709 1.4187

14.8514 2.521 9.9579

13.6223 5.5577 5.9813

14.1557 -4.118 0.5645

11.73 9.679 4.251

-5.4431 1.5269 7.7743

5.6908 -2.2593 4.2523

=
^ the linear contrast

LCi
j

cj X j〈 〉( )
i⋅∑:=

X 2〈 〉 rnorm 1000 3, 7,( ):=

X 1〈 〉 rnorm 1000 2, 5,( ):=

X 0〈 〉 rnorm 1000 5, 10,( ):=

< index for three variablesj 0 2..:=
< contrast matrixc

1

2

1−









:=

< index of values in each variablei 0 999..:=

Using Simulated Random Data:
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CVSLPL 1.2743=

^ sample covariance is the sum of "cross-products" divided by (n-1).  The reason for
     using (n-1) instead of (n) for the SAMPLE is the same reason used for variance.

Prototype for MathCad's built-in covariance function:

cvar SL PL,( ) 1.2658=
n

n 1−
cvar SL PL,( )⋅ 1.2743=

^ must correct built-in function for SAMPLE using (n-1)

^ built-in function calculates covariance for POPULATION using (n)

Unfortunately, there is no corresponding built-in function for SAMPLE in MathCad.  We'll 
just have to do it ourselves ...

Correlation:
i 0 n 1−..:= < index for values in the variables

sSL Var SL( ):=
< SAMPLE standard deviations

sPL Var PL( ):=

CORSLPL
CVSLPL

sSL sPL⋅
:= CORSLPL 0.8718=

^ Correlation is calculated as the covariance between two variables divided
     by the product of their individual standard deviations.

Assessing Covariance & Correlation of Variables
ORIGIN 0≡

When bivariate plots or other diagnostic techniques indicate dependence between 
variables, it is useful to have quantities describing this dependence.  Covariance and 
Correlation are two such quantities that have an important relationship.
Again, let's grab some familiar data:

iris READPRN "c:/2007BiostatsData/iris.txt"( ):=

SL iris 1〈 〉:=

SW iris 2〈 〉:=

PL iris 3〈 〉:=

PW iris 4〈 〉:=

n length SL( ):= n 150=

We have already seen in pairwise graphs that some variable pairs show dependence...

Covariance:
As with mean and variance, covariance may be determined in terms of the population or a 
specific sample.  In practical terms, we are almost always calculating values for samples, so 
that's what we will do here...

i 0 n 1−..:= < index for values in the variables

CVSLPL

i

SLi mean SL( )−( ) PLi mean PL( )−( )⋅

n 1−∑:=
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^ same as Correlation of the unstandardized variables!

CVZSLPL 0.8718=CVZSLPL

i

ZSLi
mean ZSL( )−( ) ZPLi

mean ZPL( )−( )⋅

n 1−∑:=

Covariance:

sZPL Var PL( ):=
< SAMPLE standard deviations for the Standardized variables

sZSL Var SL( ):=

Var PL( ) 3.1163=mean ZPL( ) 0=ZPLi

PLi mean PL( )−

sPL
:=

Var SL( ) 0.6857=mean ZSL( ) 0=ZSLi

SLi mean SL( )−

sSL
:=

Sample variables are often standardized creating a new variables for the POPULATION~N(0,1):

Effect of Standardizing Data:

Note that when correctly calculated, the SAMPLE and POPULATION correlations are the same!

< SAMPLE correlation using (n-1).  

n
n 1−






cvar SL PL,( )⋅

sSL sPL⋅
0.8718=

n
n 1−






cvar SL PL,( )⋅

σSL σPL⋅
0.8776=

< WRONG calculation using (n-1) for covariance but
      using (n) for individual standard deviations

cvar SL PL,( )
sSL sPL⋅

0.8659=
< WRONG calculation using (n) for covariance but using
      (n-1) for individual standard deviations

< POPULATION correlation using (n)cvar SL PL,( )
σSL σPL⋅

0.8718=

σPL var PL( ):=
< POPULATION standard deviations using (n)

σSL var SL( ):=

corr SL PL,( ) 0.8718=

Prototype for MathCad's built-in correlation function:



2007 Biostatistics 14 Covariance & Correlation 3

Effect of Variable Dependence on variance of Linear Combinations: 
We won't spend a lot of effort on this here, but for two variables (Rosner Eq 5.11. p. 144):

c
.75

1.5−







:= < contrast matrix

Li c0 SLi⋅ c1 PLi⋅+:= < making the linear combination

Var SL( ) 0.6857=

Var PL( ) 3.1163=

n
n 1−

cvar SL PL,( )⋅ 1.2743=

Var L( ) 4.5301= c0( )2 Var SL( )⋅ c1( )2 Var PL( )⋅+ 2 c0⋅ c1⋅
n

n 1−
cvar SL PL,( )⋅





⋅+ 4.5301=

^ variance calculated using Rossner Eq 5.11, p. 144.

^ variance of the linear combination calculated directly

Here the dependence between variables SL and PL are taken into account, 
     so the calculations based on original variables and Linear Combination now match
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^ subtracting the cumulative probabilities

pnorm 12.5 n p⋅, n p⋅ q⋅,( ) pnorm 6.5 n p⋅, n p⋅ q⋅,( )− 0.7698=

pnorm 6.5 n p⋅, n p⋅ q⋅,( ) 0.0765=
< cumulative probabilities for each cut-off

pnorm 12.5 n p⋅, n p⋅ q⋅,( ) 0.8463=

Normal approximation using the cumulative Normal function:

< subtracting the cumulative probabilities
    remembering that we want to include k=7

pbinom 12 n, p,( ) pbinom 6 n, p,( )− 0.7727=

pbinom 6 n, p,( ) 0.0736=
< cumulative probabilities for each cut-off

pbinom 12 n, p,( ) 0.8462=

Binomial calculation using cumulative binomial function:

Problem: find the Probability P(X=k) for 7 k≤ 12≤   

< meann p⋅ 10=

< variance boundary condition is metn p⋅ q⋅ 6=

q 0.6=q 1 p−:=

< Parameters of the binomal distributionp 0.4:=

n 25:=

Rosner Example 5.33, p. 147: 

Boundary condition:

  To be valid, sample variance = npq 5≥  

Parameters of the Binomial Distribution:
  n = total number of things or trials
  k = number of "successes"
  p = probability of "success" 
  q = probability of "failure" = (1-p)

Approximating the Binomial Distribution:

The Normal Distribution is very commonly used to approximate discrete Binomial and 
Poisson distributions when calculation of the latter become problematic.  To use these 
approximations, it is important to see that general boundary conditions involving 
size of the distribution are met.  Also, the approximations are best when (1/2) modifiers 
to specific cut-offs are used. 

ORIGIN 0≡

Normal Approximations for Discrete Distributions
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< cumulative probability for what's left i.e., k 20≥  1 pnorm 19.5 µ, µ,( )− 0.0013=

< cumulative probabiliy for k < 20pnorm 19.5 µ, µ,( ) 0.9987=

Normal approximation using cumulative Normal function:

< cumulative probability for what's left i.e., k 20≥  1 ppois 19 µ,( )− 0.0035=

< cumulative probabiliy for k < 20ppois 19 µ,( ) 0.9965=

Poisson calculation using cumulative Poisson function:

Problem: find the Probability P(X=k) for k 20≥   

< mean = variance boundary condition is metµ 10=µ λ t⋅:=

< t = A here...t 100:=

λ 0.1:=

Rosner Example 5.36, p. 147: 

Boundary condition:

  To be valid, sample variance = µ 10≥  

Parameters of the Poission distribution:

   µ = the expected number of events over an interval of time t
   λ = the expected number of events over unit time
   µ = λt

Approximating the Poisson Distribution:
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σ
2

1=

Problem: Compute P(-1<X<1.5):

pnorm 1.5 µ, σ,( ) 0.9332=

pnorm 1− µ, σ,( ) 0.1587=

pnorm 1.5 µ, σ,( ) pnorm 1− µ, σ,( )− 0.7745= < Remember these are cumulative probabilites

Example 5.14, p. 132:
µ 0:= σ 1:=

Problem: Compute P(X<-1.5):

pnorm 1.5− µ, σ,( ) 0.0668= < Note that the N(0,1) distribution is symmetric but the 
cumulative distribution is not.   1 pnorm 1.5 µ, σ,( )− 0.0668=

Example 5.15, p. 133:
µ 0:= σ 1:= σ

2
1=

Problem: Compute P(-1.5<X<1.5):

pnorm 1.5 µ, σ,( ) pnorm 1.5− µ, σ,( )− 0.8664=

Example 5.16, p. 133:
µ 0:= σ 1:= σ

2
1=

Problem: Compute P(0<X<1.45):

pnorm 1.45 µ, σ,( ) pnorm 0 µ, σ,( )− 0.4265=

Normal Distribution - Prototyping Examples from Rosner text
ORIGIN 0≡

Example 5.11, p. 131:
µ 0:= < mean

σ 1:= σ
2

1= < standard deviation & variance

X 1.96:= < critical value to look up in table or use in cumulative function

pnorm X µ, σ,( ) 0.975= < Note that MathCad requires input of Standard Deviation σ here.
   Other electronic functions may require Variance σ2...

X 1:=
BE SURE YOU CAN DO THIS FROM 
 TABLE 3 IN THE APPENDIX ALSO!pnorm X µ, σ,( ) 0.8413=

Example 5.12, p. 131:

X 1.96−:=

pnorm X µ, σ,( ) 0.025=

X 1.96:= < This shows that Φ(-X) = 1 - Φ(X)

pnorm X µ, σ,( ) 0.975=

1 pnorm X µ, σ,( )− 0.025=

Example 5.13, p. 132:
µ 0:= σ 1:=
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σ 12= σ
2

144=

Problem: Compute P(90<X<100) for ~N(µ,σ2):

Evaluated directly:

pnorm 90 µ, σ,( ) 0.7977=

pnorm 100 µ, σ,( ) 0.9522=

pnorm 100 µ, σ,( ) pnorm 90 µ, σ,( )− 0.1545=

Evaluated ~N(0,1) following standardization:

pnorm
90 µ−

σ
0, 1,







0.7977= < Note that standardization allows
    use of Table 3 whereas direct
    computation must be done with
    a computer-based function...

pnorm
100 µ−

σ
0, 1,







0.9522=

pnorm
100 µ−

σ
0, 1,







pnorm
90 µ−

σ
0, 1,







− 0.1545=

Example 5.21, p. 137:
µ 8:= σ 2:= σ 2= σ

2
4=

Problem: Compute P(12<X) for ~N(8,4):

pnorm
12 µ−

σ
0, 1,







0.9772= < for the cumulative probabily after standardization

< for the remainder X > 12
1 pnorm

12 µ−

σ
0, 1,







− 0.0228=

Also directly:

1 pnorm 12 µ, σ,( )− 0.0228=

Example 5.17, p. 133:
µ 0:= σ 1:= σ

2
1=

Problem: Compute P(X<2.824):

pnorm 2.824 µ, σ,( ) 0.9976=

Example 5.18, p. 134:
µ 0:= σ 1:= σ

2
1=

Problem: Compute Z where P(Z) = 0.975, P(Z) = 0.95, P(Z) = .5 & P(Z) = 0.025:

qnorm 0.975 µ, σ,( ) 1.96= < the qnorm() function is the inverse of the cumulative
    probability function pnorm().  Most software packages
    have these functions built in.
    However, BE SURE YOU CAN READ TABLE 3
    BACKWARDS WHEN NECESSARY

qnorm 0.95 µ, σ,( ) 1.6449=

qnorm 0.5 µ, σ,( ) 0=

qnorm 0.025 µ, σ,( ) 1.96−=

Example 5.19, p. 133:
µ 0:= σ 1:= σ

2
1=

Problem: Compute Z where P(Z) < 0.85:

qnorm 0.85 µ, σ,( ) 1.0364=

Example 5.20, p. 135-137:
µ 80:= σ 144:=
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Also directly:

pnorm 20 µ, σ,( ) pnorm 12 µ, σ,( )− 0.8176=

pnorm 20.5 µ, σ,( ) pnorm 11.5 µ, σ,( )− 0.8664=

Example 5.24, p. 139:
µ 80:= σ 144:= σ 12= σ

2
144=

Problem: Compute X where P(X) = 0.05, and X where P(X) = 0.95:

Z05 qnorm 0.05 0, 1,( ):=
< calculating percentiles based on ~N(0,1)

Z95 qnorm 0.95 0, 1,( ):=

X05 σ Z05⋅ µ+:= X05 60.2618= < Calculating X from standardized Z:
                   Xi = σZi +µX95 σ Z95⋅ µ+:= X95 99.7382=

Also directly:

qnorm 0.05 µ, σ,( ) 60.2618= < letting the built-in function do all the work.
    Note, however, that this must be done on
    the computer as Table 3 doesn't apply...

qnorm 0.95 µ, σ,( ) 99.7382=

Example 5.22, p. 137:
µ 75:= σ 17:= σ 17= σ

2
289=

Problem: Compute P(X<40) for ~N(75,289):

pnorm
40 µ−

σ
0, 1,







0.0198= < for the cumulative probabily after standardization

1 pnorm
µ 40−

σ
0, 1,







− 0.0198= < Looking at the other tail of the distribution,
       i.e., P(-X) = 1-P(X)

Also directly:

pnorm 40 µ, σ,( ) 0.0198=

Example 5.23, p. 138:
µ 16:= σ 3:= σ 3= σ

2
9=

Problem: Compute P(12<X<20) for ~N(16,9):

pnorm
20 µ−

σ
0, 1,







pnorm
12 µ−

σ
0, 1,







− 0.8176= < straight calculation

pnorm
20.5 µ−

σ
0, 1,







pnorm
11.5 µ−

σ
0, 1,







− 0.8664= < with modification to
    incorporate "continuity
    correction" indicating
    uncertainty in measuring...



Assignment for Week 5 
This week we can begin statistical data analysis more-or-less for real.  In our reading, we 
have seen how to construct confidence intervals for the parameters of populations 
assuming, of course, that our data sample comes from the distribution characterizing that 
population.  In lab, let�s concentrate on how to do this with the iris dataset.    

The famous data set on the genus Iris involves four measurements (columns) for 150 
individuals that the author (Anderson) originally thought to belong to three species (last 
column).   We can use these measurements to assess whether the species he identified can 
be distinguished morphometrically (i.e., by differences in the mean of their 
measurements).  Of course, individuals in a population such as a species naturally show 
variance, so mean values of each variable for each species must be judged accordingly.  
Constructing confidence intervals allows us to circumscribe the location of the population 
mean for each of the four variables and to see if the species differ in some way or 
completely overlap. 

So, this week, fire up R and try the following tasks.  Note also that I have posted R 
documentation for you and some helpful hints on our website. 

1. Find the iris data set in R and print out a copy for reference as you work on this 
problem. 

2. Construct X, Y plots of the variables to see how they are distributed.  Look for breaks 
in the data and interpret what you see. 

3. For each species, construct a histogram of each variable to assess normality of the data.  
Again, interpret what you see. 

4. Now, for each species, construct Q-Q plots and compare.  Are the data Normally 
distributed?  How can you tell? 

5. For Sepal.Length of Species Iris setosa, construct a 95% confidence interval of the 
mean.  Compare your results with 2007 Biostatistics 18 and confirm your 
prototype. 

6. Now construct a 99% confidence interval for the same data using your calculations.  
How does this change in α affect the width of the confidence interval? 

7.  Finally, use R�s built-in t.test() function to calculate 95% and 99% confidence 
intervals for each species over all four variables. 

8.  Given these confidence intervals, what evidence can you cite supporting or rejecting 
the presence of multiple species? 

 



qqmath {lattice} R Documentation

Q-Q Plot with Theoretical Distribution 

Description 

Quantile-Quantile plot of a sample and a theoretical distribution  

Usage 

qqmath(x, data, ...) 
 
## S3 method for class 'formula': 
qqmath(x, 
       data, 
       allow.multiple = is.null(groups) || outer, 
       outer = !is.null(groups), 
       distribution = qnorm, 
       f.value = NULL, 
       auto.key = FALSE, 
       aspect = "fill", 
       panel = "panel.qqmath", 
       prepanel = NULL, 
       scales, strip, groups, 
       xlab, xlim, ylab, ylim, 
       drop.unused.levels = lattice.getOption("drop.unused.levels"), 
       ..., 
       default.scales = list(), 
       subscripts, 
       subset) 
## S3 method for class 'numeric': 
qqmath(x, data, ylab, ...) 

Arguments 

x The object on which method dispatch is carried out. 
For the "formula" method, a formula of the form ~ 
x | g1 * g2 * ..., where x must be a numeric. 
For the "numeric" method, a numeric vector.  

data For the formula method, an optional data frame in 
which variables in the formula (as well as groups 
and subset, if any) are to be evaluated. Usualll 
ignored with a warning in other methods.  

distribution a quantile function that takes a vector of probabilities 
as argument and produces the corresponding 
quantiles. Possible values are qnorm, qunif etc. 
Distributions with other required arguments need to 
be passed in as user defined functions.  



f.value optional numeric vector of probabilities, quantiles 
corresponding to which should be plotted. Can also 
be a function of a single integer (representing sample 
size) that returns such a numeric vector. The typical 
value for this argument is the function ppoints, 
which is also the S-PLUS default. If specified, the 
probabilities generated by this function is used for 
the plotted quantiles, using the quantile function for 
the sample, and the function specified as the 
distribution argument for the theoretical 
distribution.  
f.value defaults to NULL, which has the effect of 
using ppoints for the quantiles of the theoretical 
distribution, but the exact data values for the sample. 
This is similar to what happens for qqnorm, but 
different from the S-PLUS default of 
f.value=ppoints.  
For large x, this argument can be useful in plotting a 
smaller set of quantiles, which is usually enough to 
capture the pattern.  

panel The panel function to be used. Unlike in older 
versions, the default panel function does most of the 
actual computations and has support for grouping. 
See panel.qqmath for details.  

allow.multiple, outer, auto.key, 
aspect, prepanel, scales, strip, 
groups, xlab, xlim, ylab, ylim, 
drop.unused.levels, 
default.scales, subscripts, subset

See xyplot  

... Further arguments. See corresponding entry in 
xyplot for non-trivial details.  

Details 

qqmath produces a Q-Q plot of the given sample and a theoretical distribution. The default 
behaviour of qqmath is different from the corresponding S-PLUS function, but is similar to 
qqnorm. See the entry for f.value for specifics.  

The implementation details are also different from S-PLUS. In particular, all the important 
calculations are done by the panel (and prepanel function) and not qqmath itself. In fact, both the 
arguments distribution and f.value are passed unchanged to the panel and prepanel function. 
This allows, among other things, display of grouped Q-Q plots, which are often useful. See the 
help page for panel.qqmath for further details.  



This and all other high level Trellis functions have several arguments in common. These are 
extensively documented only in the help page for xyplot, which should be consulted to learn 
more detailed usage.  

Value 

An object of class "trellis". The update method can be used to update components of the 
object and the print method (usually called by default) will plot it on an appropriate plotting 
device. 

Author(s) 

Deepayan Sarkar Deepayan.Sarkar@R-project.org  

See Also 

xyplot, panel.qqmath, panel.qqmathline, prepanel.qqmathline, Lattice, quantile  

Examples 

qqmath(~ rnorm(100), distribution = function(p) qt(p, df = 10)) 
qqmath(~ height | voice.part, aspect = "xy", data = singer, 
       prepanel = prepanel.qqmathline, 
       panel = function(x, ...) { 
          panel.qqmathline(x, ...) 
          panel.qqmath(x, ...) 
       }) 
vp.comb <- 
    factor(sapply(strsplit(as.character(singer$voice.part), split = " "), 
                  "[", 1), 
           levels = c("Bass", "Tenor", "Alto", "Soprano")) 
vp.group <- 
    factor(sapply(strsplit(as.character(singer$voice.part), split = " "), 
                  "[", 2)) 
qqmath(~ height | vp.comb, data = singer, 
       groups = vp.group, auto.key = list(space = "right"), 
       aspect = "xy", 
       prepanel = prepanel.qqmathline, 
       panel = function(x, ...) { 
          panel.qqmathline(x, ...) 
          panel.qqmath(x, ...) 
       }) 
 



 
summary {base} R Documentation

Object Summaries 

Description 

summary is a generic function used to produce result summaries of the results of various model 
fitting functions. The function invokes particular methods which depend on the class of the first 
argument.  

Usage 

summary(object, ...) 
 
## Default S3 method: 
summary(object, ..., digits = max(3, getOption("digits")-3)) 
## S3 method for class 'data.frame': 
summary(object, maxsum = 7, 
       digits = max(3, getOption("digits")-3), ...) 
 
## S3 method for class 'factor': 
summary(object, maxsum = 100, ...) 
 
## S3 method for class 'matrix': 
summary(object, ...) 

Arguments 

object an object for which a summary is desired. 
maxsum integer, indicating how many levels should be shown for factors. 
digits integer, used for number formatting with signif() (for summary.default) or format() 

(for summary.data.frame). 
... additional arguments affecting the summary produced. 

Details 

For factors, the frequency of the first maxsum - 1 most frequent levels is shown, where the less 
frequent levels are summarized in "(Others)" (resulting in maxsum frequencies).  

The functions summary.lm and summary.glm are examples of particular methods which 
summarise the results produced by lm and glm.  

Value 



The form of the value returned by summary depends on the class of its argument. See the 
documentation of the particular methods for details of what is produced by that method. 

References 

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.  

See Also 

anova, summary.glm, summary.lm.  

Examples 

summary(attenu, digits = 4) #-> summary.data.frame(...), default precision 
summary(attenu $ station, maxsum = 20) #-> summary.factor(...) 
 
lst <- unclass(attenu$station) > 20 # logical with NAs 
## summary.default() for logicals -- different from *.factor: 
summary(lst) 
summary(as.factor(lst)) 
 



 
qqnorm {stats} R Documentation

Quantile-Quantile Plots 

Description 

qqnorm is a generic function the default method of which produces a normal QQ plot of the 
values in y. qqline adds a line to a normal quantile-quantile plot which passes through the first 
and third quartiles.  

qqplot produces a QQ plot of two datasets.  

Graphical parameters may be given as arguments to qqnorm, qqplot and qqline.  

Usage 

qqnorm(y, ...) 
## Default S3 method: 
qqnorm(y, ylim, main = "Normal Q-Q Plot", 
       xlab = "Theoretical Quantiles", ylab = "Sample Quantiles", 
       plot.it = TRUE, datax = FALSE, ...) 
 
qqline(y, datax = FALSE, ...) 
 
qqplot(x, y, plot.it = TRUE, xlab = deparse(substitute(x)), 
       ylab = deparse(substitute(y)), ...) 

Arguments 

x The first sample for qqplot. 
y The second or only data sample. 
xlab, ylab, 
main 

plot labels. The xlab and ylab refer to the y and x axes respectively if datax 
= TRUE. 

plot.it logical. Should the result be plotted? 
datax logical. Should data values be on the x-axis? 
ylim, ... graphical parameters. 

Value 

For qqnorm and qqplot, a list with components  

x The x coordinates of the points that were/would be plotted 
y The original y vector, i.e., the corresponding y coordinates including NAs. 



References 

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth & 
Brooks/Cole.  

See Also 

ppoints, used by qqnorm to generate approximations to expected order statistics for a normal 
distribution.  

Examples 

y <- rt(200, df = 5) 
qqnorm(y); qqline(y, col = 2) 
qqplot(y, rt(300, df = 5)) 
 
qqnorm(precip, ylab = "Precipitation [in/yr] for 70 US cities") 
 
 



 
t.test {stats} R Documentation

Student's t-Test 

Description 

Performs one and two sample t-tests on vectors of data.  

Usage 

t.test(x, ...) 
 
## Default S3 method: 
t.test(x, y = NULL, 
       alternative = c("two.sided", "less", "greater"), 
       mu = 0, paired = FALSE, var.equal = FALSE, 
       conf.level = 0.95, ...) 
 
## S3 method for class 'formula': 
t.test(formula, data, subset, na.action, ...) 

Arguments 

x a (non-empty) numeric vector of data values. 
y an optional (non-empty) numeric vector of data values. 
alternative a character string specifying the alternative hypothesis, must be one of 

"two.sided" (default), "greater" or "less". You can specify just the initial 
letter. 

mu a number indicating the true value of the mean (or difference in means if you are 
performing a two sample test). 

paired a logical indicating whether you want a paired t-test. 
var.equal a logical variable indicating whether to treat the two variances as being equal. If 

TRUE then the pooled variance is used to estimate the variance otherwise the 
Welch (or Satterthwaite) approximation to the degrees of freedom is used. 

conf.level confidence level of the interval. 
formula a formula of the form lhs ~ rhs where lhs is a numeric variable giving the data 

values and rhs a factor with two levels giving the corresponding groups. 
data an optional matrix or data frame (or similar: see model.frame) containing the 

variables in the formula formula. By default the variables are taken from 
environment(formula). 

subset an optional vector specifying a subset of observations to be used. 
na.action a function which indicates what should happen when the data contain NAs. 



Defaults to getOption("na.action"). 
... further arguments to be passed to or from methods. 

Details 

The formula interface is only applicable for the 2-sample tests.  

alternative = "greater" is the alternative that x has a larger mean than y.  

If paired is TRUE then both x and y must be specified and they must be the same length. Missing 
values are removed (in pairs if paired is TRUE). If var.equal is TRUE then the pooled estimate 
of the variance is used. By default, if var.equal is FALSE then the variance is estimated 
separately for both groups and the Welch modification to the degrees of freedom is used.  

If the input data are effectively constant (compared to the larger of the two means) an error is 
generated.  

Value 

A list with class "htest" containing the following components:  

statistic the value of the t-statistic. 
parameter the degrees of freedom for the t-statistic. 
p.value the p-value for the test. 
conf.int a confidence interval for the mean appropriate to the specified alternative 

hypothesis. 
estimate the estimated mean or difference in means depending on whether it was a one-

sample test or a two-sample test. 
null.value the specified hypothesized value of the mean or mean difference depending on 

whether it was a one-sample test or a two-sample test. 
alternative a character string describing the alternative hypothesis. 
method a character string indicating what type of t-test was performed. 
data.name a character string giving the name(s) of the data. 

See Also 

prop.test  

Examples 

t.test(1:10,y=c(7:20))      # P = .00001855 
t.test(1:10,y=c(7:20, 200)) # P = .1245    -- NOT significant anymore 



 
## Classical example: Student's sleep data 
plot(extra ~ group, data = sleep) 
## Traditional interface 
with(sleep, t.test(extra[group == 1], extra[group == 2])) 
## Formula interface 
t.test(extra ~ group, data = sleep) 
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Point and Interval Estimation for the Normal Distribution 
ORIGIN 0≡

Given the general setup in statistics between random variable X and the probability P(X) 
governed by a Probability Density Function such as the Normal Distribution, Binomial 
Distribution, etc., one typically uses specific random samples to estimate the population 
parameters.  Estimation of this sort takes on additional error over direct knowledge of the 
population parameters.  However, one rarely knows them.

For the Normal Distribution, the population parameters are:

µ = population mean
σ2 = population variance

From our sample, we have the analogous calculations termed point estimates:

Xbar = sample mean

s2 = sample variance

Different kinds of statistical theory underlies these estimates generally allowing them to 
be categorized in one of two ways:

  - "minimum variance", also known as "least squares minimum" 
          "unbiased" or "Normal theory" estimators, and

  - "maximum liklihood" estimators.

How to calculate estimators of these two types is generally beyond the scope of 
introductory statistics courses, although Rosner can't resist showing you an example of 
one derivation using "maximum liklihood" estimators for p in the binomal distribution on 
p. 203.  It is nice to see it, but don't worry too much about details at this point.

The important thing to remember is that the two methods of estimation sometimes but not 
always yield the same point estimators.  The point estimators, then feed into specific 
statistical techniques.  Thus, it is sometimes important to know which estimator is 
associated with a particular technique so as not mix approaches.  Generally, maximum 
liklihood estimators, based on newer theory, are specifically indicated as such (often using 
'hat' notation).

In the case estimating parameters for the Normal Distribution, Xbar is the point estimate 
for µ under both estimation theories.  However s2 sum of squares with (n-1) as divisor is 
the point estimate using "unbiased" theory whereas σ2hat with same sum of sqares but 
using (n) as divisor is the point estimate using "maximum liklihood" theory.  Confusing, 
yes, but now that you know the difference not all that bad... 

Estimating error on point estimates of the mean:
Although Xbar is our Normal theory estimate of population parameter µ based on a single 
sample, one might readily expect Xbar to differ from sample to sample, and it does.  We thus 
need to estimate how far Xbar will vary from sample to sample.  Multiply collected means 
differ from each other much less than individual sample values X will.  The relationship is 
called the "standard variance of the mean":   

Standard Variance of the Mean = sample variance/n
                                             or
Standard Error of the Mean = sample standard deviation / n
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^ since the Normal Distribution and the t distribution are both symmetrical, there
   are equal- sized tails for each distribution above or below which µ will fall half
   of the time.  Each tail therefore has α/2 probability.  
   This is commonly known as the Two-Tail case...

1 α− 0.95=

< We choose a limit probability allowing µ to reside outside the 
     range of X around Xbar (1-α) X 100 percent of the time...

α 0.05:=

Calculation of Confidence Intervals:

s2 96.4487=s Var X( ):=

Xbar 48.4955=Xbar mean X( ):=
< we can also pretend that we don't know the
    population parameters and must use sample
    mean and variance instead as one usually
    would with real data.

σ 100:=µ 50:=

n 100=n length X( ):=

< here in fact we know µ=50 and σ2 = 100X rnorm 100 50, 100,( ):=

Let's calculate this from a pseudo-random example:

Confidence intervals are are statements of ranges of X around Xbar within which µ is 
expected to reside over a certain fraction of samples.  This fraction is set by specifying a 
confidence limit α.   

Confidence Intervals:

is no longer Normally distributed.  Instead, we resort to a new probability density function, 
known as "Student's t" to calculate P(t) given t.   Student's t is a commonly employed 
statistical function ranking high in importance along with the chi-square distribution (χ2) 
and the F distribution.

< Same standardizing approach but
       using s instead of σ

t
Xbar µ−

s

n

:=

n

If somehow we know the population parameter σ then we can resort directly to the 
standardized Normal Distribution ~N(0,1) to calculate probabilities P(Z).  However, in real life 
situations, σ is not known and we must estimate σ by s.  When we do this, the analogous 
variable t:

< Note use of standardization of the variable 
     by σ/ n

Z
Xbar µ−

σ

n

:=

n

Rosner Eq. 6.4 p. 187 gives the usual approach to estimating the difference between Xbar of a 
sample and µ of a  population.  It involves standardizing the random variable Xbar µ−   which 
measures the difference between sample and population means:

Statistics evaluating location of the mean:

This result is one of the reasons why Normal theory, and the Normal Distribution underlie 
much of "parametric" statistics.  See Rosner Eq. 6.3 p. 184 for a formal definition.  It says 
that although the populations from which random variable X are drawn may not necessarily 
be normally distributed, the population of means derived by replicate sampling will be 
normally distributed.  This result allows us to use the Normal Distribution with parameters 
µ, σ2 estimated respectively by Xbar and s2 (or occasionally σ2hat) to estimate probabilities of 
means P(X) for various values of X.

Central Limit Theorem:
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s 9.8208=

df n 1−:= df 99= < single parameter of Student's t distribution 
    called "degrees of freedom"

L qt
α

2
df,





:= L 1.9842−=
α

2
0.025=

U qt 1
α

2
− df,





:= U 1.9842= 1
α

2
− 0.975=

< calculating Confidence Interval.  See Rosner
    Eq. 6.6, p. 190.  Note here that I calculated
    each tail explicitly so I added both L and U to
    determine the CI.  Also note SE of mean

    measured by the sample quantity s

n
 

CI Xbar L
s

n
⋅+ Xbar U

s

n
⋅+







:=

CI 46.5468 50.4441( )=

^ Occasionally we may be unlucky here when our
     pseudo-random number generator gives us a deviant
     sample with confidence interval that doesn't include µ = 50
     in a sample of 100 X's, but that's the breaks!

i 0 n..:=

0 20 40 60 80 100
20

40

60

80

100

Xi

i

X

0
0
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

45.6103
43.2059

45.2671

40.4853

33.1432

50.4353

48.7937

55.5643

71.9179

58.0873

59.8514

58.6223

59.1557

56.73

39.5569

50.6908

=

^ note outlier points influencing Xbar here!

To calculate probabilities, we employ the commonly implemented cumulative 'p' and 'q' 
functions for the Normal distribution seen in statistical software:

α 0.05:= < confidence limit that we must set explicitly each time

If µ and σ are known:

µ 50= σ 10=

L qnorm
α

2
0, 1,





:= L 1.96−=
α

2
0.025= < lower limit of N(0,1) for α/2

U qnorm 1
α

2
− 0, 1,





:= U 1.96= 1
α

2
− 0.975= < upper limit of N(0,1) for α/2

< calculating Confidence Interval using population
    µ and σ see Rosner Eq. 6.4. p. 187 Note here
    that I calculated each tail explicitly so I added 
    both L and U to determine the CI.

CI µ
σ L⋅

n
+ µ

σ U⋅

n
+







:=

CI 48.04 51.96( )=

If µ and σ must be estimated by sample Xbar and s:

Xbar 48.4955=
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SDPW Var PW( ):= SDPW 0.7622=

SESL
SDSL

n
:= SESL 0.0676=

SESW
SDSW

n
:= SESW 0.0356=

SEPL
SDPL

n
:= SEPL 0.1441= < standard error of the mean based on sample

    standard deviation

SEPW
SDPW

n
:= SEPW 0.0622= NOTE: CI's assume underlying Normal

            distribution for each variable, but
            Central Limit Theorem provides 
            robust outcome anyway...

Confidence Intervals for mean:
α 0.05:= < We choose a limit probability...

1
α

2
− 0.975= < upper limit for tail of the symmetrical t distribution

df n 1−:= df 149= < single parameter of the t distribution 
    called "degrees of freedom"

CImSL XbarSL qt 1
α

2
− df,





SESL⋅− XbarSL qt 1
α

2
− df,





SESL⋅+





:=

CImSW XbarSW qt 1
α

2
− df,





SESW⋅− XbarSW qt 1
α

2
− df,





SESW⋅+





:=

CImPL XbarPL qt 1
α

2
− df,





SEPL⋅− XbarPL qt 1
α

2
− df,





SEPL⋅+





:=

CImPW XbarPW qt 1
α

2
− df,





SEPW⋅− XbarPW qt 1
α

2
− df,





SEPW⋅+





:=

^ confidence intervals calculated using upper tail of the t distribution only.

Confidence Intervals for Mean and Variance of a Normal Distribution
ORIGIN 0≡

Calculating confidence intervals on the sample mean and sample variance are important 
statistical functions.  This worksheet shows the calculation of both using our familiar Iris data:

iris READPRN "c:/2007BiostatsData/iris.txt"( ):=

SL iris 1〈 〉:= PL iris 3〈 〉:=

SW iris 2〈 〉:= PW iris 4〈 〉:=

n length SL( ):= n 150=

XbarSL mean SL( ):= XbarSL 5.8433=

XbarSW mean SW( ):= XbarSW 3.0573=
< calculating sample means

XbarPL mean PL( ):= XbarPL 3.758=

XbarPW mean PW( ):= XbarPW 1.1993=

SDSL Var SL( ):= SDSL 0.8281=

SDSW Var SW( ):= SDSW 0.4359=
< calculating sample standard deviations

SDPL Var PL( ):= SDPL 1.7653=
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^ I haven't yet found an automated procedure in Systat or another canned statistical
     package for direct comparison as Prototype.  The R program will allow hand calculation
     in the same way.   

CIvPW 0.4687 0.7393( )=
CIvPW

n 1−( ) Var PW( )⋅

qchisq 1
α

2
− df,





n 1−( ) Var PW( )⋅

qchisq
α

2
df,















:=

CIvPL 2.5141 3.9653( )=
CIvPL

n 1−( ) Var PL( )⋅

qchisq 1
α

2
− df,





n 1−( ) Var PL( )⋅

qchisq
α

2
df,















:=

CIvSW 0.1533 0.2417( )=
CIvSW

n 1−( ) Var SW( )⋅

qchisq 1
α

2
− df,





n 1−( ) Var SW( )⋅

qchisq
α

2
df,















:=

CIvSL 0.5532 0.8725( )=
CIvSL

n 1−( ) Var SL( )⋅

qchisq 1
α

2
− df,





n 1−( ) Var SL( )⋅

qchisq
α

2
df,















:=

< upper and lower limits of
     asymmetrical χ2 distribution

α

2
0.025=1

α

2
− 0.975=

< We choose a limit probability...α 0.05:=

Var PW( ) 0.581=

Var PL( ) 3.1163=
< sample variancesVar SW( ) 0.19=

Var SL( ) 0.6857=

NOTE: CI's assume underlying Normal
            distribution for each variable...

For variance, this assumption is 
                         crucial & sensitive

Confidence Interval for Variance:

SEPALLEN SEPALWID PETALLEN PETALWID
N of cases 150 150 150 150
Minimum 4.3000000 2.0000000 1.0000000 0.1000000
Maximum 7.9000000 4.4000000 6.9000000 2.5000000
Mean 5.8433333 3.0573333 3.7580000 1.1993333
95% CI Upper 5.9769342 3.1276563 4.0428146 1.3223134
95% CI Lower 5.7097325 2.9870103 3.4731854 1.0763533
Std. Error 0.0676113 0.0355883 0.1441360 0.0622364
Standard Dev 0.8280661 0.4358663 1.7652982 0.7622377

SYSTAT Output confirms calculations:

CImPW 1.0764 1.3223( )=

CImPL 3.4732 4.0428( )=

< Evaluation of above CI calculationsCImSW 2.987 3.1277( )=

CImSL 5.7097 5.9769( )=

Prototype for Confidence Interval of the mean:
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^ Compare this calculation with Rosner p. 202.  On following
    pages, Rosner shows how the phat utilized here is the
    Maximum Liklihood point estimate of p. 

Note that phat is dependent on m = the number of replicates.  
If m=1, then phat becomes the single observation X that you have. 

Interval estimate for p:

Confidence Interval using Normal Theory Methods:
Rossner p. 205 gives a rational for the use of this method as long as n phat⋅ qhat⋅ 5≥

n 30= phat 0.3067= qhat 1 phat−:= qhat 0.6933=

n phat⋅ qhat⋅ 6.3787= < OK to proceed!

α 0.05:= < Specify confidence limit

1
α

2
− 0.975= < upper limit on symmetric Standardized Normal Distribution

CINp phat qnorm 1
α

2
− 0, 1,





phat qhat⋅

n
⋅− phat qnorm 1

α

2
− 0, 1,





phat qhat⋅

n
+








:=

CINp 0.1417 0.4717( )= < Confidence Interval for p based on Normal Theory Methods.

^ Compare this interval with phat - the point estimate for p above. 

Point and Interval Estimation of Discrete Distributions Parameters
ORIGIN 0≡

Estimates of expected values and confidence intervals for parameter p of the Binomial 
Distribution and µ of Poisson Distribution can be made in a way analogous to that seen 
for µ and σ2 in the Normal Distribution.

Binomial Distribution:
Making some a sample derived from the Binomial Distribution:

n 30:= p 0.3:= m 100:=

RB rbinom m n, p,( ):= length RB( ) 100=

Point estimate for p: Remember p is defined as the 
probability of "success" at each trial, 
as in the probability of "heads" in the 
coin flip problem...

i 0 99..:=

phat

1
m

i

RBi∑⋅

n
:= phat 0.3067= < point estimate of fraction p

   is the mean number of heads
   over sample of size m divided
   total possible number of heads RB

0
0
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

12
10

10

8

13

10

8

7

12

10

9

6

10

11

9

6

=

SEp
phat 1 phat−( )⋅

n
:= SEp 0.0842= < Standard error of p

   remember q=(1-p)
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X1i i 1+( ) 0.05⋅:= < I picked a range of values
   around where I expected
   the CI limits in X to fall
   from table above.

X2i i 1+( ) 0.02⋅ 0.4+:=
X1

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5































= X2

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6































=

<
Φ1i 1 pbinom 9 n, X1i,( )−:= < calculating cumulative

    probabilities with 
    cutoff around mean(RB) Φ2i pbinom 10 n, X2i,( ):=

lower limit ^ upper limit ^

Cumulative Probabilities ΦΒ(X):

< lower probability cutoff for CI
   Find corresponding value in X1

Φ1

1.1615 10 6−
×

0.0005

0.0097

0.0611

0.1966

0.4112

0.6425

0.8237

0.9306

0.9786































= Φ2

0.2201

0.1604

0.1126

0.0761

0.0494

0.0307

0.0183

0.0104

0.0056

0.0029































=

upper probability cutoff for CI   >
Find corresponding value in X2

^ It would be useful to compare this prototype with confidence intervals for p provided by a 
canned statistical procedure.  So far, I haven't found a program that does this...  No doubt, 
R would allow me to make similar calculations, but that would not suffice as a check on 
procedure.

Confidence Interval using Exact Methods:
See Rosner p. 208-209 for his example of calculating Confidence Intervals indirectly with the 
Cumulative Binomial Probability function.  The key to using this method correctly is to first 
find phat = the mean value of the sample.  Then set cutoffs in the cumulative probability 
distribution ΦB (i.e., the 'p' Binomial function in Mathcad & R) that surround the observed 
mean.  Then choose a range of X values that bracket the probability α/2 above and below.  
Values (X) are read from the same position in matrices X1 & X2 as the Φ1(X) and Φ2(X) at 
α/2 cutoff - i.e., values of X are recovered at appropriate cumulative cutoff probabilities ΦΒ(X).

n 30= phat 0.3067= qhat 1 phat−:= qhat 0.6933=

α 0.05:= < Specify confidence limit

α

2
0.025= < upper limit on symmetric Standardized Normal Distribution

CIEp 0.15 0.51( ):= < using Table 7 α=0.05 for phat = 0.3123
values (X):

n 30= mean RB( ) 9.2= < mean of Binomial
     distribution RBi 0 9..:=

>
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Prototype using Exact Binomial Test Function in R:

>RB=c(12,10,10,8,13,10,8,7,12,10,9,6,10,11,9,6,11,8,10,8,6,9,10,12,11,4,13,12,9,11,9,9,5,9,9,8,9,8,-
13,8,11,9,9,10,10,9,8,9,8,12,10,9,13,8,12,4,5,6,9,7,12,11,12,8,8,9,5,11,10,10,10,9,10,7,9,7,6,9,6,12,-
13,12,9,10,13,10,9,10,11,6,8,9,8,10,14,6,12,7,9,3)

^ values of RB above cut and pasted into variable RB in R

> binom.test(9,30,p=(mean(RB)/30),alternative="two.sided",conf.level=0.95)

^ binom.test function used... 

        Exact binomial test

data:  9 and 30 
number of successes = 9, number of trials = 30, p-value = 1
alternative hypothesis: true probability of success is not equal to 0.3066667 
95 percent confidence interval:
 0.1473452 0.4939590                    < compare with cutoffs in Φ1 & Φ2 above...
sample estimates:
probability of success 
                   0.3 

binom.test {stats} R Documentation
Exact Binomial Test
Description

Performs an exact test of a simple null hypothesis about the probability of success in a 
Bernoulli experiment.
Usage

binom.test(x, n, p = 0.5,
           alternative = c("two.sided", "less", "greater"),
           conf.level = 0.95)

Arguments
x number of successes, or a vector of length 2 giving the numbers of successes and 
failures, respectively.
n number of trials; ignored if x has length 2.
p hypothesized probability of success.
alternative indicates the alternative hypothesis and must be one of "two.sided", 
"greater" or "less". You can specify just the initial letter.
conf.level confidence level for the returned confidence interval.
Details

Confidence intervals are obtained by a procedure first given in Clopper and Pearson (1934). 
This guarantees that the confidence level is at least conf.level, but in general does not give 
the
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Note that indirect calculation bypassing Table 8 can be done in a way similar to use of 
pbinom function shown above.  See Rosner p. 213.

< 95% CI for µ =λ given that we observed X=10 in our data.CIP 4.80 18.39( ):=

It is interesting to note that had we been dealing with real data, we might have observed 
an X value different than close to the mean of λbar = 4.15.  For instance, in a replicate of 
RP above we might have observed something different, for example X = 10.  The CI now
changes a little:

^ In our example, we specified λ.  If time interval T other than unity (i.e., 1), then
    λ = µ/T and CI for λ = (µ/T,µ/T)

< this is the 95% CI for µ = λ because time T = 1CIP 1.09 10.24( ):=

So here using 95% CI and an observed X of 4 nearest λbar of 4.15 

As with the Binomial Distribution, the Confidence Interval
is difficult to calculate explicitly.  See Rosner Table 8 in 
Appendix p. 835.  The table requires specifying (1-α) level 
and observed X for a single trial.  One then reads upper and 
lower bounds directly.

< α defines the confidence interval1 α− 0.95=

< Specify confidence limitα 0.05:=

Exact Interval Estimate for λ:

< mean occurrenceλbar 4.24=λbar mean RP( ):=
RP

0
0
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

5
4

6

3

4

8

5

4

5

4

6

6

2

3

2

8

=

Point Estimate for λ:

RP rpois m λ,( ):=

m 100:=λ 4:=

Making some a sample derived from the Poisson Distribution:

Poisson Distribution:
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General Strategies for Sampling a Population
ORIGIN 0≡

Rosner pp. 169-177 provides an excellent survey of the research designs employed in obtaining 
"unbiased" and "representative" samples that may be viewed as fairly representing the 
population from which they come.  Although statistical calculations are generally silent about 
issues of sampling, of course, the believability of statistical results obtained are often critically 
dependent on them.  Rosner highlights the use of pseudo-random number tables in setting up 
different kinds of studies, and provides some important terminology, summarized here... 

Random Selection - Use of random numbers to select uniquely identified individuals from 
a population, usually without replacement.

Random Assignment - Use of random numbers to a assign fixed numbers of individuals 
to each treatment or analysis category, usually without replacement. 

Randomized Trial  - In comparing the effect of different levels of "treatment" (clinical 
or otherwise), individuals from a population are assigned at random to specific treatment 
classes (or categories).  This hopefully guards against some other factor biasing the sample 
and being responsible for observed difference in outcome between the classes, rather than the 
treatment themselves.   

Block Randomization - Random selection placing individuals into treatment classes 
often involves replicate blocks - each essentially a randomized trial.

Stratified Design - Treatment classes are set up explicitly regarding values observed in 
individuals for one or more "accessory" or "covariate" variables.  The different classes defined 
by these variables are called strata (singl. stratum).  Within strata, random selection, random 
assignment, or block ransomization may be employed.  

Blind Designs - When knowledge on the part of researcher, subject, or both ("double 
blind') might influence behavior within strata or blocks, care is taken insulate the study from 
this knowledge. 

Standard Statistical packages, such as SYSTAT, SAS, or SPSS offer the ability to partition  
data into strata and sub-blocks with ease.  Thus, once prototyped, they can offer a significant 
time advantage in analysis of large data sets having a complex design.   
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IF 0.001 < P then the results are statistically very highly significant. 
IF 0.001 < P < 0.01 then the results are statistically highly significant.
IF 0.01 < P < 0.05 then the results are statistically signifcant.
IF 0.05 < P then the resulst are NOT statistically signifcant.

Common attributions for P:

< probability of finding normalized distance t given the assumptions.P = Φt(t) 

Probability Value:

OTHERWISE  ACCEPT H0

IF t < C, THEN REJECT H0

Decision Rule:
If Assumptions hold and H0 is true, then t ~t(n-1)

Sampling Distribution:

C qt α n 1−,( ):= nC inverseΦt α( ):= inverseΦt
< α implies C is the 'Critical Value' (in X) specified by
    cumulative probability ΦΝ(X) = α 
   found by the 'q' function of the t Distribution.

< Probability of Type I error must be explicitly setα 0.05:=

Critical Value of the Test:

< t is the normalized distance between means Xbar and µ0t
Xbar µ0−

s

n

:=

n

Test Statistic:
< One sided test
< µ0 is a specified value for µ H0: µ = µ0

H1: µ < µ0  

Hypotheses:

- Observed values X1, X2, X3, ... Xn are a random sample from ~N(µ,σ2).

- Variance σ2 of the popopulation σ2 is unknown.

Assumptions:

This test with associated descriptivive statistics is designed to test hypotheses about 
the mean of a population with unknown variance.

One Sample t-TestORIGIN 0≡
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µ0 5.1:= < Set µ0 for the test:

H0: µ = µ0

H1: µ < µ0  
< µ0 is a specified value for µ 

< One sided test

Test Statistic:

t
XbarSL µ0−

SESL
:= t 1.8857−=

Critical Value of the Test and Distribution of t:
α 0.05:= < Probability of Type I error must be explicitly set

C qt α n 1−,( ):= C 1.6766−=

Decision Rule:
IF t < C, THEN REJECT H0 OTHERWISE  ACCEPT H0
t 1.8857−= C 1.6766−=

Probability Value:

pt t n 1−,( ) 0.0326= P = Φt(t) Results:        One Sample t-test

data:  SL 
t = -1.8857, df = 49, p-value = 0.03264
alternative hypothesis: true mean is less than 5.1 
95 percent confidence interval:
     -Inf 5.089575 
sample estimates:
mean of x 
    5.006 

Protoype using R:

Commands:

>attach iris
>SL=Sepal_Length[Species==setosa]
>t.test(SL,alternative="less",mu=5.1, 
conf.level = 0.95)

Example:
iris READPRN "c:/2007BiostatsData/iris.txt"( ):=

i 0 49..:=

SLi iris 1〈 〉( )
i:= < Assembling Sepal Length data for the first species only

n length SL( ):= n 50= < n = number of observations X

XbarSL mean SL( ):= XbarSL 5.006= < mean of X

SDSL Var SL( ):= SDSL 0.3525= < sample standard deviation of X

SESL
SDSL

n
:= SESL 0.0498= < standard error of the sample mean of X

Assumptions:
- Observed values X1, X2, X3, ... Xn are a random sample from ~N(µ,σ2).

- Variance σ2 of the popopulation σ2 is unknown. plot histogram 15 SL,( ):=

4 4.5 5 5.5 6
0

5

10

plot 1〈 〉

plot 0〈 〉

Var SL( ) 0.1242=

^ our sample estimate
    of population variance

Hypotheses:
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< same descriptive statistics as above

Assumptions:
- Observed values X1, X2, X3, ... Xn are a random sample from ~N(µ,σ2).

- Variance σ2 of the popopulation σ2 is unknown.

Hypotheses: Test Statistic:
µ0 4.9:= < Set µ0 for the test:

t
XbarSL µ0−

SESL
:= t 2.1264=

H0: µ = µ0

H1: µ > µ0  
< µ0 is a specified value for µ 

< Other One sided test
Critical Value of the Test and Distribution of t:

α 0.05:= < Probability of Type I error must be explicitly set

C qt 1 α− n 1−,( ):= C 1.6766= < Critical One way test on the other 
      tail of the t Distribution

Decision Rule:
Probability Value:IF |t| > C, THEN REJECT H0 OTHERWISE  ACCEPT H0
1 pt t n 1−,( )− 0.0193=t 2.1264= C 1.6766=

Command:
t.test(SL,alternative="greater",mu=4.9,conf.level = 0.95)Prototype with R:

One Sample t-test data:  SL 
t = 2.1264, df = 49, p-value = 0.01927
alternative hypothesis: true mean is greater than 4.9 
95 percent confidence interval:  4.922425      Inf 
sample estimates:
mean of x 
    5.006 

One Sample t-Test
Other One Way case:

Assumptions:
- Observed values X1, X2, X3, ... Xn are a random sample from ~N(µ,σ2).

- Variance σ2 of the popopulation σ2 is unknown.
Hypotheses:

H0: µ = µ0

H1: µ > µ0  
< µ0 is a specified value for µ 

< Other One sided test
Test Statistic: Critical Value of the Test:

α 0.05:= < Probability of Type I error must be explicitly set
t

Xbar µ0−

s

n

:=
Xbar

C inverseΦt 1 α−( ):= inverseΦt C qt 1 α− n 1−,( ):=

^ α implies C the 'Critical Value' (in X) specified by
    cumulative probability Φ(X) = 1-α for the other
    tail of the 'q' function of the t Distribution.

Sampling Distribution:

If Assumptions hold and H0 is true, then t ~t(n-1)

Decision Rule:
IF t > C, THEN REJECT H0 OTHERWISE  ACCEPT H0

Probability Value:
P = Φt(X) at 1-α < Rosner p 237

Example Other One Way case:
XbarSL 5.006= SDSL 0.3525= SESL 0.0498=
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< Note that C1 and C2 are explicitly evaluated
    above so C1 is already negative in value.  So it
    is added to Xbar here to find the Lower Bound
    of the CI.

Xbar C1
s

n
⋅+ Xbar C2

s

n
⋅+







Confidence Interval for the mean:

P min 2 pt t n 1−,( )⋅ 2 1 pt t n 1−,( )−( )⋅,[ ]:= t

< Rosner Eq 7.11 p. 241P = minimum(2 Φt(t),1-2 Φt(t)

Probability Value:

IF |t| > C, THEN REJECT H0 

OTHERWISE  ACCEPT H0

Decision Rule:

If Assumptions hold and H0 is true, then t ~t(n-1)

Sampling Distribution:

C2 qt 1
α

2
− n 1−,





:=C1 qt
α

2
n 1−,





:=

< α implies C the 'Critical Value' 
   (in X) specified by cumulative
    probability Φt(X) = α/2 for each
    tail of the 'q' function of the t
    Distribution.

C2 inverseΦt 1
α

2
−





:= inverseΦtC1 inverseΦt
α

2






:= inverseΦt

< Probability of Type I error must be explicitly setα 0.05:=

Critical Value of the Test:

t
Xbar µ0−

s

n

:=
Xbar

Test Statistic:
< TWO sided test
< µ0 is a specified value for µ H0: µ = µ0

H1: µ µ0≠    

Hypotheses:

- Observed values X1, X2, X3, ... Xn are a random sample from ~N(µ,σ2).

- Variance σ2 of the popopulation σ2 is unknown.

Assumptions:

Two Way Case:
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< Probability of Type I error must be explicitly set

C1 qt
α

2
n 1−,





:= C1 2.0096−= C2 qt 1
α

2
− n 1−,





:= C2 2.0096=

Decision Rule: IF |t| > C, THEN REJECT H0 OTHERWISE  ACCEPT H0

t 2.1264= C 1.6766=

Probability Value:

P min 2 pt t n 1−,( )⋅ 2 1 pt t n 1−,( )−( )⋅,[ ]:= P 0.0385322=

Confidence Interval for the mean:

CI XbarSL C1 SESL⋅+ XbarSL C2 SESL⋅+( ):= CI 4.9058235 5.1061765( )=

Prototype for Two Way Case:
Prototype with Systat:

SYSTAT Rectangular file C:\Program Files\SYSTAT 9\Data\Iris.syd,
created Wed May 20, 1987 at 12:41:12,
contains variables:

SPECIES SEPALLEN SEPALWID PETALLEN PETALWID
 
The following results are for:
   SPECIES      =    1.0000000
  
One-sample t test of SEPALLEN with 50 cases;   Ho: Mean =    4.9000000

 
     Mean =    5.0060000             95.00% CI  =  4.9058235 to  5.1061765
       SD =    0.3524897                                  t =    2.1263975
                                         df =    49    Prob =    0.0385322

Example Two Way case:
XbarSL 5.006= SDSL 0.3525= SESL 0.0498= < same descriptive statistics as above

Assumptions:
- Observed values X1, X2, X3, ... Xn are a random sample from ~N(µ,σ2).

- Variance σ2 of the popopulation σ2 is unknown.

Test Statistic:

t
XbarSL µ0−

SESL
:= t 2.1263975=

Hypotheses:
µ0 4.9:= < Set µ0 for the test:

H0: µ = µ0
H1: µ µ0≠    

< µ0 is a specified value for µ 

< TWO sided test

Critical Value of the Test and Distribution of t:
α 0.05:=
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4.0 4.5 5.0 5.5 6.0
SEPALLEN

0

5

10

15

20

25

C
ou

nt

Systat's t-test is only of the Two Way variety!

Prototype with R: 

Command:
>t.test(SL,alternative="two.sided",mu=4.9,conf.level = 0.95)

        One Sample t-test

data:  SL 
t = 2.1264, df = 49, p-value = 0.03853
alternative hypothesis: true mean is not equal to 4.9 
95 percent confidence interval:
 4.905824 5.106176 
sample estimates:
mean of x 
    5.006 
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CI
n 1−( ) s2

⋅

C2

n 1−( ) s2
⋅

C1









:=
C1

Confidence Interval for σ2:

IF 0.001 < P then the results are statistically very highly significant. 
IF 0.001 < P < 0.01 then the results are statistically highly significant.
IF 0.01 < P < 0.05 then the results are statistically signifcant.
IF 0.05 < P then the resulst are NOT statistically signifcant.

Common attributions for P:

P = 2Φχ2
n-1,α or  2Φχ2

n-1,1-α/2 

Probability Value:

IF χ2 < C1 or χ2 < C1, THEN REJECT H0 
OTHERWISE  ACCEPT H0

Decision Rule:

If Assumptions hold and H0 is true, then Xsq ~ χ2
(n-1)

Sampling Distribution:

<  

α implies lower limit C1 and upper limit C2 'Critical Values' (in X) specified by

   cumulative probability Φχ2(X) = α found by the 'q' function of the χ2 Distribution.

C2 qchisq 1
α

2
− n 1−,





:= nC1 qchisq
α

2
n 1−,





:= n

C2 inverseΦχ2 1
α

2
−





:= inverseΦχ2C1 inverseΦχ2
α

2






:= inverseΦχ2

< Probability of Type I error must be explicitly setα 0.05:=

Critical Value of the Test:

< population corrected ratio of observed sample
     variance and hypothesized variance

Xsq
n 1−( ) s2

⋅

σ0
2

:=

σ0

Test Statistic:

< Two Sided Case
< σ0

2 is a specified value for σ2 H0: σ
2 = σ0

2

H1: σ
2 <> σ0

2
  

Hypotheses:

- Observed values X1, X2, X3, ... Xn are a random sample from ~N(µ,σ2).  
         Note that this requirement is critical and not robust, thus limiting this test's usefulness.
- Variance σ2 of the popopulation σ2 is unknown.

Assumptions:

This test is designed to test hypotheses about whether the variance of a population is 
statistically equivalent to specified values.

One Sample χ2 Test of Variance for a Normal DistributionORIGIN 0≡
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< σ0
2 is a specified value for σ2 

< Two Sided Case

Test Statistic:

Xsq
n 1−( ) SDSL

2
⋅

σ0
2

:= Xsq 38.0512= < ratio of variances

Critical Value of the Test and Distribution of t:
α 0.05:= < Probability of Type I error must be explicitly set

C1 qchisq
α

2
n 1−,





:= C1 31.5549= C2 qchisq 1
α

2
− n 1−,





:= C2 70.2224=

Decision Rule:

IF χ2 < C1 or χ2 < C1, THEN REJECT H0 OTHERWISE  ACCEPT H0

Xsq 38.0512= C1 31.5549= C2 70.2224=

Probability Value:
2 pchisq Xsq n 1−,( )⋅ 0.2575=

Confidence Interval for σ2:

CI
n 1−( ) SDSL

2
⋅

C2

n 1−( ) SDSL
2

⋅

C1







:= CI 0.0867 0.1929( )=

Example:
iris READPRN "c:/2007BiostatsData/iris.txt"( ):=

i 0 49..:=

SLi iris 1〈 〉( )
i:= < Assembling Sepal Length data for the first species only

n length SL( ):= n 50= < n = number of observations X

XbarSL mean SL( ):= XbarSL 5.006= < mean of X

SDSL Var SL( ):= SDSL 0.3525= < sample standard deviation of X

SESL
SDSL

n
:= SESL 0.0498= < standard error of the sample  mean of X

Assumptions:
- Observed values X1, X2, X3, ... Xn are a random sample from ~N(µ,σ2).  
         Note that this requirement is critical and not robust, thus limiting this test's usefulness.
- Variance σ2 of the popopulation σ2 is unknown.

Hypotheses:
σ0 0.4:= σ0

2
0.16= < variance to be tested

H0: σ
2 = σ0

2

H1: σ
2 <> σ0

2
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< confirmed Rosner p. 268

Critical Value of the Test and Distribution of t:
α 0.05:= < Probability of Type I error must be explicitly set

C1 qchisq
α

2
n 1−,





:= C1 2.7004= C2 qchisq 1
α

2
− n 1−,





:= C2 19.0228=

^ values confirmed Rosner p. 268

Decision Rule:
IF χ2 < C1 or χ2 < C1, THEN REJECT H0 OTHERWISE  ACCEPT H0

Xsq 2.1029= C1 2.7004= C2 19.0228=

Probability Value:
2 pchisq Xsq n 1−,( )⋅ 0.0205= < confirmed Rosner p. 269

Confidence Interval for σ2:

CI
n 1−( ) s2

⋅

C2

n 1−( ) s2
⋅

C1









:=

CI 3.869 27.2553( )= < interval confirmed Rosner p. 201

Prototype for χ2 Test of Variance:
Rosner Example 7.46 p. 268

Rosner Table 6.6 Differences:

d

6−

3

2

3−

1

0

1−

1

3

2−































:=dbar mean d( ):= dbar 0.2−=

s Var d( ):= s2 8.1778=

n length d( ):= n 10=

Assumptions:
- Observed values X1, X2, X3, ... Xn are a random sample from ~N(µ,σ2).  

- Variance σ2 of the popopulation σ2 is unknown.

Hypotheses:
σ0 35:= σ0

2
35= < variance to be tested, Rosner p. 267

H0: σ
2 = σ0

2

H1: σ
2 <> σ0

2
  

< σ0
2 is a specified value for σ2 

< Two Sided Case
Test Statistic:

Xsq
n 1−( ) s2

⋅

σ0
2

:= Xsq 2.1029=
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< probability of Type I error must be explicitly set

α implies C1 & C2 - upper and lower 'Critical Values' (in p)

C1 inverseΦN
α

2






:= inverseΦN C2 inverseΦN 1
α

2
−





:= inverseΦN

C1 qnorm
α

2
0, 1,





:= C2 qnorm 1
α

2
− 0, 1,





:= < the results of 'q' functions of N(0,1)

Sampling Distribution:
If Assumptions hold and H0 is true, then z ~N(0,1)

Decision Rule:
IF z < C1 or z > C2 THEN REJECT H0

OTHERWISE ACCEPT H0

Probability Value for z:

P = minimum(2ΦN(z),2(1-ΦN(z)))

P min 2 1 pnorm z 0, 1,( )−( )⋅ 2 pnorm z 0, 1,( )( )⋅,[ ]:= z

Confidence Interval: < Note that C1 & C2 are
   explicitly calculated above
   so added to phat hereCI phat C1

phat qhat⋅

n
⋅+ phat C2

phat qhat⋅

n
⋅+








:=
n

ORIGIN 0≡ One Sample Tests of Discrete distribution Parameters
Hypothesis tests for parameters of Binomial and Poisson Distibution are handled in ways 
corresponding to construction of confidence limits shown in Biostatistics Worksheet 19.

Binomial Distribution test for p - the probability of "success" in each trial:
Assumptions:

- Let X1, X2, X3, ... , Xm be a random sample from a population ~ Binomial(n,p) i.e., with
   Binomial Distribution with parameters n=number of trials and p=probability of success.

Given sample parameters n, phat, qhat = (1- phat)

- IF n phat⋅ qhat⋅ 5≥  then use Normal Theory Approximation 
  OTHERWISE use Exact Methods.

Hypotheses:

H0: p  =  p0  < must specify hypothesized value p0

H1: p <> p0  < Two Sided Test

Normal Theory Approximation:
It is asssumed that: phat ~N(p0, p0q0/n)

Normal Theory Test Statistic: 

z
phat p0−

p0 q0( )⋅

n

:=

n

< Standardized distance between phat and p0

Critical Values of the Test:
α 0.05:=
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C2 1.96= 1
α

2
− 0.975=

Sampling Distribution:
If Assumptions hold and H0 is true, then z ~N(0,1)

Decision Rule:
IF z < C1 or z > C2 THEN REJECT H0 OTHERWISE ACCEPT H0

z 14.2857= C1 1.96−= C2 1.96=

Probability Value for z:
P 2 Φ z( )⋅:= if phat < p0 OR P 2 1 Φ z( )−( )⋅:= if phat > p0

phat 0.04= p0 0.02= pnorm z 0, 1,( ) 1=

P 2 1 pnorm z 0, 1,( )−( )⋅:= P 0=
< confirmed p.272 

P 2 pnorm z 0, 1,( )( )⋅:= P 2=

Confidence Interval:

CI phat C1
phat qhat⋅

n
⋅+ phat C2

phat qhat⋅

n
⋅+








:= CI 0.0362 0.0438( )=

^ confirmed p. 206

Prototype of Normal Theory Approximation of Binomial Distribution:
using Rosner Examples 6.48-649 p. 205-206 & 7.47-7.48 p. 268-270.

n 10000:= < sample size 10,000 women assessed for cancer

phat 0.040:= qhat 1 phat−:= < estimated incidence of cancer in sample

n phat⋅ qhat⋅ 384= < problem qualifies for Normal Theory Approximation

p0 0.020:= q0 1 p0−:= < p0 is the hypothesis to be tested

Normal Theory Approximation:
It is asssumed that: phat ~N(p0, p0q0/n)

Hypotheses:

H0: p  =  p0

H1: p <> p0  < Two Sided Test

Normal Theory Test Statistic: 

z
phat p0−

p0 q0( )⋅

n

:= z 14.2857=

Critical Values of the Test:
α 0.05:= < probability of Type I error must be explicitly set

C1 qnorm
α

2
0, 1,





:= C1 1.96−=
α

2
0.025=

C2 qnorm 1
α

2
− 0, 1,





:=
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q0 0.8= < hypothesized value

n p0⋅ q0⋅ 2.08= < fails criterion for Normal Theory Approximation

phat
5
13

:= phat 0.3846= < sample point estimate of p

Hypotheses:

H0: p  =  p0

H1: p <> p0  < Two Sided Test

Exact Methods Probabilities:
i 0 4..:=

Di dbinom i n, p0,( ):=

Φ i pbinom i n, p0,( ):= D

0.055

0.1787

0.268

0.2457

0.1535

















= Φ

0.055

0.2336

0.5017

0.7473

0.9009

















=

P 2 Φ4⋅:= P 1.8017=

P 2 1 Φ4−( )⋅:= P 0.1983= < P must be less than one. Is it less than α?

Binomial Distribution test for p - the probability of "success" in each trial:

Assumptions:

- Let X1, X2, X3, ... , Xm be a random sample from a population ~ Binomial(n,p) i.e., with
   Binomial Distribution with parameters n=number of trials and p=probability of success.

Given sample parameters nhat, phat, qhat = (1- phat)

- IF nhat phat⋅ qhat⋅ 5≥  then use Normal Theory Approximation 
  OTHERWISE use Exact Methods.

Hypotheses:

H0: p  =  p0

H1: p <> p0  < Two Sided Test

Exact Methods Probabilities:
P 2 Φ X k≤( )⋅:= k or P 2 Φ k X≥( )⋅:= X

Critical Values of the Test:
α 0.05:= < probability of Type I error must be explicitly set

Decision Rule:
IF P < α THEN REJECT H0

OTHERWISE ACCEPT H0

Prototype of Exact Methods:
Rosner Example 7.49 p. 274

n 13:= p0 0.20:= q0 1 p0−:=
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Prototype of Above Binomial examples using R's Exact Binomial test:

Rossner Example 7.49 p. 274:

>n=13
> p=0.2  
> x=5
> binom.test(x,n,p=0.2,alternative="two.sided",conf.level=0.95)

        Exact binomial test

data:  x and n 
number of successes = 5, number of trials = 13, p-value = 0.1541
alternative hypothesis: true probability of success is not equal to 0.2 
95 percent confidence interval:
 0.1385793 0.6842224 
sample estimates:
probability of success 
             0.3846154 

Results are match for phat and are close for p-value, but not exactly the same.  Thus, the 
methods for calculating P must be subtly different...

Rossner Examples 6.48-649 p. 205-206 & 7.47-7.48 p. 268-270.

> n=10000
> p=0.020
> x=0.040
> binom.test(400,10000,p=0.2,alternative="two.sided",conf.level=0.95)

        Exact binomial test

data:  400 and 10000 
number of successes = 400, number of trials = 10000, p-value < 2.2e-16
alternative hypothesis: true probability of success is not equal to 0.2 
95 percent confidence interval:
 0.03624378 0.04402702 
sample estimates:
probability of success 
                  0.04 

Again, similar results, but not the same...
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Poisson Distribution test for µ:

Assumptions:

- Let X1, X2, X3, ... , Xm be a random sample from a population ~ Poisson(µ) i.e., with
   Poisson Distribution with parameter µ events per time interval.

Hypotheses:

H0: µ  =  µ0

H1: µ <> µ0  < Two Sided Test

Remainder of this section not worked out at this time...  See Rosner p. 277
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z inverseΦz α( ):= inverseΦz z qnorm 1
α

2
− 0, 1,





:= < TWO SIDED approximately!

Power of the Test: < POWER = (1-β) the inverse probability of Type II error,  Rosner p. 229

POWER Φz z D+( ):= D POWER pnorm z D+ 0, 1,( ):= D

Estimated Sample Size Needed:
β 0.1:= 1 β− 0.9= < Type II error rate (β) or POWER (1-β) must be explicitly set

α 0.05:= 1 α− 0.95= < Type I error rate (α) must be explicitly set

ONE WAY:

N
σ

2
inverseΦz 1 β−( ) inverseΦz 1 α−( )+( )2⋅

µ0 µ1−( )2
:=

µ1

N
s2 qnorm 1 β− 0, 1,( ) qnorm 1 α− 0, 1,( )+( )2⋅

µ0 µ1−( )2
:=

µ1

TWO WAY:

N
σ

2
inverseΦz 1 β−( ) inverseΦz 1

α

2
−





+





2
⋅

µ0 µ1−( )2
:=

µ1

N
s2 qnorm 1 β− 0, 1,( ) qnorm 1

α

2
− 0, 1,





+





2
⋅

µ0 µ1−( )2
:=

µ1

ORIGIN 0≡ Estimating Power and Sample Size for a One Sample t-Test

Pilot studies are often run in advance of collecting data for major statistical analyses.  
These studies are used to determine the POWER of an analysis - i.e., the ability of the 
analysis to satisfactorily lead to rejection of the Null Hypothesis and determining 
sufficient Sample Size to support sufficient power.

Assumptions:
- Observed values X1, X2, X3, ... Xn are a random sample from ~N(µ,σ2).

- Variance σ2 of the popopulation σ2 is unknown.

Hypotheses:
H0: µ = µ0

H1: µ = µ1 < µ0
          OR
H1: µ = µ1 <> µ0 

< µ0 is a specified value for µ 

< One sided test - here a specific alternative µ1 must be chosen

< Two sided test - here a specific alternative µ1 must be chosen 

Hypothesis Distance:

D
µ0 µ1−

s

n

:=

n

< t is the normalized distance between alternates µ0 and µ1

Critical Value of the Test:
α 0.05:= < Probability of Type I error must be explicitly set

Approximating POWER of the Test:
Note that Rosner's entire presentation of this topic is predicated on known population 
variance σ2, allowing him to estimate probabilities using the standardized normal 
distribution N(0,1).  In general, however, σ2 must be estimated by sample variance s2.  
Thus,the calculations must be considered only approximate... 

z inverseΦz α( ):= inverseΦz z qnorm α 0, 1,( ):= < ONE SIDED approximately!
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1 0.9158− 0.0842=

^ calculation confirmed p. 249

Example:

Rosner Eample 7.35 p. 255

s 50:= µ0 175:= µ1 190:=

Estimated Sample Size Needed for One Way Analysis:
β 0.1:= 1 β− 0.9= < Type II error rate (β) or POWER (1-β) must be explicitly set

α 0.05:= 1 α− 0.95= < Type I error rate (α) must be explicitly set

s2 2500=
N

s2 qnorm 1 β− 0, 1,( ) qnorm 1 α− 0, 1,( )+( )2⋅

µ0 µ1−( )2
:= qnorm 1 β− 0, 1,( ) 1.2816=

qnorm 1 α− 0, 1,( ) 1.6449=

1.28 1.645+( )2 8.5556=
N 95.1539=

µ0 µ1−( )2 225=
^ calculation confirmed p. 255

Example:
Rosner Eample 7.27-7.28 p. 248-249

Assumptions:
- Observed values X1, X2, X3, ... Xn are a random sample from ~N(µ,σ2).

- Variance σ2 of the popopulation σ2 is known.

s 50:= n 10:=

Hypotheses:
H0: µ = µ0

H1: µ = µ1 < µ0  
µ0 175:=

µ1 190:=

Hypothesis Distance:

D
µ0 µ1−

s

n

:= D 0.9487=

Critical Value of the Test:
α 0.01:= < Probability of Type I error must be explicitly set

Approximating POWER of the Test:
z qnorm α 0, 1,( ):= z 2.3263−= < approximately!

Power of the Test:
POWER pnorm z D+ 0, 1,( ):= POWER 0.0842=
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5( )2 25=< calculation confirmed p. 258N 24.7302=

qnorm 1 α− 0, 1,( ) 1.6449=

qnorm 1 β− 0, 1,( ) 0.8416=N
s2 qnorm 1 β− 0, 1,( ) qnorm 1 α− 0, 1,( )+( )2⋅

5( )2
:=

s2 100=

< Type I error rate (α) must be explicitly set1 α− 0.95=α 0.05:=

< Type II error rate (β) or POWER (1-β) must be explicitly set1 β− 0.8=β 0.2:=

Estimated Sample Size Needed for One Way Analysis:

µ0 µ1− 5:=µ0 µ1− 5:=s 10:=

Rosner Eample 7.37 p. 257-258

Example:
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Qi qnorm Pi 0, 1,( ):=

From the values of P = ΦN(X), we now convert back to X

P

1
1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0.01
0.03

0.05

0.07

0.09

0.11

0.13

0.15

0.17

0.19

0.21

0.23

0.25

0.27

0.29

0.31

=SLsort

1
1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

4.3
4.4

4.4

4.4

4.5

4.6

4.6

4.6

4.6

4.7

4.7

4.8

4.8

4.8

4.8

4.8

=SL

1
1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

5.1
4.9

4.7

4.6

5

5.4

4.6

5

4.4

4.9

5.4

4.8

4.8

4.3

5.8

5.7

=
^ the 1/2 here
is a correction
factor

i 1 n..:=

Pi

i
1
2

−





n
:=

SLsort sort SL( ):=

First we sort SL:

Now we treat each
index of SL as a 
quantile:

We will look at variable SL here:  

Calculating Cumultive Probability levels ΦN(X):

< standard error of the sample mean of XSESL 0.05=SESL
SDSL

n
:=

Constructing Q-Q PlotsORIGIN 1≡

Assessing Normality of sample data is an essential part of statistical analysis.  Q-Q Plots are one way easy 
to do this.  They are also interesting at this point in our course since the demonstrate the use of the 
inverse cumulative probability function for the Normal Distribution.

So loading some familiar data to assess:
iris READPRN "c:/2007BiostatsData/iris.txt"( ):=

i 1 50..:=

SLi iris 2〈 〉( )
i:= < Assembling Sepal Length data for the first species only

n length SL( ):= n 50= < n = number of observations X

XbarSL mean SL( ):= XbarSL 5.006= < mean of X

SDSL Var SL( ):= SDSL 0.352= < sample standard deviation of X
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3 2 1 0 1 2 3
4

4.5

5

5.5

6

SLsort

Q

Q

1
1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

-2.326
-1.881

-1.645

-1.476

-1.341

-1.227

-1.126

-1.036

-0.954

-0.878

-0.806

-0.739

-0.674

-0.613

-0.553

-0.496

=

If the sample data are distributed close to the Normal distribution, the Q-Q plot should be mostly a 
straight line in the center with an overall S-shaped curve towards each end. 

Output from R:

-2 -1 0 1 2

4.
5

5.
0

5.
5

Normal Q-Q Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s
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Systat output showing graphs for species 1,2 & 3:

1

4 5 6 7 8
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Assignment for Week 7 
This week we begin the task of prototyping some of the most important standard 
statistical tests.  Our object is to not only to understand how calculations are done by 
hand as exemplified, for example, by the various Biostatistics worksheets.  We also need 
to be able to identify appropriate data for each test, and to conduct analyses on a routine 
basis.  

So, this week use both R and SPSS and try the following tasks.  Note also that I have 
posted R documentation for you on our website. 

1. Single population t-test.  Devise a small dataset of your own consisting of only a few 
objects (say around five).  State your assumptions, as well as null and alternative 
hypotheses.  Then calculate the t statistic, critical values (for a given α) and 
probability.  State the decision rule and results.  Finally calculate the associated 
(1-α) confidence interval for µ.   

Now find a realistic set of data and perform the single population t-test using both 
R and SPSS and compare the results.  Example datasets are posted on our website 
and others may be found in online files associated with each program.  You may 
have to ‘prep’ the data using Word or Excel, before inputting into each program, 
but that’s a normal part of the process.    

2. Paired t-test.  Devise a small dataset of your own consisting of only a few object pairs 
(say around five).  State your assumptions, as well as null and alternative 
hypotheses.  Then calculate the t statistic, critical values (for a given α) and 
probability.  State the decision rule and results.  Finally calculate the associated 
(1-α) confidence interval for µd.   

Now find a realistic set of data and perform a paired t-test using both R and SPSS 
and compare the results.   

3. Two population t-tests with equal and unequal variances.  Devise a small dataset of 
your own consisting of only a few objects (say around five) for each group.  State 
your assumptions, as well as null and alternative hypotheses.  Then calculate the t 
statistic, critical values (for a given α) and probability.  State the decision rule and 
results.  Finally calculate the associated (1-α) confidence interval for µ1- µ2.  Note 
that here you will be working with two different tests, so it will be useful to 
compare these results. 
Now find a realistic set of data and perform both two population t-tests using both 
R and SPSS and compare.   

4.  F-test for equality of variance between two populations.  Now use the small dataset 
in 3 for this test.  State your assumptions, as well as null and alternative 
hypotheses.  Then calculate the F statistic, critical values (for a given α) and 
probability.  State the decision rule and results.   

Using your realistic data from 3, perform this test and interpret the results.  Based 
on your F-test, which two-population t-test should be performed? 



t.test {stats} R Documentation

Student's t-Test 

Description 

Performs one and two sample t-tests on vectors of data.  

Usage 

t.test(x, ...) 
 
## Default S3 method: 
t.test(x, y = NULL, 
       alternative = c("two.sided", "less", "greater"), 
       mu = 0, paired = FALSE, var.equal = FALSE, 
       conf.level = 0.95, ...) 
 
## S3 method for class 'formula': 
t.test(formula, data, subset, na.action, ...) 

Arguments 

x a (non-empty) numeric vector of data values. 
y an optional (non-empty) numeric vector of data values. 
alternative a character string specifying the alternative hypothesis, must be one of 

"two.sided" (default), "greater" or "less". You can specify just the 
initial letter. 

mu a number indicating the true value of the mean (or difference in means if 
you are performing a two sample test). 

paired a logical indicating whether you want a paired t-test. 
var.equal a logical variable indicating whether to treat the two variances as being 

equal. If TRUE then the pooled variance is used to estimate the variance 
otherwise the Welch (or Satterthwaite) approximation to the degrees of 
freedom is used. 

conf.level confidence level of the interval. 
formula a formula of the form lhs ~ rhs where lhs is a numeric variable giving 

the data values and rhs a factor with two levels giving the corresponding 
groups. 

data an optional matrix or data frame (or similar: see model.frame) containing 
the variables in the formula formula. By default the variables are taken 
from environment(formula). 

subset an optional vector specifying a subset of observations to be used. 



na.action a function which indicates what should happen when the data contain NAs. 
Defaults to getOption("na.action"). 

... further arguments to be passed to or from methods. 

Details 

The formula interface is only applicable for the 2-sample tests.  

alternative = "greater" is the alternative that x has a larger mean than y.  

If paired is TRUE then both x and y must be specified and they must be the same length. 
Missing values are removed (in pairs if paired is TRUE). If var.equal is TRUE then the 
pooled estimate of the variance is used. By default, if var.equal is FALSE then the 
variance is estimated separately for both groups and the Welch modification to the 
degrees of freedom is used.  

If the input data are effectively constant (compared to the larger of the two means) an 
error is generated.  

Value 

A list with class "htest" containing the following components:  

statistic the value of the t-statistic. 
parameter the degrees of freedom for the t-statistic. 
p.value the p-value for the test. 
conf.int a confidence interval for the mean appropriate to the specified alternative 

hypothesis. 
estimate the estimated mean or difference in means depending on whether it was a 

one-sample test or a two-sample test. 
null.value the specified hypothesized value of the mean or mean difference 

depending on whether it was a one-sample test or a two-sample test. 
alternative a character string describing the alternative hypothesis. 
method a character string indicating what type of t-test was performed. 
data.name a character string giving the name(s) of the data. 

See Also 

prop.test  

Examples 



t.test(1:10,y=c(7:20))      # P = .00001855 
t.test(1:10,y=c(7:20, 200)) # P = .1245    -- NOT significant anymore 
 
## Classical example: Student's sleep data 
plot(extra ~ group, data = sleep) 
## Traditional interface 
with(sleep, t.test(extra[group == 1], extra[group == 2])) 
## Formula interface 
t.test(extra ~ group, data = sleep) 



 
var.test {stats} R Documentation

F Test to Compare Two Variances 

Description 

Performs an F test to compare the variances of two samples from normal populations.  

Usage 

var.test(x, ...) 
 
## Default S3 method: 
var.test(x, y, ratio = 1, 
         alternative = c("two.sided", "less", "greater"), 
         conf.level = 0.95, ...) 
 
## S3 method for class 'formula': 
var.test(formula, data, subset, na.action, ...) 

Arguments 

x, y numeric vectors of data values, or fitted linear model objects (inheriting 
from class "lm"). 

ratio the hypothesized ratio of the population variances of x and y. 
alternative a character string specifying the alternative hypothesis, must be one of 

"two.sided" (default), "greater" or "less". You can specify just the 
initial letter. 

conf.level confidence level for the returned confidence interval. 
formula a formula of the form lhs ~ rhs where lhs is a numeric variable giving 

the data values and rhs a factor with two levels giving the corresponding 
groups. 

data an optional matrix or data frame (or similar: see model.frame) containing 
the variables in the formula formula. By default the variables are taken 
from environment(formula). 

subset an optional vector specifying a subset of observations to be used. 
na.action a function which indicates what should happen when the data contain NAs. 

Defaults to getOption("na.action"). 
... further arguments to be passed to or from methods. 

Details 



The null hypothesis is that the ratio of the variances of the populations from which x and 
y were drawn, or in the data to which the linear models x and y were fitted, is equal to 
ratio.  

Value 

A list with class "htest" containing the following components:  

statistic the value of the F test statistic. 
parameter the degrees of the freedom of the F distribtion of the test statistic. 
p.value the p-value of the test. 
conf.int a confidence interval for the ratio of the population variances. 
estimate the ratio of the sample variances of x and y. 
null.value the ratio of population variances under the null. 
alternative a character string describing the alternative hypothesis. 
method the character string "F test to compare two variances". 
data.name a character string giving the names of the data. 

See Also 

bartlett.test for testing homogeneity of variances in more than two samples from 
normal distributions; ansari.test and mood.test for two rank based (nonparametric) 
two-sample tests for difference in scale.  

Examples 

x <- rnorm(50, mean = 0, sd = 2) 
y <- rnorm(30, mean = 1, sd = 1) 
var.test(x, y)                  # Do x and y have the same variance? 
var.test(lm(x ~ 1), lm(y ~ 1))  # The same. 



 
power.t.test {stats} R Documentation

Power calculations for one and two sample t tests 

Description 

Compute power of test, or determine parameters to obtain target power.  

Usage 

power.t.test(n = NULL, delta = NULL, sd = 1, sig.level = 0.05, 
             power = NULL, 
             type = c("two.sample", "one.sample", "paired"), 
             alternative = c("two.sided", "one.sided"), 
             strict = FALSE) 

Arguments 

n Number of observations (per group) 
delta True difference in means 
sd Standard deviation 
sig.level Significance level (Type I error probability) 
power Power of test (1 minus Type II error probability)
type Type of t test 
alternative One- or two-sided test 
strict Use strict interpretation in two-sided case 

Details 

Exactly one of the parameters n, delta, power, sd, and sig.level must be passed as 
NULL, and that parameter is determined from the others. Notice that the last two have 
non-NULL defaults so NULL must be explicitly passed if you want to compute them.  

If strict = TRUE is used, the power will include the probability of rejection in the 
opposite direction of the true effect, in the two-sided case. Without this the power will be 
half the significance level if the true difference is zero.  

Value 

Object of class "power.htest", a list of the arguments (including the computed one) 
augmented with method and note elements. 



Note 

uniroot is used to solve power equation for unknowns, so you may see errors from it, 
notably about inability to bracket the root when invalid arguments are given.  

Author(s) 

Peter Dalgaard. Based on previous work by Claus Ekstrøm  

See Also 

t.test, uniroot  

Examples 

 power.t.test(n = 20, delta = 1) 
 power.t.test(power = .90, delta = 1) 
 power.t.test(power = .90, delta = 1, alt = "one.sided") 
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< Note that C1 and C2 are explicitly evaluated
    above so C1 is already negative in value.  So it
    is added to Xbar here to find the Lower Bound
    of the CI.

dbar C1
s

n
⋅+ dbar C2

s

n
⋅+







Confidence Interval for the mean:

P min 2 pt t n 1−,( )⋅ 2 1 pt t n 1−,( )−( )⋅,[ ]:= n

< Rosner Eq 7.11 p. 241P = minimum(2 Φt(t),1-2 Φt(t)

Probability Value:

IF |t| > C, THEN REJECT H0 

OTHERWISE  ACCEPT H0

Decision Rule:
If Assumptions hold and H0 is true, then t ~t(n-1)

Sampling Distribution:

C2 qt 1
α

2
− n 1−,





:= nC1 qt
α

2
n 1−,





:= n

< α implies C the 'Critical Value' 
   (in X) specified by cumulative
    probability Φt(X) = α/2 for each
    tail of the 'q' function of the t
    Distribution.

C2 inverseΦt 1
α

2
−





:= inverseΦtC1 inverseΦt
α

2






:= inverseΦt

< Probability of Type I error must be explicitly setα 0.05:=

Critical Value of the Test:

< sd is the sample standard deviation of di

< t is the normalized mean X2bar - X2bart
dbar

sd

n

:=

n

Test Statistic:
< Two sided test
< No difference in mean between populations X1. & X2. H0: µd = 0

H1: µd <> 0  

Hypotheses:

- Observed values X1,1, X1,2, X1,3, ... X1,n are a random sample exactly matched with
  Observed values X2,1, X2,2, X2,3, ... X2,n across individuals 1,2,3, ... ,n.

- Let di = X2,i -X1,i for each individual i are a random sample from ~N(µd,σd
2).

- Variance σd
2 of the popopulation σ2 is unknown.

Assumptions:

The Paired t-test is employed in cases, such as a longitudinal study, where two sets of 
measurements are exactly matched for each individual of a population.

Paired t-TestORIGIN 0≡
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< Two sided test
Critical Value of the Test:

α 0.05:= < Probability of Type I error must be explicitly set

C1 qt
α

2
n 1−,





:= C2 qt 1
α

2
− n 1−,





:=

C1 C2( ) 2.2622− 2.2622( )= < confirmed p. 301

IF |t| > C, THEN REJECT H0 OTHERWISE  ACCEPT H0
Decision Rule:

C1 C2( ) 2.2622− 2.2622( )= t 3.3247= < confirmed p. 301

Probability Value:

P = minimum(2 Φt(t),1-2 Φt(t)

P min 2 pt t n 1−,( )⋅ 2 1 pt t n 1−,( )−( )⋅,[ ]:= P 0.0088743369= < confirmed p. 301

Confidence Interval for the mean:

CI dbar C1
sd

n
⋅+ dbar C2

sd

n
⋅+








:= CI 1.534 8.066( )= < confirmed p. 303

Example:
Blood Pressure data Rosner Table 8.2 p. 301:

Subtracting values
in second column 
from values in first
column:

Descriptive statistics for d:

X

115

112

107

119

115

138

126

105

104

115

128

115

106

128

122

145

132

109

102

117































:= d X 1〈 〉
X 0〈 〉

−:= d

13

3

1−

9

7

7

6

4

2−

2































=

n length d( ):= n 10=

dbar mean d( ):= dbar 4.8=

sd Var d( ):= sd 4.5656=

^ values confirmed p. 301Assumptions:
- Observed values X1,1, X1,2, X1,3, ... X1,n are a random sample exactly matched with
  Observed values X2,1, X2,2, X2,3, ... X2,n across individuals 1,2,3, ... ,n.

- Let di = X2,i -X1,i for each individual i are a random sample from ~N(µd,σd
2).

- Variance σd
2 of the popopulation σ2 is unknown.

Test Statistic:

t
dbar

sd

n

:= < t is the normalized mean X2bar - X2bar

< sd is the sample standard deviation of di

Hypotheses:
H0: µd = 0
H1: µd <> 0  

< No difference in mean between populations X1. & X2. 
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sd 7.9836=sd Var d( ):=

dbar 2.7639−=dbar mean d( ):=

n 72=n length d( ):=

Descriptive statistics for d:

mean X 1〈 〉( ) 85.1722=mean X 0〈 〉( ) 82.4083=

n 72=n length X 0〈 〉( ):=
d

0
0
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0.5
9.3

5.4

-12.3

2

10.2

12.2

-11.6

7.1

-6.2

0.2

9.2

-8.3

-3.3

-11.3

0

=X

0 1
0
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

80.7 80.2
89.4 80.1

91.8 86.4

74 86.3

78.1 76.1

88.3 78.1

87.3 75.1

75.1 86.7

80.6 73.5

78.4 84.6

77.6 77.4

88.7 79.5

81.3 89.6

78.1 81.4

70.5 81.8

77.3 77.3

=

d X 0〈 〉
X 1〈 〉

−:=

X READPRN "C:/2007BiostatsData/AnorexiaALL.txt"( ):=

Example: 

^ Same results as SYSTAT

 Paired t-test

data:  X1 and X2 
t = -3.3247, df = 9, p-value = 0.008874
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval:
 -8.066013 -1.533987 
sample estimates:
mean of the differences 
                   -4.8 

COMMANDS:

> X1=c(115,112,107,119,115,138,126,105,104,115)
> X2=c(128,115,106,128,122,145,132,109,102,117)
> t.test(X1,X2,paired=TRUE,alternative="two.sided")

Prototype of Example in R:

^ Note that the difference (d) in Systat involved subtracting X1 from X2, thus all numbers are 
reversed but the results are the same.  SD Difference is slightly off from MathCad's 
calculation.  This is the result, I guess of rounding in taking the square root of variance.

CI 1.534 8.066( )=

P 0.0089=

n 1− 9=
t 3.3247=

sd 4.5656=

mean d( ) 4.8=

mean X 1〈 〉( ) 120.4=

mean X 0〈 〉( ) 115.6= 
Paired samples t test on X1 vs X2 with 10 cases

 
  Mean X1           =  115.6000000
  Mean X2           =  120.4000000
  Mean Difference =   -4.8000000   95.00% CI  = -8.0660132 to -1.5339868
  SD Difference =    4.5655716                        t =   -3.3246511
 df =     9    Prob =    0.0088743

calculations from above:Prototype of Example in Systat:
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Compare this result with that those using nonparametric Sign and Signed-Rank Tests.
See 2007 Biostatistics Worksheets 30 & 31.

Paired samples t test on BEFORE vs AFTER with 72 cases
 

  Mean BEFORE       =   82.4083333
  Mean AFTER        =   85.1722222

    Mean Difference =   -2.7638889   95.00% CI  = -4.6399424 to -0.8878353
      SD Difference =    7.9835977                        t =   -2.9375697

                                         df =    71    Prob =    0.0044577

Prototype with SYSTAT:

CI 4.6399− 0.8878−( )=
CI dbar C1

sd

n
⋅+ dbar C2

sd

n
⋅+








:=

Confidence Interval for the mean:

P 0.0044577181=P min 2 pt t n 1−,( )⋅ 2 1 pt t n 1−,( )−( )⋅,[ ]:=

P = minimum(2 Φt(t),1-2 Φt(t)

Probability Value:

t 2.9376−=C1 C2( ) 1.9939− 1.9939( )=

Decision Rule:
IF |t| > C, THEN REJECT H0 OTHERWISE  ACCEPT H0

C1 C2( ) 1.9939− 1.9939( )=

C2 qt 1
α

2
− n 1−,





:=C1 qt
α

2
n 1−,





:=

< Probability of Type I error must be explicitly setα 0.05:=

Critical Value of the Test:
< Two sided test
< No difference in mean between populations X1. & X2. H0: µd = 0

H1: µd <> 0  

Hypotheses:

< sd is the sample standard deviation of di

t 2.9376−=< t is the normalized mean X2bar - X2bart
dbar

sd

n

:=

Test Statistic:

- Observed values X1,1, X1,2, X1,3, ... X1,n are a random sample exactly matched with
  Observed values X2,1, X2,2, X2,3, ... X2,n across individuals 1,2,3, ... ,n.

- Let di = X2,i -X1,i for each individual i are a random sample from ~N(µd,σd
2).

- Variance σd
2 of the popopulation σ2 is unknown.

Assumptions:
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α 0.05:= < Probability of Type I error must be explicitly set

C1 inverseΦt
α

2






:= inverseΦt C2 inverseΦt 1
α

2
−





:= inverseΦt < α implies C the 'Critical Value' 
   (in X) specified by cumulative
    probability Φt(X) = α/2 for each
    tail of the 'q' function of the t
    Distribution.

C1 qt
α

2
n1 n2+ 2−,





:= n2 C2 qt 1
α

2
− n1 n2+ 2−,





:= n2

Sampling Distribution:
If Assumptions hold and H0 is true, then t ~t(n1+n2-2)

Decision Rule:

IF |t| > C, THEN REJECT H0 

OTHERWISE  ACCEPT H0

Probability Value:

P = minimum(2 Φt(t),1-2 Φt(t)

P min 2 pt t n1 n2+ 2−,( )⋅ 2 1 pt t n1 n2+ 2−,( )−( )⋅, := n2

Confidence Interval for the mean:

X1bar X2bar− C1 sp
2 1

n1

1
n2

+






⋅⋅+ X1bar X2bar− C2 sp
2 1

n1

1
n2

+






⋅⋅+








^ Note that C1 and C2 are explicitly evaluated above so C1 is already negative in value.
    So it is added to X1bar - X2bar here to find the Lower Bound of the CI.

ORIGIN 0≡ Two Sample t-Test with Equal Variances
This test is employed where two sets of measurements are derived from samples with 
approximately equal varainces.

Assumptions:
- Observed values X1,1, X1,2, X1,3, ... X1,n1 are a random sample from ~N(µ1,σ1

2)

- Observed values X2,1, X2,2, X2,3, ... X2,n2 are a random sample from ~N(µ2,σ2
2)

- Variances σ1
2 & σ2

2 are approximately equal but unknown.
- Samples X1,n1 and X2,n2 are independent.

Hypotheses:
H0: µ1 = µ2

H1: µ1 <> µ2  
< No difference in mean between populations X1. & X2. 

< Two sided test
Pooled Sample Variance:

< variance is pooled from the two samples and
    adjusted for each sample's size n1 & n2.sp

n1 1−( ) s1
2

⋅ n2 1−( ) s2
2

⋅+

n1 n2+ 2−
:=

s2

Test Statistic:

t
X1bar X2bar−

sp
2 1

n1

1
n2

+






⋅

:=

n2

< t is the normalized mean X2bar - X2bar

< sp
2 is the pooled sample variance defined above

Critical Value of the Test:
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< No difference in mean between populations X1. & X2. 

< Two sided test
Pooled Sample Variance:

sp
n1 1−( ) s1

2
⋅ n2 1−( ) s2

2
⋅+

n1 n2+ 2−
:= sp

2 0.1721=

Test Statistic:

t
X1bar X2bar−

sp
2 1

n1

1
n2

+






⋅

:= t 7.3307−=

Critical Value of the Test:
α 0.05:= < Probability of Type I error must be explicitly set

C1 qt
α

2
n1 n2+ 2−,





:= C2 qt 1
α

2
− n1 n2+ 2−,





:= C1 C2( ) 1.9768− 1.9768( )=

Decision Rule:
IF |t| > C, THEN REJECT H0 OTHERWISE  ACCEPT H0

C1 C2( ) 1.9768− 1.9768( )= t 7.3307−=

Probability Value:
P = minimum(2 Φt(t),1-2 Φt(t)

P min 2 pt t n1 n2+ 2−,( )⋅ 2 1 pt t n1 n2+ 2−,( )−( )⋅, := P 1.5904499939 10 11−
×=

Confidence Interval for the mean:

CI X1bar X2bar− C1 sp
2 1

n1

1
n2

+






⋅⋅+ X1bar X2bar− C2 sp
2 1

n1

1
n2

+






⋅⋅+








:=

CI 0.6861584− 0.39469266−( )=

Example (BWT difference between Females and Males):
cats READPRN "c:/2007BiostatsData/cats.txt"( ):=

Females: Males:
i 0 46..:= j 47 143..:=

FBWTi
cats 1〈 〉( )

i:= MBWTj 47−
cats 1〈 〉( )

j:=

FHWTi
cats 2〈 〉( )

i:= MHWTj
cats 2〈 〉( )

j:=

n1 length FBWT( ):= n1 47= n2 length MBWT( ):= n2 97=

X1bar mean FBWT( ):= X1bar 2.3596= X2bar mean MBWT( ):= X2bar 2.9=

s1 Var FBWT( ):= s1
2 0.0751= s2 Var MBWT( ):= s2

2 0.2185=

Assumptions:
- Observed values X1,1, X1,2, X1,3, ... X1,n1 are a random sample from ~N(µ1,σ1

2)

- Observed values X2,1, X2,2, X2,3, ... X2,n2 are a random sample from ~N(µ2,σ2
2)

- Variances σ1
2 & σ2

2 are approximately equal but unknown.
- Samples X1,n1 and X2,n2 are independent.

Hypotheses:
H0: µ1 = µ2

H1: µ1 <> µ2  
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^ Same as "Pooled Variance t" results in SYSTAT

Two-sample t test on BWT grouped by SEX$
 

Group N Mean SD
F           47 2.3595745 0.2739879
M           97 2.9000000 0.4674844
  

Separate Variance t =   -8.7094885 df =  136.8    Prob =    0.000000
             Difference in Means =   -0.5404255   95.00% CI = -0.6631268 to -0.4177242

  
       Pooled Variance t =   -7.3306668 df =  142      Prob =    0.0000000

         Difference in Means =   -0.5404255   95.00% CI = -0.6861584 to -0.3946

CI 0.6861584− 0.39469266−( )=X1bar X2bar− 0.5404255−=

t 7.33066683−=

df 142=df n1 n2+ 2−:=

sp
2 0.1721=sp 0.4148=

s2 0.4675=s1 0.274=
< Values from above

X2bar 2.9=X1bar 2.3596=

n2 97=n1 47=

Males:Females:

Prototype of Example in Systat:



2007 Biostatistics 27 2 Sample t-Test = var 4

Prototype of Example in R:

COMMANDS:

> cats=read.table("c:/2007BiostatsData/cats.txt")
> attach(cats)
> X1=Bwt[Sex=="F"]
> X2=Bwt[Sex=="M"]
> t.test(X1,X2,alternative="two.sided",var.equal=TRUE)

^ note specification of equal variances here

        Two Sample t-test

data:  X1 and X2 
t = -7.3307, df = 142, p-value = 1.590e-11
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval:
 -0.6861584 -0.3946927 
sample estimates:
mean of x mean of y 
 2.359574  2.900000 

^ Results confirmed.
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P min 2 pt t dp,( )⋅ 2 1 pt t dp,( )−( )⋅, := dp

P = minimum(2 Φt(t),1-2 Φt(t)

Probability Value:

IF |t| > C, THEN REJECT H0 

OTHERWISE  ACCEPT H0

Decision Rule:
If Assumptions hold and H0 is true, then t ~t(dp)

Sampling Distribution:

C2 qt 1
α

2
− dp,





:= dpC1 qt
α

2
dp,





:= dp

< α implies C the 'Critical Value' 
   (in X) specified by cumulative
    probability Φt(X) = α/2 for each
    tail of the 'q' function of the t
    Distribution.

C2 inverseΦt 1
α

2
−





:= inverseΦtC1 inverseΦt
α

2






:= inverseΦt

< Probability of Type I error must be explicitly setα 0.05:=

Critical Value of the Test:

dp

s1
2

n1

s2
2

n2
+








2

s1
2

n1








2

n1 1−( )

s2
2

n2








2

n2 1−( )+

:=
n2

Satterthwaite's Method Degrees of Freedom:

< t is the normalized mean X1bar - X2bart
X1bar X2bar−

s1
2

n1

s2
2

n2
+

:=

n2

Test Statistic:
< Two sided test
< No difference in mean between populations X1. & X2. H0: µ1 = µ2

H1: µ1 <> µ2  

Hypotheses:

- Observed values X1,1, X1,2, X1,3, ... X1,n1 are a random sample from ~N(µ1,σ1
2)

- Observed values X2,1, X2,2, X2,3, ... X2,n2 are a random sample from ~N(µ2,σ2
2)

- Variances σ1
2 & σ2

2 are unequal and unknown.
- Samples X1,n1 and X2,n2 are independent.

Assumptions:

This test is employed where two sets of measurements are derived from samples 
failing the F test for equal varainces.

Two Sample t-Test with Unequal VariancesORIGIN 0≡
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s1
2 0.0751= s2 Var MBWT( ):= s2

2 0.2185=

Assumptions:
- Observed values X1,1, X1,2, X1,3, ... X1,n1 are a random sample from ~N(µ1,σ1

2)

- Observed values X2,1, X2,2, X2,3, ... X2,n2 are a random sample from ~N(µ2,σ2
2)

- Variances σ1
2 & σ2

2 are unequal and unknown.
- Samples X1,n1 and X2,n2 are independent.

Hypotheses:
H0: µ1 = µ2

H1: µ1 <> µ2  
< No difference in mean between populations X1. & X2. 

< Two sided test
Test Statistic:

t
X1bar X2bar−

s1
2

n1

s2
2

n2
+

:= t 8.7095−=

Satterthwaite's Method Degrees of Freedom:

dp

s1
2

n1

s2
2

n2
+








2

s1
2

n1








2

n1 1−( )

s2
2

n2








2

n2 1−( )+

:= dp 136.8379=

Critical Value of the Test:
α 0.05:= < Probability of Type I error must be explicitly set

C1 qt
α

2
dp,





:= C2 qt 1
α

2
− dp,





:= C1 C2( ) 1.9775− 1.9775( )=

Confidence Interval for the mean:

X1bar X2bar− C1
s1

2

n1

s2
2

n2
+⋅+ X1bar X2bar− C2

s1
2

n1

s2
2

n2
+⋅+








^ Note that C1 and C2 are explicitly evaluated above so C1 is already negative in value.
    So it is added to X1bar - X2bar here to find the Lower Bound of the CI.

Example (BWT difference between Females and Males):
cats READPRN "c:/2007BiostatsData/cats.txt"( ):=

Females: Males:
i 0 46..:= j 47 143..:=

FBWTi
cats 1〈 〉( )

i:= MBWTj 47−
cats 1〈 〉( )

j:=

FHWTi
cats 2〈 〉( )

i:= MHWTj
cats 2〈 〉( )

j:=

n1 length FBWT( ):= n1 47= n2 length MBWT( ):= n2 97=

X1bar mean FBWT( ):= X1bar 2.3596= X2bar mean MBWT( ):= X2bar 2.9=

s1 Var FBWT( ):=
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^ Same result as "Separate Variance" report above.

 Two-sample t test on BWT grouped by SEX$
 

Group N Mean SD
F           47 2.3595745 0.2739879
M           97 2.9000000 0.4674844
  

     Separate Variance t =   -8.7094885 df =  136.8    Prob =    0.0000000
     Difference in Means =   -0.5404255   95.00% CI = -0.6631268 to -0.4177242

  
       Pooled Variance t =   -7.3306668 df =  142      Prob =    0.0000000

     Difference in Means =   -0.5404255   95.00% CI = -0.6861584 to -0.3946927

CI 0.66312684− 0.41772423−( )=X1bar X2bar− 0.5404255−=

t 8.7094885−=

dp 136.8379=

s2 0.4675=s1 0.274=
< Values from above

X2bar 2.9=X1bar 2.3596=

n2 97=n1 47=

Males:Females:

Prototype of Example in Systat:
CI 0.66312684− 0.41772423−( )=

CI X1bar X2bar− C1
s1

2

n1

s2
2

n2
+⋅+ X1bar X2bar− C2

s1
2

n1

s2
2

n2
+⋅+








:=

Confidence Interval for the mean:

P 8.8818 10 15−
×=P min 2 pt t dp,( )⋅ 2 1 pt t dp,( )−( )⋅, :=

P = minimum(2 Φt(t),1-2 Φt(t)

Probability Value:

t 8.7095−=C1 C2( ) 1.9775− 1.9775( )=

IF |t| > C, THEN REJECT H0 OTHERWISE  ACCEPT H0

Decision Rule:
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Prototype of Example in R:

COMMANDS:

> cats=read.table("c:/2007BiostatsData/cats.txt")
> attach(cats)
> X1=Bwt[Sex=="F"]
> X2=Bwt[Sex=="M"]
> t.test(X1,X2,alternative="two.sided",var.equal=FALSE)
                              OR
> t.test(X1,X2,alternative="two.sided") ^ note specification of unequal variances here.  

   This is the default setting in R 

        Welch Two Sample t-test

data:  X1 and X2 
t = -8.7095, df = 136.838, p-value = 8.831e-15
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval:
 -0.6631268 -0.4177242 
sample estimates:
mean of x mean of y 
 2.359574  2.900000 

^ Results confirmed.
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P min 2 pF F n1 1−, n2 1−,( )⋅ 2 1 pF F n1 1−, n2 1−,( )−( )⋅, := F

P = minimum(2 ΦF(F),1-2 ΦF(F)

Probability Value:

IF |F| > C, THEN REJECT H0 

OTHERWISE  ACCEPT H0

Decision Rule:

C2 qF 1
α

2
− n1 1−, n2 1−,





:= n2C1 qF
α

2
n1 1−, n2 1−,





:= n2

< α implies C the 'Critical Value' 
   (in X) specified by cumulative
    probability ΦF(X) = α/2 for each
    tail of the 'q' function of the F
    Distribution with (n1-1)/(n2-1)
    degrees of freesom.

C2 inverseΦF 1
α

2
−





:= inverseΦFC1 inverseΦF
α

2






:= inverseΦF

< Probability of Type I error must be explicitly setα 0.05:=

Critical Value of the Test:

If Assumptions hold and H0 is true, then F ~F(n1-1)/(n2-1)

Sampling Distribution:

F
s1

2

s2
2

:=
s2

< F is the ratio of sample variances

Test Statistic:

< Two sided test
< No difference in variance between populations X1. & X2. H0: σ1

2 = σ2
2

H1:σ1
2 <> σ2

2
  

Hypotheses:

- Observed values X1,1, X1,2, X1,3, ... X1,n1 are a random sample from ~N(µ1,σ1
2)

- Observed values X2,1, X2,2, X2,3, ... X2,n2 are a random sample from ~N(µ2,σ2
2)

- Samples from the two samples are independent.

Assumptions:

This test tests for equal variances between two samples as a way of deciding which 
t-test to use.

F-Test for Equal Variances in Two SamplesORIGIN 0≡
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Hypotheses:
H0: σ1

2 = σ2
2

H1:σ1
2 <> σ2

2
  

< No difference in variance between populations X1. & X2. 

< Two sided test

Test Statistic:

F
s1

2

s2
2

:= F 0.3435=

Sampling Distribution:
If Assumptions hold and H0 is true, then F ~F(n1-1)/(n2-1)

Critical Value of the Test:
α 0.05:= < Probability of Type I error must be explicitly set

C1 qF
α

2
n1 1−, n2 1−,





:= C2 qF 1
α

2
− n1 1−, n2 1−,





:=

C1 C2( ) 0.5919 1.6155( )=

Decision Rule:

IF |F| > C, THEN REJECT H0 OTHERWISE  ACCEPT H0

C1 C2( ) 0.5919 1.6155( )= F 0.3435=

Probability Value:

P = minimum(2 ΦF(F),1-2 ΦF(F)

P min 2 pF F n1 1−, n2 1−,( )⋅ 2 1 pF F n1 1−, n2 1−,( )−( )⋅, := P 0.0001=

Example (BWT difference between Females and Males):
cats READPRN "c:/2007BiostatsData/cats.txt"( ):=

Females: Males:
i 0 46..:= j 47 143..:=

FBWTi
cats 1〈 〉( )

i:= MBWTj 47−
cats 1〈 〉( )

j:=

FHWTi
cats 2〈 〉( )

i:= MHWTj
cats 2〈 〉( )

j:=

n1 length FBWT( ):= n1 47= n2 length MBWT( ):= n2 97=

X1bar mean FBWT( ):= X1bar 2.3596= X2bar mean MBWT( ):= X2bar 2.9=

s1 Var FBWT( ):= s1
2 0.0751= s2 Var MBWT( ):= s2

2 0.2185=

Assumptions:
- Observed values X1,1, X1,2, X1,3, ... X1,n1 are a random sample from ~N(µ1,σ1

2)

- Observed values X2,1, X2,2, X2,3, ... X2,n2 are a random sample from ~N(µ2,σ2
2)

- Samples from the two samples are independent.
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^ calculation confirmed.  Note that we do not have a formula for calculating the 
   Confidence Interval of the ratio reported here by R.

        F test to compare two variances

data:  X1 and X2 
F = 0.3435, num df = 46, denom df = 96, p-value = 0.0001157
alternative hypothesis: true ratio of variances is not equal to 1 
95 percent confidence interval:
 0.2126277 0.5803475 
sample estimates:
ratio of variances 
         0.3435015 

COMMANDS:

> cats=read.table("c:/2007BiostatsData/cats.txt")
> attach(cats)
> X1=Bwt[Sex=="F"]
> X2=Bwt[Sex=="M"]
> var.test(X1,X2,alternative="two.sided",conf.level=0.95)

df2 96=df2 n2 1−:=P 0.0001=

df1 46=df1 n1 1−:=F 0.3435=

s2
2 0.2185=s1

2 0.0751=
< Values from above

X2bar 2.9=X1bar 2.3596=

n2 97=n1 47=

Males:Females:

Prototype of Example in R:
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POWER pnorm z D+ 0, 1,( ):= D

Example: Cardiovascular Disease - Rosner Ex. 8.29 p. 332:

Sample Size:

X1bar 132.86:= s1 15.34:= < we will use Xbar & s from the samples as point
     estimates for σ & µ of the populations X2bar 127.44:= s2 18.23:=

∆ X1bar X2bar−:= ∆ 5.42=

α 0.05:= β 0.2:= < parameters must be explicitly set to estimate N

n
s1

2 s2
2

+



 qnorm 1 β− 0, 1,( ) qnorm 1

α

2
− 0, 1,





+





2







⋅

∆
2

:= n 151.6661=

^ sample size confirmed p. 332

ORIGIN 0≡ POWER & Sample Size in t-Tests for Two Samples

Estimates for sample size (N) and power (1-β) on this page are similar to that seen in 
Biostatistics Worksheet 24, but here for comparing two samples.  The methods 
assume knowledge of σ12 and σ22 which, of course we do not know, and the Normal 
distribution N(0,1).  Thus, values obtained can only be considered approximate.

Two Samples of Equal Size:
Assumptions:

- Observed values X1,1, X1,2, X1,3, ... X1,n are a random sample from ~N(µ1,σ1
2)

- Observed values X2,1, X2,2, X2,3, ... X2,n are a random sample from ~N(µ2,σ2
2)

- Samples from the two samples are independent
- Population variances σ1

2 = σ2
2

Estimated Sample Size: 

α 0.05:= < Type I error rate must be explicitly set

β 0.10:= < Type II error rate must be explicitly set

∆ = µ1 - µ2 < desired distance between means must be explicitly set

n
σ1

2
σ2

2
+



 qnorm 1 β− 0, 1,( ) qnorm 1

α

2
− 0, 1,





+





2







⋅

∆
2

:=

∆

Estimated POWER:

z qnorm
α

2
0, 1,





:=

D
∆

σ1
2

n1

σ2
2

n2
+

:=

n2
< here n1 = n2 = n, but this Power calculation also 
    applies to samples of unequal size. See below.
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power calculation approximately confirmed >

     Two-sample t test power calculation 

              n = 100
          delta = 5
             sd = 16.785
      sig.level = 0.05
          power = 0.5541596
    alternative = two.sided

 NOTE: n is number in *each* group

COMMANDS:

> s1=15.34
> s2=18.23
> SD=mean(c(s1,s2))
> power.t.test(n=100,delta=5,sd=16.785,sig.level=0.05,power=NULL,
   type="two.sample",alternative="two.sided")

Power:

Sample size calculation approximately confirmed >

     Two-sample t test power calculation 

              n = 151.5167
          delta = 5.42
             sd = 16.785
      sig.level = 0.05
          power = 0.8
    alternative = two.sided

 NOTE: n is number in *each* group 

COMMANDS:

> X1bar=132.86
> X2bar=127.44
> del=X1bar-X2bar
> s1=15.34
> s2=18.23
> SD=mean(c(s1,s2))
> power.t.test(n=NULL,delta=del,sd=SD,sig.level=0.05,power=0.8,
   type="two.sample",alternative="two.sided")

Sample Size:
Note from R documentation:

Exactly one of the parameters n, 
delta, power, sd, and sig.level must 
be passed as NULL, and that 
parameter is determined from the 
others.

Prototype in R:

< confirmed p. 334POWER 0.5551=POWER pnorm z D+ 0, 1,( ):=

D 2.0986=
D

∆

s1
2

n1

s2
2

n2
+

:=

z 1.96−=z qnorm
α

2
0, 1,





:=

∆ 5:=n2 100:=n1 100:=

Power:



2007 Biostatistics 30 t-Test Power & Sample Size 3

X1bar 132.86:= s1 15.34:= < we will use Xbar & s from the samples as point
     estimates for σ & µ of the populations X2bar 127.44:= s2 18.23:=

∆ X1bar X2bar−:= ∆ 5.42=

α 0.05:= β 0.2:= qnorm 1 β− 0, 1,( ) 0.8416=

k 2:=
qnorm 1

α

2
− 0, 1,





1.96=

∆
2

29.3764=

n1

s1
2 s2

2

k
+








qnorm 1 β− 0, 1,( ) qnorm 1

α

2
− 0, 1,





+





2







⋅

∆
2

:= n1 107.2692=

n2

k s1
2

⋅ s2
2

+



 qnorm 1 β− 0, 1,( ) qnorm 1

α

2
− 0, 1,





+





2







⋅

∆
2

:= n2 214.5385=

values approximately confirmed p. 333 ^

Two Samples of Unequal Size:
Assumptions:

- Observed values X1,1, X1,2, X1,3, ... X1,n1 are a random sample from ~N(µ1,σ1
2)

- Observed values X2,1, X2,2, X2,3, ... X2,n2 are a random sample from ~N(µ2,σ2
2)

- Samples from the two samples are independent
- Population variances σ1

2 = σ2
2

Estimated Sample Size: 
α 0.05:= < Type I error rate must be explicitly set

β 0.10:= < Type II error rate must be explicitly set

∆ = µ1 - µ2 < desired distance between means must be set

n1
n2

k
:=

k
< k must be set to determine relative size of n1 & n2

n1

σ1
2 σ2

2

k
+







qnorm 1 β− 0, 1,( ) qnorm 1

α

2
− 0, 1,





+





2







⋅

∆
2

:=
k

n2

k σ1
2

⋅ σ2
2

+



 qnorm 1 β− 0, 1,( ) qnorm 1

α

2
− 0, 1,





+





2







⋅

∆
2

:=

σ2

Estimated POWER:
Same as above...

Example: Rosner Ex 8.30 p. 333
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ρ .7:= δ 5:=

sd s1
2 s2

2
+ 2 ρ⋅ s1⋅ s2⋅−:= sd

2 135=

α 0.05:= β 0.20:=

Estimated Sample Size: 

n
2 sd

2
⋅



 qnorm 1 β− 0, 1,( ) qnorm 1

α

2
− 0, 1,





+





2







⋅

δ
2

:= n 84.7679=

^ confirmed p. 336
Estimated POWER:

n 75:= α 0.05:= β 0.20:= δ 5:= sd
2 135=

z qnorm
α

2
0, 1,





:= z 1.96−=

D
n δ⋅

sd 2⋅
:= D 2.6352=

POWER pnorm z D+ 0, 1,( ):= POWER 0.7502=

^ confirmed p. 336

Two Samples with Paired Design:
Assumptions:

- Observed values X1,1, X1,2, X1,3, ... X1,n are a random sample exactly matched with
  Observed values X2,1, X2,2, X2,3, ... X2,n across individuals 1,2,3, ... ,n.

- Let di = X2,i -X1,i for each individual i are a random sample from ~N(µd,σd
2).

- Variance σd
2 of the popopulation σ2 is unknown.

Variance of the differences (di) given correlation of the observations:

ρ corr X1. X2.,( ):= X2.

σd
2

σ1
2

σ2
2

+ 2 ρ⋅ σ1⋅ σ2⋅−:=σd
2

σ1
2

σ2
2

+ 2 ρ⋅ σ1⋅ σ2⋅−:= < variance of di in terms of variance for each
    population and correlation coefficient ρ 

Estimated Sample Size: 
α 0.05:= < Type I error rate must be explicitly set

β 0.10:= < Type II error rate must be explicitly set

δ = µ1 - µ2 < desired distance between means must be set

n
2 σd

2
⋅



 qnorm 1 β− 0, 1,( ) qnorm 1

α

2
− 0, 1,





+





2







⋅

δ
2

:=

σd

Estimated POWER:

z qnorm
α

2
0, 1,





:=

D
n δ⋅

σd 2⋅
:=

σd

POWER pnorm z D+ 0, 1,( ):= D

Example: Hypertension Rosner Ex 8.33 p. 334-336

s1 15:= s2 15:=
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Prototype in R: Note from R documentation:

Exactly one of the parameters n, 
delta, power, sd, and sig.level must 
be passed as NULL, and that 
parameter is determined from the 
others.

Sample Size:

COMMANDS:

> s1=15
> s2=15
> del=5
> rho=0.7
> SD=sqrt(s1^2+s2^2-2*rho*s1*s2)
> power.t.test(n=NULL,delta=del,sd=SD,sig.level=0.05,power=0.8,
  type="paired",alternative="two.sided")

 Paired t test power calculation 

              n = 44.34303
          delta = 5
             sd = 11.61895
      sig.level = 0.05
          power = 0.8
    alternative = two.sided

 NOTE: n is number of *pairs*, sd is std.dev. of *differences* within 
pairs 

half of what I expected >

> power.t.test(n=NULL,delta=del,sd=SD,sig.level=0.05,power=0.8,
    type="two.sample",alternative="two.sided")

 Two-sample t test power calculation 

              n = 85.73891
          delta = 5
             sd = 11.61895
      sig.level = 0.05
          power = 0.8
    alternative = two.sided

 NOTE: n is number in *each* group 

approximately what I expected >

Power:

COMMANDS"

> power.t.test(n=75,delta=del,sd=SD,sig.level=0.05,power=NULL, 
    type="two.sample",alternative="two.sided")

 Two-sample t test power calculation 

              n = 75
          delta = 5
             sd = 11.61895
      sig.level = 0.05
          power = 0.7447735
    alternative = two.sided

 NOTE: n is number in *each* group 

approximately what I expected >
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> power.t.test(n=75,delta=del,sd=SD,sig.level=0.05,power=NULL, 
    \ type="paired",alternative="two.sided")

 Paired t test power calculation 

              n = 75
          delta = 5
             sd = 11.61895
      sig.level = 0.05
          power = 0.9571042
    alternative = two.sided

 NOTE: n is number of *pairs*, sd is std.dev. of 
*differences* within pairs 

not what I expected! >



Assignment for Week 8 
Today we extend our survey of the standard two-population tests into the realm of 
nonparametric statistics.  Given the number of tests in this course (and there are many in 
addition we will not cover), it is important to begin placing all statistical tests within an 
analytic framework.  In general, for each strategy of data collection and analysis 
represented by paired and separate population t-test designs, there are corresponding 
nonparametric tests that cover much the same ground.  Although less powerful because 
they consult less information derived from the data, they are often employed when 
parametric or other nonparametric tests “fail” due to violation of one or more underlying 
assumptions.  The question of failure of tests due to lack of normality or sample size is 
often not a clear-cut decision, but a judgment call where degree, amount or importance of 
failure relative to the conclusion reached by the test should also be considered.  
Generally, I advise analyzing problems using multiple tests to compare results.  If all the 
tests say the same thing, then it hardly matters which test to use.  In publishing, I 
generally report the most conservative test, or occasionally all of them, to avoid 
complications with reviewers who may have a personal preference for one over another.  
When the different tests give importantly different probability levels then analysis 
becomes much more interesting and, in my opinion, stops being a strictly statistical 
problem.  At issue is whether the extra information embedded in a “flawed” parametric 
test versus “correct” nonparametric test has meaning and value.  If it does, then every 
effort must be made to utilize it.  Sometimes a “variance stabilizing” or other kind of 
non-linear transformation corrects a flaw sufficiently to allow the parametric test.  The 
results can then be back-transformed (using the transformation inverse) to obtain results 
in the “space” of the original variables.  Other times, another test having “weird poisson” 
(or whatever) distribution and the exact design parameters that you need is already sitting 
in literature just waiting for you.  When in doubt, I consult a “real” statistician.  
Occasionally it helps.      

So, this week use both R and SPSS and try the following tasks.  Note also that I have 
posted R documentation for you on our website.  For each below, check the course 
website, R, or SPSS, for a suitable dataset.  You may have to manipulate your data in 
Excel or Notepad or Word to get it in a form you can use.  This is definitely part of the 
game of analyzing statistics using a computer, so work on your skills here.  For each item 
in the list below, run the same dataset using the parametric and non-parametric analogs, 
and compare your results. 

1. Paired t-test and non-parametric analogs.   

2. Two population t-tests with equal and unequal variances and 
non-parametric analog.  



Exact Binomial Test 

Description 

Performs an exact test of a simple null hypothesis about the probability of success in a 
Bernoulli experiment.  

Usage 

binom.test(x, n, p = 0.5, 
           alternative = c("two.sided", "less", "greater"), 
           conf.level = 0.95) 

Arguments 

x number of successes, or a vector of length 2 giving the numbers of 
successes and failures, respectively. 

n number of trials; ignored if x has length 2. 
p hypothesized probability of success. 
alternative indicates the alternative hypothesis and must be one of "two.sided", 

"greater" or "less". You can specify just the initial letter. 
conf.level confidence level for the returned confidence interval. 

Details 

Confidence intervals are obtained by a procedure first given in Clopper and Pearson 
(1934). This guarantees that the confidence level is at least conf.level, but in general 
does not give the shortest-length confidence intervals.  

Value 

A list with class "htest" containing the following components:  

statistic the number of successes. 
parameter the number of trials. 
p.value the p-value of the test. 
conf.int a confidence interval for the probability of success. 
estimate the estimated probability of success. 
null.value the probability of success under the null, p. 
alternative a character string describing the alternative hypothesis.
method the character string "Exact binomial test". 



data.name a character string giving the names of the data. 

References 

Clopper, C. J. & Pearson, E. S. (1934). The use of confidence or fiducial limits illustrated 
in the case of the binomial. Biometrika, 26, 404–413.  

William J. Conover (1971), Practical nonparametric statistics. New York: John Wiley & 
Sons. Pages 97–104.  

Myles Hollander & Douglas A. Wolfe (1973), Nonparametric statistical inference. New 
York: John Wiley & Sons. Pages 15–22.  

See Also 

prop.test for a general (approximate) test for equal or given proportions.  

Examples 

## Conover (1971), p. 97f. 
## Under (the assumption of) simple Mendelian inheritance, a cross 
##  between plants of two particular genotypes produces progeny 1/4 of 
##  which are "dwarf" and 3/4 of which are "giant", respectively. 
##  In an experiment to determine if this assumption is reasonable, a 
##  cross results in progeny having 243 dwarf and 682 giant plants. 
##  If "giant" is taken as success, the null hypothesis is that p = 
##  3/4 and the alternative that p != 3/4. 
binom.test(c(682, 243), p = 3/4) 
binom.test(682, 682 + 243, p = 3/4)   # The same. 
## => Data are in agreement with the null hypothesis. 

 
[Package stats version 2.4.1 Index] 
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Pairwise Wilcoxon rank sum tests 

Description 

Calculate pairwise comparisons between group levels with corrections for multiple 
testing.  

Usage 

pairwise.wilcox.test(x, g, p.adjust.method = p.adjust.methods, ...) 

Arguments 

x Response vector  
g Grouping vector or factor  
p.adjust.method Method for adjusting p values (see p.adjust) 
... Additional arguments to pass to wilcox.test.

Value 

Object of class "pairwise.htest" 

See Also 

wilcox.test, p.adjust  

Examples 

attach(airquality) 
Month <- factor(Month, labels = month.abb[5:9]) 
## These give warnings because of ties : 
pairwise.wilcox.test(Ozone, Month) 
pairwise.wilcox.test(Ozone, Month, p.adj = "bonf") 
detach() 

 
[Package stats version 2.4.1 Index] 
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Power calculations two sample test for proportions 

Description 

Compute power of test, or determine parameters to obtain target power.  

Usage 

power.prop.test(n = NULL, p1 = NULL, p2 = NULL, sig.level = 0.05, 
                power = NULL, 
                alternative = c("two.sided", "one.sided"), 
                strict = FALSE) 

Arguments 

n Number of observations (per group) 
p1 probability in one group 
p2 probability in other group 
sig.level Significance level (Type I error probability) 
power Power of test (1 minus Type II error probability)
alternative One- or two-sided test 
strict Use strict interpretation in two-sided case 

Details 

Exactly one of the parameters n, p1, p2, power, and sig.level must be passed as NULL, 
and that parameter is determined from the others. Notice that sig.level has a non-
NULL default so NULL must be explicitly passed if you want it computed.  

If strict = TRUE is used, the power will include the probability of rejection in the 
opposite direction of the true effect, in the two-sided case. Without this the power will be 
half the significance level if the true difference is zero.  

Value 

Object of class "power.htest", a list of the arguments (including the computed one) 
augmented with method and note elements. 

Note 



uniroot is used to solve power equation for unknowns, so you may see errors from it, 
notably about inability to bracket the root when invalid arguments are given. If one of 
them is computed p1 < p2 will hold, although this is not enforced when both are 
specified.  

Author(s) 

Peter Dalgaard. Based on previous work by Claus Ekstrøm  

See Also 

prop.test, uniroot  

Examples 

 power.prop.test(n = 50, p1 = .50, p2 = .75) 
 power.prop.test(p1 = .50, p2 = .75, power = .90) 
 power.prop.test(n = 50, p1 = .5, power = .90) 

 
[Package stats version 2.4.1 Index] 
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Wilcoxon Rank Sum and Signed Rank Tests 

Description 

Performs one and two sample Wilcoxon tests on vectors of data; the latter is also known 
as ‘Mann-Whitney’ test.  

Usage 

wilcox.test(x, ...) 
 
## Default S3 method: 
wilcox.test(x, y = NULL, 
            alternative = c("two.sided", "less", "greater"), 
            mu = 0, paired = FALSE, exact = NULL, correct = TRUE, 
            conf.int = FALSE, conf.level = 0.95, ...) 
 
## S3 method for class 'formula': 
wilcox.test(formula, data, subset, na.action, ...) 

Arguments 

x numeric vector of data values. Non-finite (e.g. infinite or missing) values 
will be omitted. 

y an optional numeric vector of data values. 
alternative a character string specifying the alternative hypothesis, must be one of 

"two.sided" (default), "greater" or "less". You can specify just the 
initial letter. 

mu a number specifying an optional parameter used to form the null 
hypothesis. See Details. 

paired a logical indicating whether you want a paired test. 
exact a logical indicating whether an exact p-value should be computed. 
correct a logical indicating whether to apply continuity correction in the normal 

approximation for the p-value. 
conf.int a logical indicating whether a confidence interval should be computed. 
conf.level confidence level of the interval. 
formula a formula of the form lhs ~ rhs where lhs is a numeric variable giving 

the data values and rhs a factor with two levels giving the corresponding 
groups. 

data an optional matrix or data frame (or similar: see model.frame) containing 



the variables in the formula formula. By default the variables are taken 
from environment(formula). 

subset an optional vector specifying a subset of observations to be used. 
na.action a function which indicates what should happen when the data contain NAs. 

Defaults to getOption("na.action"). 
... further arguments to be passed to or from methods. 

Details 

The formula interface is only applicable for the 2-sample tests.  

If only x is given, or if both x and y are given and paired is TRUE, a Wilcoxon signed 
rank test of the null that the distribution of x (in the one sample case) or of x - y (in the 
paired two sample case) is symmetric about mu is performed.  

Otherwise, if both x and y are given and paired is FALSE, a Wilcoxon rank sum test 
(equivalent to the Mann-Whitney test: see the Note) is carried out. In this case, the null 
hypothesis is that the distributions of x and y differ by a location shift of mu and the 
alternative is that they differ by some other location shift (and the one-sided alternative 
"greater" is that x is shifted to the right of y).  

By default (if exact is not specified), an exact p-value is computed if the samples contain 
less than 50 finite values and there are no ties. Otherwise, a normal approximation is 
used.  

Optionally (if argument conf.int is true), a nonparametric confidence interval and an 
estimator for the pseudomedian (one-sample case) or for the difference of the location 
parameters x-y is computed. (The pseudomedian of a distribution F is the median of the 
distribution of (u+v)/2, where u and v are independent, each with distribution F. If F is 
symmetric, then the pseudomedian and median coincide. See Hollander & Wolfe (1973), 
page 34.) If exact p-values are available, an exact confidence interval is obtained by the 
algorithm described in Bauer (1972), and the Hodges-Lehmann estimator is employed. 
Otherwise, the returned confidence interval and point estimate are based on normal 
approximations.  

With small samples it may not be possible to achieve very high confidence interval 
coverages. If this happens a warning will be given and an interval with lower coverage 
will be substituted.  

Value 

A list with class "htest" containing the following components:  

statistic the value of the test statistic with a name describing it. 



parameter the parameter(s) for the exact distribution of the test statistic. 
p.value the p-value for the test. 
null.value the location parameter mu. 
alternative a character string describing the alternative hypothesis. 
method the type of test applied. 
data.name a character string giving the names of the data. 
conf.int a confidence interval for the location parameter. (Only present if argument 

conf.int = TRUE.) 
estimate an estimate of the location parameter. (Only present if argument conf.int 

= TRUE.) 

Warning 

This function can use large amounts of memory and stack (and even crash R if the stack 
limit is exceeded) if exact = TRUE and one sample is large (several thousands or more).  

Note 

The literature is not unanimous about the definitions of the Wilcoxon rank sum and 
Mann-Whitney tests. The two most common definitions correspond to the sum of the 
ranks of the first sample with the minimum value subtracted or not: R subtracts and S-
PLUS does not, giving a value which is larger by m(m+1)/2 for a first sample of size m. 
(It seems Wilcoxon's original paper used the unadjusted sum of the ranks but subsequent 
tables subtracted the minimum.)  

R's value can also be computed as the number of all pairs (x[i], y[j]) for which y[j] 
is not greater than x[i], the most common definition of the Mann-Whitney test.  

References 

David F. Bauer (1972), Constructing confidence sets using rank statistics. Journal of the 
American Statistical Association 67, 687–690.  

Myles Hollander & Douglas A. Wolfe (1973), Nonparametric statistical inference. New 
York: John Wiley & Sons. Pages 27–33 (one-sample), 68–75 (two-sample). 
Or second edition (1999).  

See Also 

psignrank, pwilcox.  

wilcox.exact in exactRankTests covers much of the same ground, but also produces 
exact p-values in the presence of ties.  



wilcox_test in package coin for exact and approximate conditional p-values for the 
Wilcoxon tests.  

kruskal.test for testing homogeneity in location parameters in the case of two or more 
samples; t.test for an alternative under normality assumptions [or large samples]  

Examples 

## One-sample test. 
## Hollander & Wolfe (1973), 29f. 
## Hamilton depression scale factor measurements in 9 patients with 
##  mixed anxiety and depression, taken at the first (x) and second 
##  (y) visit after initiation of a therapy (administration of a 
##  tranquilizer). 
x <- c(1.83,  0.50,  1.62,  2.48, 1.68, 1.88, 1.55, 3.06, 1.30) 
y <- c(0.878, 0.647, 0.598, 2.05, 1.06, 1.29, 1.06, 3.14, 1.29) 
wilcox.test(x, y, paired = TRUE, alternative = "greater") 
wilcox.test(y - x, alternative = "less")    # The same. 
wilcox.test(y - x, alternative = "less", 
            exact = FALSE, correct = FALSE) # H&W large sample 
                                            # approximation 
 
## Two-sample test. 
## Hollander & Wolfe (1973), 69f. 
## Permeability constants of the human chorioamnion (a placental 
##  membrane) at term (x) and between 12 to 26 weeks gestational 
##  age (y).  The alternative of interest is greater permeability 
##  of the human chorioamnion for the term pregnancy. 
x <- c(0.80, 0.83, 1.89, 1.04, 1.45, 1.38, 1.91, 1.64, 0.73, 1.46) 
y <- c(1.15, 0.88, 0.90, 0.74, 1.21) 
wilcox.test(x, y, alternative = "g")        # greater 
wilcox.test(x, y, alternative = "greater", 
            exact = FALSE, correct = FALSE) # H&W large sample 
                                            # approximation 
 
wilcox.test(rnorm(10), rnorm(10, 2), conf.int = TRUE) 
 
## Formula interface. 
boxplot(Ozone ~ Month, data = airquality) 
wilcox.test(Ozone ~ Month, data = airquality, 
            subset = Month %in% c(5, 8)) 

 
[Package stats version 2.4.1 Index] 
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IF C outside interval CV = (c1,c2) THEN REJECT H0 

OTHERWISE  ACCEPT H0

Decision Rule:

c2
n
2

1
2

−





n
4

qnorm 1
α

2
− 0, 1,





⋅−:=
n

c1
n
2

1
2

+
n
4

qnorm 1
α

2
− 0, 1,





⋅+:=
n

c2
n
2

1
2

−





n
4

inverseΦN 1
α

2
− 0, 1,





⋅−:= inverseΦNc1
n
2

1
2

+
n
4

inverseΦN 1
α

2
− 0, 1,





⋅+:= inverseΦN

< Probability of Type I error must be explicitly setα 0.05:=

Critical Value of the Test:

< used only for simplified calculation of Probability belowD = number of di's where di is -

C = number of di's where di is +

Test Statistic:

Normal Approximation:

- IF number of non-zero di < 20 THEN use Exact Method 
  OTHERWISE Normal Approximation may be used

Criterion for Normal Approximation:

< Two sided test
< No population ordinal difference in median H0: ∆ = 0

H1: ∆ <> 0  

Hypotheses:

- Observed values X1,1, X1,2, X1,3, ... X1,n are a random sample exactly matched with
  Observed values X2,1, X2,2, X2,3, ... X2,n across individuals 1,2,3, ... ,n.
- Let the value di = X2,i -X1,i for each individual i be assessed as |di| = rank order of single
     observations or discrete classes of observations with observed frequency.
- The di's are independent.
- The underlying distribution of the di's is continuous & symmetric but not necessarily a
    Normal Distribution.
- All di's have the same median

Assumptions:

The Sign Test is a nonparametric analog to the paired t Test.  It requires the use of ordinal 
data - data that can be ordered but has no specific numerical values.  Of course, ordinal 
data can be constructed from cardinal data - metric data to which standard arithmetic and 
measuring distances apply.  Conversion is typically done when a parametric test violates 
the underlying assumption of normality.  However, doing so involves loss of information 
and, as a result, lessens power of the test.

Sign TestORIGIN 0≡
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C 18:= D 22:=

Critical Value of the Test:
α 0.05:= < Probability of Type I error must be explicitly set

c1
n
2

1
2

+
n
4

qnorm 1
α

2
− 0, 1,





⋅+:= c2
n
2

1
2

−





n
4

qnorm 1
α

2
− 0, 1,





⋅−:=

c1 26.698= c2 13.302= CV c1 c2( ):=

Decision Rule:
IF C outside interval CV = ( c1, c2) THEN REJECT H0 OTHERWISE  ACCEPT H0

C 18= CV 26.698 13.302( )= < confirmed p. 364

Probability Value:

P 2 1 pnorm
C D− 1−

n
0, 1,







−






⋅:= P 0.6353=

^ confirmed p. 364

Probability Value:

P 2 1 ΦN
C D− 1−

n







−






⋅:=
n

< for C <> D OTHERWISE P = 1.0 

P 2 1 pnorm
C D− 1−

n
0, 1,







−






⋅:=
n

Example: 
Dermatology Example Rosner Ex. 9.8 p. 364:
  Arm A > B = 22
  Arm B < A = 18
  Arm A = B = 5

n 22 18+:= n 40=

Paired SampleAssumptions:

- Observed values X1,1, X1,2, X1,3, ... X1,n are a random sample exactly matched with
  Observed values X2,1, X2,2, X2,3, ... X2,n across individuals 1,2,3, ... ,n.
- Let the value di = X2,i -X1,i for each individual i only be assessed as +, -, or =.

Hypotheses:
H0: ∆ = 0
H1: ∆ <> 0  

< No population ordinal difference 

< Two sided test

Criterion for Normal Approximation:

- IF number of non-zero di < 20 THEN use Exact Method 
  OTHERWISE Normal Approximation may be used n 40= < qualifies!

Normal Approximation:

Test Statistic:
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Be sure you can use Table 1 in the Appendix to do this!

Note that if α = 0.05 then P > 0.05 
    and we do not reject H0

confirmed p. 366 ^

P 0.1094=< for C > n/2P 2

C

n

k

combin n k,( )
1
2





n
⋅∑

=

⋅:=

Probability Value:

C 8:=

Test Statistic:

Binomial Exact Calculation:

< NOT 
qualified!

n 10=
- IF number of non-zero di < 20 THEN use Exact Method 
  OTHERWISE Normal Approximation may be used

Criterion for Normal Approximation:

< Two sided test
< No population ordinal difference 

Exact Method:

Test Statistic:
C = number of di's where di is +

Probability Value:
IF C > n/2

P 2

C

n

k

combin n k,( )
1
2





n
⋅∑

=

⋅:=

IF C < n/2
P 2

0

C

k

combin n k,( )
1
2





n
⋅∑

=

⋅:=

OTHERWISE C = n/2 and P = 1.0

Example: 
Ophthalmology Example Rosner Ex. 9.9 p. 365-366:
  Drug A better than B = 8
  Drug B better than A = 2
  Drugs A & B equal    = 5 

n 8 2+:= n 10=

Paired SampleAssumptions:

- Observed values X1,1, X1,2, X1,3, ... X1,n are a random sample exactly matched with
  Observed values X2,1, X2,2, X2,3, ... X2,n across individuals 1,2,3, ... ,n.
- Let the value di = X2,i -X1,i for each individual i only be assessed as +, -, or =.

Hypotheses:
H0: ∆ = 0
H1: ∆ <> 0  
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n 71= < qualified!

Normal Approximation:

Test Statistic:

C 42= D 29=

Critical Value of the Test:
α 0.05:= < Probability of Type I error must be explicitly set

c1
n
2

1
2

+
n
4

qnorm 1
α

2
− 0, 1,





⋅+:= c2
n
2

1
2

−





n
4

qnorm 1
α

2
− 0, 1,





⋅−:=

c1 44.2575= c2 26.7425= CV c1 c2( ):=

Decision Rule:
IF C outside interval CV = ( c1, c2) THEN REJECT H0 OTHERWISE  ACCEPT H0

C 42= CV 44.2575 26.7425( )=

Prototype in Systat & R:

X READPRN "C:/2007BiostatsData/AnorexiaALL.txt"( ):=

n length X 0〈 〉( ):= n 72=

d sort X 0〈 〉 X 1〈 〉−( ):=

C 42:= n 71:= D n C−:= D 29=

X

0 1
0
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

80.7 80.2
89.4 80.1

91.8 86.4

74 86.3

78.1 76.1

88.3 78.1

87.3 75.1

75.1 86.7

80.6 73.5

78.4 84.6

77.6 77.4

88.7 79.5

81.3 89.6

78.1 81.4

70.5 81.8

77.3 77.3

= d

0
0
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

-21.5
-20.9

-17.1

-15.9

-15.4

-14.9

-13.6

-13.4

-13.1

-12.6

-12.3

-11.7

-11.6

-11.4

-11.3

-11

=

Paired SampleAssumptions:

- Observed values X1,1, X1,2, X1,3, ... X1,n are a random sample exactly matched with
  Observed values X2,1, X2,2, X2,3, ... X2,n across individuals 1,2,3, ... ,n.
- Let the value di = X2,i -X1,i for each individual i only be assessed as +, -, or =.

Hypotheses:
H0: ∆ = 0
H1: ∆ <> 0  

< No population ordinal difference 

< Two sided test

Criterion for Normal Approximation:
- IF number of non-zero di < 20 THEN use Exact Method 
  OTHERWISE Normal Approximation may be used
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^ Here I had to count by hand C = number of + or "successes" out of n trials without tie.

The results are a straight-forward binomial test for binomial parameter p = 0. 

        Exact binomial test

data:  42 and 71 
number of successes = 42, number of trials = 71, p-value = 0.1539
alternative hypothesis: true probability of success is not equal to 0.5 
95 percent confidence interval:
 0.4684018 0.7068122 
sample estimates:
probability of success 
             0.5915493 

COMMANDS:
> X=read.table("C:/2007BiostatsData/anorexia.txt")
> X
> binom.test(42,71,p=0.5,alternative="two.sided",conf.level=0.95)

R Results:
^ My guess is the SYSTAT uses the Normal Approximation here!

< afterX 1〈 〉
< beforeX 0〈 〉 Sign test results

 
  Counts of differences (row variable greater than column)

BEFORE AFTER
BEFORE 0 29
AFTER 42 0 

 
  Two-sided probabilities for each pair of variables

BEFORE AFTER
BEFORE  1.0000000
AFTER     0.1544065      1.0000000

Systat Results:

P 0.1539=< for C > n/2P 2

C

n

k

combin n k,( )
1
2





n
⋅∑

=

⋅:=

Probability Value:
C 42=

Test Statistic:

Binomial Exact Calculation:

P 0.1544=P 2 1 pnorm
C D− 1−

n
0, 1,







−






⋅:=

Probability Value:
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where t is the number (count) 
of members of each class

T
RSpos

n n 1+( )⋅

4
−

1
2

−





n n 1+( )⋅ 2 n⋅ 1+( )⋅

24

t3 t−( )∑
48

−

:=

t

IF RSpos <> n(n+1)/4 AND there ARE ties THEN:

T
RSpos

n n 1+( )⋅

4
−

1
2

−





n n 1+( )⋅ 2 n⋅ 1+( )⋅

24

:=

n

IF RSpos <> n(n+1)/4 AND there are NO ties THEN:

Test Statistic:

- Ignore all di's = 0 - Don't include them in the rankings.
- The |di|'s are ranked (Ri = rank(|di|) according to their absolute value 
                    with smallest |di| = 1 and largest |di| = n.
- Give all  di's with same absolute value the same average rank.
- Count number of ties (tj) for each group (g) of ties for the di's 
- Compute the Rank Sum [RSpos] of positive di's. 

Rank Data and Sum:
Normal Approximation:

- IF number of non-zero di < 16 THEN use Special Tables e.g., Rosner Table 11 in Appendix 
  OTHERWISE Normal Approximation may be used

Criterion for Normal Approximation:

< Two sided test
< No population ordinal difference in medianH0: ∆ = 0

H1: ∆ <> 0  

Hypotheses:

- Observed values X1,1, X1,2, X1,3, ... X1,n are a random sample exactly matched with
  Observed values X2,1, X2,2, X2,3, ... X2,n across individuals 1,2,3, ... ,n.
- Let the value di = X2,i -X1,i for each individual i be assessed as |di| = rank order of single
     observations or discrete classes of observations with observed frequency.
- The di's are independent.
- The underlying distribution of the di's is continuous & symmetric but not necessarily a
    Normal Distribution.
- All di's have the same median

Assumptions:

The Signed-Rank Test is a nonparametric analog to the paired t Test utilizing more 
information than available in the Sign Test.  The Signed-Rank test requires use of ordinal 
data that can be ordered, or ranked, according to amount of effect.  However, amount of 
effect need not have meaning beyond order of classes of data. 

Wilcoxon Signed-Rank TestORIGIN 0≡
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count countneg countpos+:=

i 0 length R( ) 1−..:=

n

i

counti∑:= n 40=

< average rank: (40+40)/2

< average rank: (37-39)/2

< average rank: (35+36)/2

< average rank: (33-34)/2
R

8

7

6

5

4

3

2

1

























= count

1

3

2

2

1

7

10

14

























= AR

40

38

35.5

33.5

32

28

19.5

7.5

























:= < average rank:(32+32)/2 

< average rank:(25+31)/2

< average rank:(15+24)/2

< average rank:(1+14)/2

RSpos 10 7.5⋅ 6 19.5⋅+ 2 28⋅+:= RSpos 248= < sum of the ranks for positive di's

^ verified p. 370
n n 1+( )⋅

4
410= < criterion for test statistic T < expected rank sum verified p. 370

IF RSpos = n(n+1)/4 THEN:

T 0:=

GENERAL ALTERNATIVE TO THE ABOVE:

j 1 g..:= 1 g..

T
RSpos

n n 1+( )⋅

4
−

1
2

−





j

t j ARj( )2⋅





4∑

:=

AR

where ARj represents the average 
rank of each class j

Critical Value of the Test:
α 0.05:= < Probability of Type I error must be explicitly set

C inverseΦN 1
α

2
−





:= inverseΦN C qnorm 1
α

2
− 0, 1,





:=

Decision Rule:
IF T > C THEN REJECT H0 

OTHERWISE  ACCEPT H0

Probability Value:
P 2 1 ΦN T( )−( )⋅:= T P 2 1 pnorm T 0, 1,( )−( )⋅:= T

Example: 
Dermatology Example 
Rosner Ex 9.12, p. 370

dneg

8−

7−

6−

5−

4−

3−

2−

1−

























:= countneg

1

3

2

2

1

5

4

4

























:= dpos

8

7

6

5

4

3

2

1

























:= countpos

0

0

0

0

0

2

6

10

























:=R dpos:=
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RSpos
n n 1+( )⋅

4
−

1
2

−





161.5=

^ verified p. 370
T

RSpos
n n 1+( )⋅

4
−

1
2

−





j

t j ARj( )2⋅





4∑

:= T 2.1877=

^ verified p. 370

j

t j ARj( )2⋅





4∑ 5449.75=

^ verified p. 370

Critical Value of the Test:
α 0.05:= < Probability of Type I error must be explicitly set

C qnorm 1
α

2
− 0, 1,





:= C 1.96=

Decision Rule:
IF T > C THEN REJECT H0 OTHERWISE  ACCEPT H0

T 2.1877= C 1.96=

Probability Value:

P 2 1 pnorm T 0, 1,( )−( )⋅:= P 0.0287= < verified p. 371

Criterion for Normal Approximation:
- IF number of non-zero di < 16 THEN use Special Tables e.g., Rosner Table 11 in Appendix 
  OTHERWISE Normal Approximation may be used

n 40= < qualifies for Normal Approximation

t count:=

t3

1

27

8

8

1

343

1000

2744

























= t

1

3

2

2

1

7

10

14

























=
St t3 t−( )∑:= St 4092=

^ note use of vector sum function here that adds
   all elements of a vector together...

Test Statistic:

IF RSpos <> n(n+1)/4 AND there ARE ties THEN:
n n 1+( )⋅ 2 n⋅ 1+( )⋅

24
5535=

T
RSpos

n n 1+( )⋅

4
−

1
2

−





n n 1+( )⋅ 2 n⋅ 1+( )⋅

24

t3 t−( )∑
48

−

:= ^ verified p. 370
T 2.1877=

n n 1+( )⋅ 2 n⋅ 1+( )⋅

24

t3 t−( )∑
48

− 5449.75=

^ verified p. 370GENERAL ALTERNATIVE TO THE ABOVE:

j 0 length AR( ) 1−..:=
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< verified p. 371T 2.1877=T
RSneg

n n 1+( )⋅

4
−

1
2

−





j

t j ARj( )2⋅





4∑

:=

j 0 length AR( ) 1−..:=

Note Same values for T as above...GENERAL ALTERNATIVE TO THE ABOVE:

< verified p. 371T 2.1877=
T

RSneg
n n 1+( )⋅

4
−

1
2

−





n n 1+( )⋅ 2 n⋅ 1+( )⋅

24

t3 t−( )∑
48

−

:=

IF RSpos <> n(n+1)/4 AND there ARE ties THEN:

Test Statistic:

< qualifies for Normal Approximationn 40=

- IF number of non-zero di < 16 THEN use Special Tables e.g., Rosner Table 11 in Appendix 
  OTHERWISE Normal Approximation may be used

Criterion for Normal Approximation:

^ verified p. 371
RSneg 572=RSneg Rneg∑:=

Rnegi
ARi countnegi

⋅:=

i 0 length dneg( ) 1−..:=

AR

40

38

35.5

33.5

32

28

19.5

7.5

























:=countneg

1

3

2

2

1

5

4

4

























:=dneg

8−

7−

6−

5−

4−

3−

2−

1−

























:=

Dermatology Example 
Rosner Ex 9.13, p. 371 
Using Rneg instead of Rpos

Example: 
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SYSTAT Prototype: From above:

Wilcoxon Signed Ranks Test Results
 
  Counts of differences (row variable greater 
than column)

          BEFORE AFTER
BEFORE     0 18
AFTER      22 0
 
 
  Z = (Sum of signed ranks)/square root(sum of 
squared ranks)

           BEFORE AFTER
BEFORE     0.0000000
AFTER      2.1944551 0.0000000
 
 
  Two-sided probabilities using normal 
approximation

            BEFORE AFTER
BEFORE     1.0000000
AFTER       0.0282027 1.0000000

countpos∑ 18=

countneg∑ 22=

< GENERAL
    ALTERNATIVE
    T value here

P 0.0287=
^ Probability approximately matches 

R Prototype:

COMMANDS:
> Cooked=read.table("c:\2007BiostatsData\Rosner Ex 9.12 Cooked.txt")
> Cooked
> attach(cooked)
> wilcox.test(Before,After,alternative="two.sided",paired=T)

From above:

        Wilcoxon signed rank test with continuity correction

data:  Before and After 
V = 248, p-value = 0.02869
alternative hypothesis: true location shift is not equal to 0 

Warning message:
cannot compute exact p-value with ties in: 
wilcox.test.default(Before, After, alternative = "two.sided", 

RSpos 248=

P 0.0287=
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Wilcoxon Signed Ranks Test Results
 
  Counts of differences (row variable greater than column)

BEFORE AFTER
BEFORE 0 29
AFTER 42 0
 
 
  Z = (Sum of signed ranks)/square root(sum of squared ranks)

BEFORE AFTER
BEFORE 0.0000000
AFTER 2.5612838 0.0000000
 
 
  Two-sided probabilities using normal approximation

BEFORE AFTER
BEFORE 1.0000000
AFTER 0.0104286 1.0000000

SYSTAT Results:

RSneg 42=RSneg 42( ):=

RSpos 29=RSpos 71 42−( ):=

i 43 71..:=

< qualifies for Normal Approximationn 72=

d

0
0
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

-21.5
-20.9

-17.1

-15.9

-15.4

-14.9

-13.6

-13.4

-13.1

-12.6

-12.3

-11.7

-11.6

-11.4

-11.3

-11

=X

0 1
0
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

80.7 80.2
89.4 80.1

91.8 86.4

74 86.3

78.1 76.1

88.3 78.1

87.3 75.1

75.1 86.7

80.6 73.5

78.4 84.6

77.6 77.4

88.7 79.5

81.3 89.6

78.1 81.4

70.5 81.8

77.3 77.3

=- IF number of non-zero di < 16 THEN use 
Special Tables e.g., Rosner Table 11 in 
Appendix OTHERWISE Normal 
Approximation may be used

Criterion for Normal Approximation:

d sort X 0〈 〉 X 1〈 〉−( ):=

n 72=n length X 0〈 〉( ):=

X READPRN "C:/2007BiostatsData/AnorexiaALL.txt"( ):=

Example: 
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T 0:=

IF RS1 = n1(n1+n2+1)/2 THEN:

T
RS1

n1 n1 n2+ 1+( )⋅

2
−

1
2

−








n1 n2⋅

12







n1 n2+ 1+

i

ti ti( )2 1−



⋅

n1 n2+( ) n1 n2+ 1−( )⋅∑−










⋅

:=

t

t = number of tied 
individuals in each 
class or group.

i = is used to sum 
across all classes or 
groups.

where: IF RS1 <> n1(n1+n2+1)/2 AND there ARE ties THEN:

T
RS1

n1 n1 n2+ 1+( )⋅

2
−

1
2

−








n1 n2⋅

12







n1 n2+ 1+( )⋅

:=

n2

IF RS1 <> n1(n1+n2+1)/2 AND there are NO ties THEN:

Test Statistic:

- Pool Data and Rank observations.
- Compute Rank Sum (RS1 or RS2) of one population (doesn't matter which). 

Rank Data and Sum:
Normal Approximation:

- IF n1 10≥( ) n2 10≥( )∧  THEN Normal Approximation may be used
  OTHERWISE use Special Tables e.g., Rosner Table 11 in Appendix 

Criterion for Normal Approximation:

< Two sided test
< No population ordinal difference in medianH0: ∆ = 0

H1: ∆ <> 0  

Hypotheses:

- Observed values X1,1, X1,2, X1,3, ... X1,n1 are a random sample 
  Observed values X2,1, X2,2, X2,3, ... X2,n2 are a random sample.
- Variables X1's and X2 are independent.
- Underlying distributions are continuous.
- Measurement scale is at least ordinal - i.e, data can be ranked. 

Assumptions:

These fully equivalent procedures are the nonparametric analog to the two-sample t Test.  
They are applied when analyzing independent samples from two populations without assuming 
an underlying Normal distribution for each.  Thus they may be applied to most/all situations 
one might normally apply a parametric solution, but with fewer assumptions and less power. 

Wilcoxon Rank-Sum Test
Mann-Whitney Test

ORIGIN 0≡
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AR

3.5

13.5

25.5

34.0

42.5

50.0

53.5

55.0

























:=

i 0 length t( ) 1−..:=
j 7 20..:=

R1i
X 0〈 〉( )

i ARi⋅:=

R2i
X 1〈 〉( )

i ARi⋅:=
j

j∑
20 6−

13.5=

RS1 R1∑:= RS1 479=

RS2 R2∑:= RS2 1061= R1

17.5

121.5

153

102

85

0

0

0

























= R2

3.5

67.5

102

136

340

250

107

55

























=

n1
n1 n2+ 1+

2







⋅ 700=

n2
n1 n2+ 1+

2







⋅ 840=

Criterion for Normal Approximation:
- IF n1 10≥( ) n2 10≥( )∧  THEN Normal Approximation may be used
  OTHERWISE use Special Tables e.g., Rosner Table 12 in Appendix 

n1 25= n2 30= < qualifies for Normal Approximation

Critical Value of the Test:
α 0.05:= < Probability of Type I error must be explicitly set

C inverseΦN 1
α

2
−





:= inverseΦN C qnorm 1
α

2
− 0, 1,





:=

Decision Rule:
IF T > C THEN REJECT H0 

OTHERWISE  ACCEPT H0

Probability Value:
P 2 1 ΦN T( )−( )⋅:= ΦN P 2 1 pnorm T 0, 1,( )−( )⋅:=

Example: 
Ophthalmology Example 
Rosner Ex 9.17, p. 375 X

5

9

6

3

2

0

0

0

1

5

4

4

8

5

2

1

























:=

n1 X 0〈 〉∑:= n1 25=

n2 X 1〈 〉∑:= n2 30=

t X 0〈 〉 X 1〈 〉+:=
1 2+ 3+ 4+ 5+ 6+

6
3.5=t

6

14

10

7

10

5

2

1

























=
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Note that Mann-Whitney U is not
  explicitly calculated here...

< approximately the same >P 0.0002=

RS2 1061=n2 30=

RS1 479=n1 25=

Mann-Whitney Test is
found as a subset under
the Kruskal-Wallis 
nonparametricANOVA 
analog.

 
Categorical values encountered during processing are:

GROUP (2 levels)
          1,        2

 
Kruskal-Wallis One-Way Analysis of Variance for 55 cases

Dependent variable is CLASS
 Grouping variable is GROUP

 
    Group       Count   Rank Sum

 
  1               25 479.0000000
  2               30 1.06100E+03

Mann-Whitney U test statistic =  154.0000000
Probability is    0.0001461

Chi-square approximation =   14.4212324 with 1 df

SYSTAT Prototype:

< verified p. 376P 0.0002=P 2 1 pnorm T 0, 1,( )−( )⋅:=

Probability Value:

C 1.96=T 3.7889=

Test Statistic:

IF RS1 <> n1(n1+n2+1)/2 AND there ARE ties THEN:

t

6

14

10

7

10

5

2

1

























=
T

RS1
n1 n1 n2+ 1+( )⋅

2
−

1
2

−








n1 n2⋅

12







n1 n2+ 1+

i

ti ti( )2 1−



⋅

n1 n2+( ) n1 n2+ 1−( )⋅∑−










⋅

:=

T 3.7889= < verified p. 375

IF RS2 <> n2(n1+n2+1)/2 AND there ARE ties THEN:

T
RS2

n2 n1 n2+ 1+( )⋅

2
−

1
2

−








n1 n2⋅

12







n1 n2+ 1+

i

ti ti( )2 1−



⋅

n1 n2+( ) n1 n2+ 1−( )⋅∑−










⋅

:=

T 3.7889= < same

Critical Value of the Test:
α 0.05:= < Probability of Type I error must be explicitly set

C qnorm 1
α

2
− 0, 1,





:= C 1.96=

Decision Rule:
IF T > C THEN REJECT H0 OTHERWISE  ACCEPT H0
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R Prototype:

COMMANDS:
> X=read.table("c:/2007BiostatsData/Rosner Ex 9.17 Cooked.txt")
> X
> attach(X)
> wilcox.test(Dominant,SexLinked,paired=F,mu=0,alternative="two.sided")

  Wilcoxon rank sum test with continuity correction

data:  Dominant and SexLinked 
W = 154, p-value = 9.62e-06
alternative hypothesis: true location shift is not equal to 0 

Warning message:
cannot compute exact p-value with ties in: wilcox.test.default(Dominant, SexLinked, 
paired = F, mu = 0,  

^ according to the documentation for wilcox.test() explicit calculation of the test statistic
    W is made if the samples contain less than 50 values and there are no ties.

Results show a small (but not the same) P value as expected, and statistic W doesn't 
match!  See R's documentation about this... and below

W 154:= < W from R & SYSTAT's Mann-Whitney U above

< correction factor indicated in documentation
cf

n1 n1 1+( )⋅

2
:= cf 325=

W cf+ 479= RS1 479= < W + cf is the same as our RS1



Assignment for Week 9 
Today there will be no formal assignment.  Enjoy your week off! 

On Tuesday after the break, however, there will be an  

unannounced-pop-take-home quiz 
covering all material you might expect to see on the second exam the following week.  
So, if you have a little time, take a look at the parametric and non-parametric tests.  A 
good way to be sure you can work exam problems is to set yourself the task of 
performing an analysis by hand.  Given the data in Quiz 4, or anything similar, you 
should be able to distinguish the tests and perform the following: 

- one sample t-test of mean 

- paired t-test of mean 

- two-sample t-test of mean on populations with equal variances 

- two-sample t-test of mean on populations with unequal variances 

- F test for equal variances in two populations 

- estimate power and sample size in both single population and two population 
tests 

- one sample test of parameter p (probability of “heads”) in a binomial population 
using the Normal Approximation 

- Sign test for paired non-Normal populations design 

 

For the following tests, devise a simple contingency chart and see if you can perform: 

- Wilcoxon signed-rank test for paired non-Normal populations design 

- Wilcoxon Rank-sum = Mann-Wittney Test for mean of two populations 

- 2X2 Contingency test 

- McNemar’s Test for Paired data 

- Chi-square Test for Association in RXC Contingency Tables 

- Chi-square Goodness of Fit test 

For all of the above tests, be sure you can state clearly all of the formal structure of 
each test such as Assumptions, Model, Hypotheses, Criterion for Normal 
Approximation, Decision Rule, and Result.  



binom.test {stats} R Documentation

Exact Binomial Test 

Description 

Performs an exact test of a simple null hypothesis about the probability of success in a 
Bernoulli experiment.  

Usage 

binom.test(x, n, p = 0.5, 
           alternative = c("two.sided", "less", "greater"), 
           conf.level = 0.95) 

Arguments 

x number of successes, or a vector of length 2 giving the numbers of 
successes and failures, respectively. 

n number of trials; ignored if x has length 2. 
p hypothesized probability of success. 
alternative indicates the alternative hypothesis and must be one of "two.sided", 

"greater" or "less". You can specify just the initial letter. 
conf.level confidence level for the returned confidence interval. 

Details 

Confidence intervals are obtained by a procedure first given in Clopper and Pearson 
(1934). This guarantees that the confidence level is at least conf.level, but in general 
does not give the shortest-length confidence intervals.  

Value 

A list with class "htest" containing the following components:  

statistic the number of successes. 
parameter the number of trials. 
p.value the p-value of the test. 
conf.int a confidence interval for the probability of success. 
estimate the estimated probability of success. 
null.value the probability of success under the null, p. 



alternative a character string describing the alternative hypothesis.
method the character string "Exact binomial test". 
data.name a character string giving the names of the data. 

References 

Clopper, C. J. & Pearson, E. S. (1934). The use of confidence or fiducial limits illustrated 
in the case of the binomial. Biometrika, 26, 404–413.  

William J. Conover (1971), Practical nonparametric statistics. New York: John Wiley & 
Sons. Pages 97–104.  

Myles Hollander & Douglas A. Wolfe (1973), Nonparametric statistical inference. New 
York: John Wiley & Sons. Pages 15–22.  

See Also 

prop.test for a general (approximate) test for equal or given proportions.  

Examples 

## Conover (1971), p. 97f. 
## Under (the assumption of) simple Mendelian inheritance, a cross 
##  between plants of two particular genotypes produces progeny 1/4 of 
##  which are "dwarf" and 3/4 of which are "giant", respectively. 
##  In an experiment to determine if this assumption is reasonable, a 
##  cross results in progeny having 243 dwarf and 682 giant plants. 
##  If "giant" is taken as success, the null hypothesis is that p = 
##  3/4 and the alternative that p != 3/4. 
binom.test(c(682, 243), p = 3/4) 
binom.test(682, 682 + 243, p = 3/4)   # The same. 
## => Data are in agreement with the null hypothesis. 
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Wilcoxon Rank Sum and Signed Rank Tests 

Description 

Performs one and two sample Wilcoxon tests on vectors of data; the latter is also known 
as ‘Mann-Whitney’ test.  

Usage 

wilcox.test(x, ...) 
 
## Default S3 method: 
wilcox.test(x, y = NULL, 
            alternative = c("two.sided", "less", "greater"), 
            mu = 0, paired = FALSE, exact = NULL, correct = TRUE, 
            conf.int = FALSE, conf.level = 0.95, ...) 
 
## S3 method for class 'formula': 
wilcox.test(formula, data, subset, na.action, ...) 

Arguments 

x numeric vector of data values. Non-finite (e.g. infinite or missing) values 
will be omitted. 

y an optional numeric vector of data values. 
alternative a character string specifying the alternative hypothesis, must be one of 

"two.sided" (default), "greater" or "less". You can specify just the 
initial letter. 

mu a number specifying an optional parameter used to form the null 
hypothesis. See Details. 

paired a logical indicating whether you want a paired test. 
exact a logical indicating whether an exact p-value should be computed. 
correct a logical indicating whether to apply continuity correction in the normal 

approximation for the p-value. 
conf.int a logical indicating whether a confidence interval should be computed. 
conf.level confidence level of the interval. 
formula a formula of the form lhs ~ rhs where lhs is a numeric variable giving 

the data values and rhs a factor with two levels giving the corresponding 
groups. 

data an optional matrix or data frame (or similar: see model.frame) containing 



the variables in the formula formula. By default the variables are taken 
from environment(formula). 

subset an optional vector specifying a subset of observations to be used. 
na.action a function which indicates what should happen when the data contain NAs. 

Defaults to getOption("na.action"). 
... further arguments to be passed to or from methods. 

Details 

The formula interface is only applicable for the 2-sample tests.  

If only x is given, or if both x and y are given and paired is TRUE, a Wilcoxon signed 
rank test of the null that the distribution of x (in the one sample case) or of x - y (in the 
paired two sample case) is symmetric about mu is performed.  

Otherwise, if both x and y are given and paired is FALSE, a Wilcoxon rank sum test 
(equivalent to the Mann-Whitney test: see the Note) is carried out. In this case, the null 
hypothesis is that the distributions of x and y differ by a location shift of mu and the 
alternative is that they differ by some other location shift (and the one-sided alternative 
"greater" is that x is shifted to the right of y).  

By default (if exact is not specified), an exact p-value is computed if the samples contain 
less than 50 finite values and there are no ties. Otherwise, a normal approximation is 
used.  

Optionally (if argument conf.int is true), a nonparametric confidence interval and an 
estimator for the pseudomedian (one-sample case) or for the difference of the location 
parameters x-y is computed. (The pseudomedian of a distribution F is the median of the 
distribution of (u+v)/2, where u and v are independent, each with distribution F. If F is 
symmetric, then the pseudomedian and median coincide. See Hollander & Wolfe (1973), 
page 34.) If exact p-values are available, an exact confidence interval is obtained by the 
algorithm described in Bauer (1972), and the Hodges-Lehmann estimator is employed. 
Otherwise, the returned confidence interval and point estimate are based on normal 
approximations.  

With small samples it may not be possible to achieve very high confidence interval 
coverages. If this happens a warning will be given and an interval with lower coverage 
will be substituted.  

Value 

A list with class "htest" containing the following components:  

statistic the value of the test statistic with a name describing it. 



parameter the parameter(s) for the exact distribution of the test statistic. 
p.value the p-value for the test. 
null.value the location parameter mu. 
alternative a character string describing the alternative hypothesis. 
method the type of test applied. 
data.name a character string giving the names of the data. 
conf.int a confidence interval for the location parameter. (Only present if argument 

conf.int = TRUE.) 
estimate an estimate of the location parameter. (Only present if argument conf.int 

= TRUE.) 

Warning 

This function can use large amounts of memory and stack (and even crash R if the stack 
limit is exceeded) if exact = TRUE and one sample is large (several thousands or more).  

Note 

The literature is not unanimous about the definitions of the Wilcoxon rank sum and 
Mann-Whitney tests. The two most common definitions correspond to the sum of the 
ranks of the first sample with the minimum value subtracted or not: R subtracts and S-
PLUS does not, giving a value which is larger by m(m+1)/2 for a first sample of size m. 
(It seems Wilcoxon's original paper used the unadjusted sum of the ranks but subsequent 
tables subtracted the minimum.)  

R's value can also be computed as the number of all pairs (x[i], y[j]) for which y[j] 
is not greater than x[i], the most common definition of the Mann-Whitney test.  

References 

David F. Bauer (1972), Constructing confidence sets using rank statistics. Journal of the 
American Statistical Association 67, 687–690.  

Myles Hollander & Douglas A. Wolfe (1973), Nonparametric statistical inference. New 
York: John Wiley & Sons. Pages 27–33 (one-sample), 68–75 (two-sample). 
Or second edition (1999).  

See Also 

psignrank, pwilcox.  

wilcox.exact in exactRankTests covers much of the same ground, but also produces 
exact p-values in the presence of ties.  



wilcox_test in package coin for exact and approximate conditional p-values for the 
Wilcoxon tests.  

kruskal.test for testing homogeneity in location parameters in the case of two or more 
samples; t.test for an alternative under normality assumptions [or large samples]  

Examples 

## One-sample test. 
## Hollander & Wolfe (1973), 29f. 
## Hamilton depression scale factor measurements in 9 patients with 
##  mixed anxiety and depression, taken at the first (x) and second 
##  (y) visit after initiation of a therapy (administration of a 
##  tranquilizer). 
x <- c(1.83,  0.50,  1.62,  2.48, 1.68, 1.88, 1.55, 3.06, 1.30) 
y <- c(0.878, 0.647, 0.598, 2.05, 1.06, 1.29, 1.06, 3.14, 1.29) 
wilcox.test(x, y, paired = TRUE, alternative = "greater") 
wilcox.test(y - x, alternative = "less")    # The same. 
wilcox.test(y - x, alternative = "less", 
            exact = FALSE, correct = FALSE) # H&W large sample 
                                            # approximation 
 
## Two-sample test. 
## Hollander & Wolfe (1973), 69f. 
## Permeability constants of the human chorioamnion (a placental 
##  membrane) at term (x) and between 12 to 26 weeks gestational 
##  age (y).  The alternative of interest is greater permeability 
##  of the human chorioamnion for the term pregnancy. 
x <- c(0.80, 0.83, 1.89, 1.04, 1.45, 1.38, 1.91, 1.64, 0.73, 1.46) 
y <- c(1.15, 0.88, 0.90, 0.74, 1.21) 
wilcox.test(x, y, alternative = "g")        # greater 
wilcox.test(x, y, alternative = "greater", 
            exact = FALSE, correct = FALSE) # H&W large sample 
                                            # approximation 
 
wilcox.test(rnorm(10), rnorm(10, 2), conf.int = TRUE) 
 
## Formula interface. 
boxplot(Ozone ~ Month, data = airquality) 
wilcox.test(Ozone ~ Month, data = airquality, 
            subset = Month %in% c(5, 8)) 
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Pearson's Chi-squared Test for Count Data 

Description 

chisq.test performs chi-squared contingency table tests and goodness-of-fit tests.  

Usage 

chisq.test(x, y = NULL, correct = TRUE, 
           p = rep(1/length(x), length(x)), rescale.p = FALSE, 
           simulate.p.value = FALSE, B = 2000) 

Arguments 

x a vector or matrix. 
y a vector; ignored if x is a matrix. 
correct a logical indicating whether to apply continuity correction when 

computing the test statistic for 2x2 tables: one half is subtracted 
from all |O-E| differences. No correction is done if 
simulate.p.value = TRUE. 

p a vector of probabilities of the same length of x. An error is given if 
any entry of p is negative. 

rescale.p a logical scalar; if TRUE then p is rescaled (if necessary) to sum to 
1. If rescale.p is FALSE, and p does not sum to 1, an error is 
given. 

simulate.p.value a logical indicating whether to compute p-values by Monte Carlo 
simulation. 

B an integer specifying the number of replicates used in the Monte 
Carlo test. 

Details 

If x is a matrix with one row or column, or if x is a vector and y is not given, then a 
“goodness-of-fit test” is performed (“x is treated as a one-dimensional contingency 
table”). The entries of x must be non-negative integers. In this case, the hypothesis tested 
is whether the population probabilities equal those in p, or are all equal if p is not given.  

If x is a matrix with at least two rows and columns, it is taken as a two-dimensional 
contingency table. Again, the entries of x must be non-negative integers. Otherwise, x 
and y must be vectors or factors of the same length; incomplete cases are removed, the 



objects are coerced into factor objects, and the contingency table is computed from these. 
Then, Pearson's chi-squared test of the null hypothesis that the joint distribution of the 
cell counts in a 2-dimensional contingency table is the product of the row and column 
marginals is performed.  

If simulate.p.value is FALSE, the p-value is computed from the asymptotic chi-squared 
distribution of the test statistic; continuity correction is only used in the 2-by-2 case (if 
correct is TRUE, the default). Otherwise the p-value is computed for a Monte Carlo test 
(Hope, 1968) with B replicates.  

In the contingency table case simulation is done by random sampling from the set of all 
contingency tables with given marginals, and works only if the marginals are strictly 
positive. (A C translation of the algorithm of Patefield (1981) is used.) Continuity 
correction is never used, and the statistic is quoted without it. Note that this is not the 
usual sampling situation for the chi-squared test but rather that for Fisher's exact test.  

In the goodness-of-fit case simulation is done by random sampling from the discrete 
distribution specified by p, each sample being of size n = sum(x). This simulation is 
done in R and may be slow.  

Value 

A list with class "htest" containing the following components:  

statistic the value the chi-squared test statistic. 
parameter the degrees of freedom of the approximate chi-squared distribution of the test 

statistic, NA if the p-value is computed by Monte Carlo simulation. 
p.value the p-value for the test. 
method a character string indicating the type of test performed, and whether Monte 

Carlo simulation or continuity correction was used. 
data.name a character string giving the name(s) of the data. 
observed the observed counts. 
expected the expected counts under the null hypothesis. 
residuals the Pearson residuals, (observed - expected) / sqrt(expected). 

References 

Hope, A. C. A. (1968) A simplified Monte Carlo significance test procedure. J. Roy, 
Statist. Soc. B 30, 582–598.  

Patefield, W. M. (1981) Algorithm AS159. An efficient method of generating r x c tables 
with given row and column totals. Applied Statistics 30, 91–97.  



Examples 

## Not really a good example 
chisq.test(InsectSprays$count > 7, InsectSprays$spray) 
                                # Prints test summary 
chisq.test(InsectSprays$count > 7, InsectSprays$spray)$obs 
                                # Counts observed 
chisq.test(InsectSprays$count > 7, InsectSprays$spray)$exp 
                                # Counts expected under the null 
 
## Effect of simulating p-values 
x <- matrix(c(12, 5, 7, 7), nc = 2) 
chisq.test(x)$p.value           # 0.4233 
chisq.test(x, simulate.p.value = TRUE, B = 10000)$p.value 
                                # around 0.29! 
 
## Testing for population probabilities 
## Case A. Tabulated data 
x <- c(A = 20, B = 15, C = 25) 
chisq.test(x) 
chisq.test(as.table(x))         # the same 
x <- c(89,37,30,28,2) 
p <- c(40,20,20,15,5) 
try( 
chisq.test(x, p = p)            # gives an error 
) 
chisq.test(x, p = p, rescale.p = TRUE) 
                                # works 
p <- c(0.40,0.20,0.20,0.19,0.01) 
                                # Expected count in category 5 
                                # is 1.86 < 5 ==> chi square approx. 
chisq.test(x, p = p)            #               maybe doubtful, but is 
ok! 
chisq.test(x, p = p,simulate.p.value = TRUE) 
 
## Case B. Raw data 
x <- trunc(5 * runif(100)) 
chisq.test(table(x))            # NOT 'chisq.test(x)'! 



 
mcnemar.test {stats} R Documentation

McNemar's Chi-squared Test for Count Data 

Description 

Performs McNemar's chi-squared test for symmetry of rows and columns in a two-
dimensional contingency table.  

Usage 

mcnemar.test(x, y = NULL, correct = TRUE) 

Arguments 

x either a two-dimensional contingency table in matrix form, or a factor object. 
y a factor object; ignored if x is a matrix. 
correct a logical indicating whether to apply continuity correction when computing the 

test statistic. 

Details 

The null is that the probabilities of being classified into cells [i,j] and [j,i] are the 
same.  

If x is a matrix, it is taken as a two-dimensional contingency table, and hence its entries 
should be nonnegative integers. Otherwise, both x and y must be vectors of the same 
length. Incomplete cases are removed, the vectors are coerced into factor objects, and the 
contingency table is computed from these.  

Continuity correction is only used in the 2-by-2 case if correct is TRUE.  

Value 

A list with class "htest" containing the following components:  

statistic the value of McNemar's statistic. 
parameter the degrees of freedom of the approximate chi-squared distribution of the test 

statistic. 
p.value the p-value of the test. 
method a character string indicating the type of test performed, and whether 



continuity correction was used. 
data.name a character string giving the name(s) of the data. 

References 

Alan Agresti (1990). Categorical data analysis. New York: Wiley. Pages 350–354.  

Examples 

## Agresti (1990), p. 350. 
## Presidential Approval Ratings. 
##  Approval of the President's performance in office in two surveys, 
##  one month apart, for a random sample of 1600 voting-age Americans. 
Performance <- 
matrix(c(794, 86, 150, 570), 
       nr = 2, 
       dimnames = list("1st Survey" = c("Approve", "Disapprove"), 
                       "2nd Survey" = c("Approve", "Disapprove"))) 
Performance 
mcnemar.test(Performance) 
## => significant change (in fact, drop) in approval ratings 



 
fisher.test {stats} R Documentation

Fisher's Exact Test for Count Data 

Description 

Performs Fisher's exact test for testing the null of independence of rows and columns in a 
contingency table with fixed marginals.  

Usage 

fisher.test(x, y = NULL, workspace = 200000, hybrid = FALSE, 
            control = list(), or = 1, alternative = "two.sided", 
            conf.int = TRUE, conf.level = 0.95, 
            simulate.p.value = FALSE, B = 2000) 

Arguments 

x either a two-dimensional contingency table in matrix form, or a 
factor object. 

y a factor object; ignored if x is a matrix. 
workspace an integer specifying the size of the workspace used in the network 

algorithm. In units of 4 bytes. Only used for non-simulated p-values 
larger than 2 by 2 tables. 

hybrid a logical. Only used for larger than 2 by 2 tables, in which cases it 
indicated whether the exact probabilities (default) or a hybrid 
approximation thereof should be computed. See Details. 

control a list with named components for low level algorithm control. At 
present the only one used is "mult", a positive integer >= 2 with 
default 30 used only for larger than 2 by 2 tables. This says how 
many times as much space should be allocated to paths as to keys: 
see file ‘fexact.c’ in the sources of this package. 

or the hypothesized odds ratio. Only used in the 2 by 2 case. 
alternative indicates the alternative hypothesis and must be one of 

"two.sided", "greater" or "less". You can specify just the initial 
letter. Only used in the 2 by 2 case. 

conf.int logical indicating if a confidence interval should be computed (and 
returned). 

conf.level confidence level for the returned confidence interval. Only used in 
the 2 by 2 case if conf.int = TRUE. 

simulate.p.value a logical indicating whether to compute p-values by Monte Carlo 



simulation, in larger than 2 by 2 tables. 
B an integer specifying the number of replicates used in the Monte 

Carlo test. 

Details 

If x is a matrix, it is taken as a two-dimensional contingency table, and hence its entries 
should be nonnegative integers. Otherwise, both x and y must be vectors of the same 
length. Incomplete cases are removed, the vectors are coerced into factor objects, and the 
contingency table is computed from these.  

For 2 by 2 cases, p-values are obtained directly using the (central or non-central) 
hypergeometric distribution. Otherwise, computations are based on a C version of the 
FORTRAN subroutine FEXACT which implements the network developed by Mehta and 
Patel (1986) and improved by Clarkson, Fan and Joe (1993). The FORTRAN code can be 
obtained from http://www.netlib.org/toms/643. Note this fails (with an error message) 
when the entries of the table are too large. (It transposes the table if necessary so it has no 
more rows than columns. One constraint is that the product of the row marginals be less 
than 2^31 - 1.)  

For 2 by 2 tables, the null of conditional independence is equivalent to the hypothesis that 
the odds ratio equals one. ‘Exact’ inference can be based on observing that in general, 
given all marginal totals fixed, the first element of the contingency table has a non-central 
hypergeometric distribution with non-centrality parameter given by the odds ratio 
(Fisher, 1935). The alternative for a one-sided test is based on the odds ratio, so 
alternative = "greater" is a test of the odds ratio being bigger than or.  

Two-sided tests are based on the probabilities of the tables, and take as ‘more extreme’ 
all tables with probabilities less than or equal to that of the observed table, the p-value 
being the sum of such probabilities.  

For larger than 2 by 2 tables and hybrid = TRUE, asymptotic chi-squared probabilities 
are only used if the “Cochran conditions” are satisfied, that is if no cell has count zero, 
and more than 80% of the cells have counts at least 5.  

Simulation is done conditional on the row and column marginals, and works only if the 
marginals are strictly positive. (A C translation of the algorithm of Patefield (1981) is 
used.)  

Value 

A list with class "htest" containing the following components:  

p.value the p-value of the test. 
conf.int a confidence interval for the odds ratio. Only present in the 2 by 2 case if 



argument conf.int = TRUE. 
estimate an estimate of the odds ratio. Note that the conditional Maximum 

Likelihood Estimate (MLE) rather than the unconditional MLE (the 
sample odds ratio) is used. Only present in the 2 by 2 case. 

null.value the odds ratio under the null, or. Only present in the 2 by 2 case. 
alternative a character string describing the alternative hypothesis. 
method the character string "Fisher's Exact Test for Count Data". 
data.name a character string giving the names of the data. 

References 

Agresti, A. (1990) Categorical data analysis. New York: Wiley. Pages 59–66.  

Fisher, R. A. (1935) The logic of inductive inference. Journal of the Royal Statistical 
Society Series A 98, 39–54.  

Fisher, R. A. (1962) Confidence limits for a cross-product ratio. Australian Journal of 
Statistics 4, 41.  

Fisher, R. A. (1970) Statistical Methods for Research Workers. Oliver & Boyd.  

Mehta, C. R. and Patel, N. R. (1986) Algorithm 643. FEXACT: A Fortran subroutine for 
Fisher's exact test on unordered r*c contingency tables. ACM Transactions on 
Mathematical Software, 12, 154–161.  

Clarkson, D. B., Fan, Y. and Joe, H. (1993) A Remark on Algorithm 643: FEXACT: An 
Algorithm for Performing Fisher's Exact Test in r x c Contingency Tables. ACM 
Transactions on Mathematical Software, 19, 484–488.  

Patefield, W. M. (1981) Algorithm AS159. An efficient method of generating r x c tables 
with given row and column totals. Applied Statistics 30, 91–97.  

See Also 

chisq.test  

Examples 

## Agresti (1990), p. 61f, Fisher's Tea Drinker 
## A British woman claimed to be able to distinguish whether milk or 
##  tea was added to the cup first.  To test, she was given 8 cups of 
##  tea, in four of which milk was added first.  The null hypothesis 
##  is that there is no association between the true order of pouring 
##  and the woman's guess, the alternative that there is a positive 
##  association (that the odds ratio is greater than 1). 



TeaTasting <- 
matrix(c(3, 1, 1, 3), 
       nr = 2, 
       dimnames = list(Guess = c("Milk", "Tea"), 
                       Truth = c("Milk", "Tea"))) 
fisher.test(TeaTasting, alternative = "greater") 
## => p=0.2429, association could not be established 
 
## Fisher (1962, 1970), Criminal convictions of like-sex twins 
Convictions <- 
matrix(c(2, 10, 15, 3), 
       nr = 2, 
       dimnames = 
       list(c("Dizygotic", "Monozygotic"), 
            c("Convicted", "Not convicted"))) 
Convictions 
fisher.test(Convictions, alternative = "less") 
fisher.test(Convictions, conf.int = FALSE) 
fisher.test(Convictions, conf.level = 0.95)$conf.int 
fisher.test(Convictions, conf.level = 0.99)$conf.int 
 
## A r x c table  Agresti (2002, p. 57) Job Satisfaction 
Job <- matrix(c(1,2,1,0, 3,3,6,1, 10,10,14,9, 6,7,12,11), 4, 4, 
dimnames = list(income=c("< 15k", "15-25k", "25-40k", "> 40k"), 
                satisfaction=c("VeryD", "LittleD", "ModerateS", 
"VeryS"))) 
fisher.test(Job) 
fisher.test(Job, simulate=TRUE, B=1e5) 
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IF Xsq > CV THEN REJECT H0 

OTHERWISE  ACCEPT H0

Decision Rule:

CV qchisq 1 α− df,( ):= dfdf 1:=CV inverseχsq 1 α−( ):= inverseχsq

< Probability of Type I error must be explicitly setα 0.05:=

Critical Value of the Test:

Xsq

i j,( )

Oi j, Ei j,−
1
2

−





2

Ei j,
∑:=Xsq

i j,( )

Oi j, Ei j,−
1
2

−





2

Ei j,
∑:=

Test Statistic (Yates Corrected):

Eij
Ri Cj⋅

GT
:=

GT

- Tabulate Oij for each cell
- Calculate Observed Row and Column Totals
- Calculate Expected for each cell 

Row Totals

O1,1 E1,2 O1,1 E1,2 R1 = ΣX=1

O2,1 E2,2 O2,1 E2,2 R2 = ΣX=2

ΣR or ΣC

Grand Total

C1 = ΣY=1 C2 = ΣY=2

Contingency Table

Column Totals

Construct Contingency Tables of Observed and Expected in each cell:
Normal Approximation:

- IF expected values in each cell Eij 5≥  THEN Normal Approximation may be used
  OTHERWISE use Exact Test e.g., Fisher's Exact Test 

Criterion for Normal Approximation:

< Two sided test
< That is, variables X & Y are independent!H0: Pij = (Pi)(Pj)

H1: Pij <> (Pi)(Pj)  

Hypotheses:

Let Probabilities: - Pi = P(X=i)
- Pj = P(Y=j)
- Pij = (X=i, Y=j)

Model: 1,1 1,2 X=1

2,1 2,2 X=2

Y=1 Y=2 Grand 
Total

Contingency Table

- Observed values X1, X2, X3, ... Xn1 are a random sample 
  Observed values Y1, Y2, Y3, ... Yn2 .are a random sample.

Assumptions:

Contingency tests consider data from categorical (also called nominal) variables - variables in 
which observations may be placed in classes, but the classes themselves need not have numerical 
or ordinal significance.  When comparing two categorical variables it is customary to construct a 
contingency table showing which observations may be simultaneously classified according to 
the classes.  From the contingency table, tests of association (or alternatively tests of 
independence) may be performed.  Here we look at the 2X2 case in which there are only 2 
classes for each of two variables.

2 X 2 Contingency Tests
ORIGIN 0≡
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C0 C1+ 13465=
Assumptions:

- Observed values X1, X2, X3, ... Xn1 are a random sample 
  Observed values Y1, Y2, Y3, ... Yn2 .are a random sample.

Model: Let Probabilities: - Pi = P(X=i)
- Pj = P(X=i)
- Pij = (X=i, Y=j)

Expected:

E0 0,

R0 C0⋅

GT
:= E0 1,

R0 C1⋅

GT
:= Expected Contingency Table:

E1 0,

R1 C0⋅

GT
:= E1 1,

R1 C1⋅

GT
:= E

521.5611

1659.4389

2698.4389

8585.5611







=

^ confirmed p. 395
Hypotheses:

H0: Pij = (Pi)(Pj)
H1: Pij <> (Pi)(Pj)  

< That is, variables X & Y are independent!

< Two sided test

Criterion for Normal Approximation:
- IF expected values in each cell Eij 5≥  THEN Normal Approximation may be used
  OTHERWISE use Exact Test e.g., Fisher's Exact Test 

All Ei j, 5≥  thus data qualifies for this approximation...  

Test Statistic (Yates Corrected):
Calculation for Each Cell:

XsqBLOCKi j,

Oi j, Ei j,−
1
2

−





2

Ei j,
:= XsqBLOCK

49.6612

15.6085

9.5986

3.0168







=

Probability Value:
P 1 Φχsq Xsq( )−( ):= Xsq P 1 pchisq Xsq df,( )−( ):= df

Example: 
Breast Cancer Example Rosner Ex 10.13, p. 397

Observed: i 0 1..:= j 0 1..:= O
683

1498

2537

8747







:=

R0 O0 0, O0 1,+:= R0 3220=

R1 O1 0, O1 1,+:= R1 10245= Observed Contingency Table:

GT R0 R1+:= GT 13465=
O

683

1498

2537

8747







= R
3220

10245







=
C0 O0 0, O1 0,+:= C0 2181=

C1 O0 1, O1 1,+:= C1 11284= CT 2181 11284( )= GT 13465=

^ Vector/Matrix Transpose function
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See Rosner p. 399:

n GT:=

a O0 0,:= c O1 0,:=

b O0 1,:= d O1 1,:=

O 2.1738 106
×= < determinant of matrix O

Xs n
O

GT
2

−





2

a b+( ) c d+( )⋅ a c+( )⋅ b d+( )⋅[ ]
⋅:=

Xsq 77.8851= < from above

Xs 77.8851= < here

R Prototype:

COMMANDS:
> X=matrix(c(683,2537,1498,8747),nrow=2,byrow=T)
> X
> chisq.test(X,correct=T)

< note here how to construct
    a simple contingency table of
    observations...

^ turns Yates correction 'on'

        Pearson's Chi-squared test with Yates' continuity
        correction

data:  X 
X-squared = 77.8851, df = 1, p-value < 2.2e-16

^ Test Statistic, df & Probability confirmed!

Sum:

Xsq XsqBLOCK 0〈 〉∑ XsqBLOCK 1〈 〉∑+:= Xsq 77.8851= < confirmed p. 398

Critical Value of the Test:
α 0.01:= < Probability of Type I error must be explicitly set

df 1:= CV qchisq 1 α− df,( ):= CV 6.6349= < confirmed p. 398

Decision Rule:
IF Xsq > CV THEN REJECT H0 OTHERWISE  ACCEPT H0

CV 6.6349= Xsq 77.8851=

Probability Value:

P 1 pchisq Xsq df,( )−( ):= P 0= < Rosner's very small value more-or-less confirmed

Alternate Calculation of Test Statistic using Determinant:
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< sum of R

qhat 1 phat−:= qhat 0.838=

Normal Theory Approximation:

Test is valid if n1 p1hat⋅ q1hat⋅ 5≥   and n2 p2hat⋅ q2hat⋅ 5≥

n R:=

n0 phat⋅ qhat⋅ 437.081= n1 phat⋅ qhat⋅ 1390.6505= < Normal approximation OK

Test Statistic Z:

Z

p1hat p2hat−
1

2 n0⋅

1
2 n1⋅

+






−

phat qhat⋅
1
n0

1
n1

+






⋅

:= Z 8.8253=

Critical Values of the Test:
α 0.05:= < probability of Type I error must be explicitly set

CV qnorm 1
α

2
− 0, 1,





:= CV 1.96=

Decision Rule:
IF |Z| > CV THEN REJECT H0 OTHERWISE ACCEPT H0

CV 1.96= Z 8.8253=

Probability Value for z:
P 2 1 pnorm Z 0, 1,( )−( )⋅:= P 0=

Same Example worked as a Binomial Test of two populations:

Rosner p 387-388. Observed Contingency Table:

Model: O
683

1498

2537

8747







= R
3220

10245







=
Two Binomial populations with:

p1 = P(X=0, Y=0)
p2 = P(X=1, Y=0) CT 2181 11284( )= GT 13465=

^ Vector/Matrix Transpose functionHypotheses:

H0: p1 = p2 
H1: p1 <> p2  

< parameter p is the same in the two populaitons

< Two sided test

Point Estimate of p for each population:

p1hat
O0 0,

R0
:= p1hat 0.2121= p2hat

O1 0,

R1
:= p2hat 0.1462=

Pooled estimate of p & q:

O 0〈 〉∑ 2181= < sum of 1st column of O
phat

O 0〈 〉∑
R∑

:= phat 0.162=
R∑ 13465=
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P 1 pchisq Xsq df,( )−( ):= dfP 1 Φχsq Xsq( )−( ):= Xsq

Probability Value:

IF Xsq > CV THEN REJECT H0 

OTHERWISE  ACCEPT H0

Decision Rule:

CV qchisq 1 α− df,( ):= dfdf 1:=CV inverseχsq 1 α−( ):= inverseχsq

< Probability of Type I error must be explicitly setα 0.05:=

Critical Value of the Test:

Xsq
nA nB− 1−( )2

nA nB+
:=

nBalso calculated by:Xsq

nA
nD

2
−

1
2

−







2

nD

4







:=

nD

Test Statistic (Corrected):
Normal Approximation:

- Tabulate paired Oij for each cell
- Calculate nD =  total number of discordant pairs
- Calculate nA = number of Type A discordant pairs 

Construct Contingency Tables of Concordant and Discordant cells:

- IF number of discordant pairs nD 20≥  THEN Approximation may be used
  OTHERWISE use Exact Test

Criterion for Normal Approximation:
< Two sided test

< Discordant Type A and Type B results are equally probable
   There is no difference between treatments or between "before" and "after"

H0: p = 1/2

H1: p <> 1/2

Hypotheses:

Interpret diagonal cells of paired observations as:
- concordant - in agreement in result between X & Y
- discordant - not in agreement in result in two types:

- Type A (+,-) and Type B (-,+) definition arbitrary
- Let p be the probability of the Type A discordant result

Model:

- Paired exactly matched observations are made.
- X & Y refer to paired dependent observations 

Assumptions:
Concordant Discordant 

Type A X=1

Discordant 
Type B Concordant X=2

Y=1 Y=2 Grand 
Total

Paired Contingency Table

This test employs a 2X2 contingency table in which pairs of observations such as in treatments or 
"before" versus "after" observations are exactly paired for individuals within a study.  Analogy 
with the paired t-test situation is evident here, although here each variable involves categorical 
(nominal) data classes.

McNemar's Test for Paired Data
ORIGIN 0≡
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< Normal Approximation is appropriate

Normal Approximation:

Test Statistic (Corrected):
also calculated by:

Xsq

nA
nD

2
−

1
2

−







2

nD

4







:= Xsq 4.7619= Xsq
nA nB− 1−( )2

nA nB+
:= Xsq 4.7619=

^ confirmed p. 412

Critical Value of the Test:
α 0.05:= < Probability of Type I error must be explicitly set

df 1:= CV qchisq 1 α− df,( ):= CV 3.8415= < confirmed p. 412

Decision Rule:
IF Xsq > CV THEN REJECT H0 OTHERWISE  ACCEPT H0

Xsq 4.7619= CV 3.8415=

Probability Value:

P 1 pchisq Xsq df,( )−( ):= P 0.0291= < confirmed p. 412

Example: 
Cancer Example Rosner Ex 10.24, p. 411-412

Assumptions:
- Paired exactly matched observations are made.
- X & Y refer to paired dependent observations 

Model:
Interpret diagonal cells of paired observations as:

- concordant - in agreement in result between X & Y
- discordant - not in agreement in result in two types:

- Type A (+,-) and Type B (-,+) definition arbitrary
- Let p be the probability of the Type A discordant result

Observed: i 0 1..:= j 0 1..:= O
510

5

16

90







:=

nD O1 0, O0 1,+:= nD 21=

nA O1 0,:= nA 5=

nB O0 1,:= nB 16= nD nA− 16=

Hypotheses:
H0: p = 1/2

H1: p <> 1/2

< Discordant Type A and Type B results are equally probable
   There is no difference between treatments or between "before" and "after"

< Two sided test
Criterion for Normal Approximation:

- IF number of discordant pairs nD 20≥  THEN Approximation may be used
  OTHERWISE use Exact Test

nD 21=



2007 Biostatistics 35 McNemar's Test 3

O
3

1

7

9







:=

nD O1 0, O0 1,+:= nD 8=

nA O1 0,:= nA 1=

nB O0 1,:= nB 7= nD nA− 7=

Criterion for Normal Approximation:
- IF number of discordant pairs nD 20≥  THEN Approximation may be used
  OTHERWISE use Exact Test

nD 8= < Normal Approximation is NOT appropriate - Exact Method must be used

Exact Test Probability: nA < nD/2:

P 2

0

nA

k

combin nD k,( ) 1
2





nD

⋅∑
=

⋅:= P 0.0703= < confirmed p. 414

R Prototype:

COMMANDS:
> X=matrix(c(510,16,5,90),nrow=2,byrow=T)
> X
> mcnemar.test(X,correct=T)

        McNemar's Chi-squared test with continuity correction

data:  X 
McNemar's chi-squared = 4.7619, df = 1, p-value = 0.02910

^ Xsq, df and P values confirmed

Exact Test:

Probability Values:

IF nA < nD/2:

P 2

0

nA

k

combin nD k,( ) 1
2





nD

⋅∑
=

⋅:=

IF nA > nD/2:

P 2

nA

nD

k

combin nD k,( ) 1
2





nD

⋅∑
=

⋅:=

IF nA = nD/2:

P 1:=

Example:
Rosner Ex. 10.25 p. 413-414

Observed: i 0 1..:= j 0 1..:=
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R Prototype:

COMMANDS:
> X=matrix(c(3,7,1,9),nrow=2,byrow=T)
> X
> mcnemar.test(X)

        McNemar's Chi-squared test with continuity correction

data:  X 
McNemar's chi-squared = 3.125, df = 1, p-value = 0.0771

^ Apparently not done the Exact way, but P result is close.
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P 1 pchisq Xsq df,( )−( ):= dfP 1 Φχsq Xsq( )−( ):= Xsq

Probability Value:

IF Xsq > CV THEN REJECT H0 

OTHERWISE  ACCEPT H0

Decision Rule:
CV qchisq 1 α− df,( ):= dfCV inverseχsq 1 α−( ):= inverseχsq

< where R & C are the number of Row and Column cells respectivelydf R 1−( ) C 1−( )⋅:= R 1−

< Probability of Type I error must be explicitly setα 0.05:=

Critical Value of the Test:

Xsq

i j

Oi j, Ei j,−( )2
Ei j,

∑∑:=
E

χ2 Test Statistic:

Eij
Ri Cj⋅

GT
:=

GT

- Tabulate Oij for each cell
- Calculate Observed Row and Column Totals
- Calculate Expected for each cell 

Construct Contingency Tables of Observed and Expected in each cell:

- IF no more than 1/5 of the cells have expected values in each block Eij 5≤  
  AND no cell has expected value Eij 1<  THEN Approximation may be used

Criterion for Approximation:
< Two sided test
< That is, variables R & C are independent!H0: Pij = (Pi)(Pj)

H1: Pij <> (Pi)(Pj)  

Hypotheses:

Let Probabilities:
- Pi = P(R=i)
- Pj = P(C=j)
- Pij = P(R=i, C=j)

Model:

- Observed values Xi,j are
    a random sample

- Observed values for
    Rows and Columns
    are independent.

O1,1 O1,2 O1,3 … O1,j

O2,1 O2,2 O2,3 … O2,j

O3,1 O3,2 O3,3 … O3,j Row Totals

… … … … …

Oi,1 Oi,2 Oi,3 … Oi,j

Column Totals Grand Total

RXC Contingency Table
Assumptions:

This test employs a RXC contingency table consisting of R rows and C Columns and is thus 
an extension of the 2X2 case discussed previously.

χ2 Test for Association in RXC Contingency Tables
ORIGIN 0≡
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RS
3220

10245







=
H0: Pij = (Pi)(Pj)
H1: Pij <> (Pi)(Pj)  

CST 1742 5638 3904 1555 626( )= GT 13465=

Construct Contingency Tables of Observed and Expected in each cell:
Calculating Expected table:

Ei j,

RSi CSj⋅

GT
:=

Calculating Expected sums as a check:

ERSi ET( ) i〈 〉

∑:= < sums for each row

ECSj E j〈 〉∑:= < sums for each column

EGT RS 0〈 〉∑:= EGT 13465= ECS 0〈 〉∑ 13465= < Grand Total

Expected Table with Sums:

E
416.5793

1325.4207

1348.2629

4289.7371

933.5967

2970.4033

371.8604

1183.1396

149.7007

476.2993







= ERS
3220

10245







=

ECST 1742 5638 3904 1555 626( )= EGT 13465=

χ2 Test Statistic:

Xsq

i j

Oi j, Ei j,−( )2
Ei j,

∑∑:= Xsq 130.338=

Example: 
Cancer Rosner Example 10.35 p. 430

Observed: 
Assumptions: R 2:= C 5:=

- Observed values Xi,j are
    a random sample

- Observed values for
    Rows and Columns
    are independent.

O
320

1422

1206

4432

1011

2893

463

1092

220

406







:=i 0 R 1−..:= j 0 C 1−..:=

Calculating Observed sums:

RSi OT( ) i〈 〉

∑:= < sums for each row

Model:
CSj O j〈 〉∑:= < sums for each columnLet Probabilities:

- Pi = P(R=i)
- Pj = P(C=j)
- Pij = P(R=i, C=j)

GT RS 0〈 〉∑:= GT 13465= CS 0〈 〉∑ 13465= < Grand Total

Observed Table with Sums:

Hypotheses: O
320

1422

1206

4432

1011

2893

463

1092

220

406







=
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320

1206

1011

463

220

1422

4432

2893

1092

406

1

1

1

1

1

2

2

2

2

2

1

2

3

4

5

1

2

3

4

5































Case frequencies determined by value of variable COUNT. 
  
Frequencies 
 ROW (rows) by COL (columns) 
  
 

 1 2 3 4 5 Total 

1 320 1206 1011 463 220 3220 

2 1422 4432 2893 1092 406 10245 

Total 1742 5638 3904 1555 626 13465 
  
  
 

Test statistic Value df Prob 
Pearson Chi-square 130.33802 4.00000 0.00000 

 

To run, set the Count Column as a "frequency" under DATA
Run Cross tabs setting Row as ROW and Column as COL

Count Row ColumnPrototype in Systat:
Data format:

^ Xsq, df & P confirmed

        Pearson's Chi-squared test

data:  X 
X-squared = 130.338, df = 4, p-value < 2.2e-16

COMMANDS:
> X=matrix(c(320, 1206, 1011, 463, 220, 1422, 4432, 2893, 1092,406),nrow=2,byrow=T)
> X
> chisq.test(X)

Prototype in R:

P 0=P 1 pchisq Xsq df,( )−( ):=

Probability Value:

CV 9.4877=Xsq 130.338=

IF Xsq > CV THEN REJECT H0 OTHERWISE  ACCEPT H0

Decision Rule:
CV 9.4877=CV qchisq 1 α− df,( ):=

< where R & C are the number of Row and 
       Column cells respectively

df 4=df R 1−( ) C 1−( )⋅:=

< Probability of Type I error must be explicitly setα 0.05:=

Critical Value of the Test:
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P 1 pchisq Xsq df,( )−( ):= dfP 1 Φχsq Xsq( )−( ):= Xsq

Probability Value:

IF Xsq > CV THEN REJECT H0 

OTHERWISE  ACCEPT H0

Decision Rule:

CV qchisq 1 α− df,( ):= dfCV inverseχsq 1 α−( ):= inverseχsq

< where: g = the number of cells, 
              k = number of parameters of the internally specified model

df g k− 1−:= k

< Probability of Type I error must be explicitly setα 0.05:=

Critical Value of the Test:

Xsq

j

Oj Ej−( )2
Ej

∑:=
E

χ2 Test Statistic:

< where: pEj are the expected probabilities of each cellEij GT pEj⋅:= pEj

- Tabulate Oj for each cell
- Calculate Observed Row and Column Totals
- Calculate Expected for each cell: 

Construct Contingency Tables of Observed and Expected in each cell:

- IF no more than 1/5 of the cells have expected values in each cell Ej 5≤  
  AND no cell has expected value Ej 1<  THEN Approximation may be used

Criterion for Approximation:
< Two sided test

H0: Pj are distributed according to the model
H1: Pj differ from the model

Hypotheses:

Let Expected Probabilities:
 - Pj is specified:

 - internally specified model
    with k parameters estimated 
    from the sample.
OR
 - externally specified model k=0

Model:

- Observed values Oj are
    a random sample in g cells

Assumptions:
O1 O2 O3 … Oj

E1 E2 E3 … Ej

Goodness of Fit Table

Total

The RXC Contingency Table approach can be applied to many hypotheses in addition to 
independence of variables Pi,j = (Pi)(Pj).  

χ2 Test for Goodness of Fit
ORIGIN 0≡
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totals

O∑ 14736= χ2 Test Statistic:

O

57

330

2132

4584

4604

2119

659

251

























= E

77.8653

547.1493

2126.682

4283.3488

4478.5195

2431.1276

684.0861

107.2213

























= E∑ 14736= Xsq

j

Oj Ej−( )2
Ej

∑:= Xsq 350.198=

^ verified p. 441< E verified p.438 

Critical Value of the Test:
α 0.05:= < Probability of Type I error must be explicitly set

df g k− 1−:= df 5= < where: g = the number of cells, 
              k = number of parameters of
                    internally specified modelCV qchisq 1 α− df,( ):= CV 11.0705=

Decision Rule:
IF Xsq > CV THEN REJECT H0 OTHERWISE  ACCEPT H0

Xsq 350.198= CV 11.0705=

Probability Value:
P 1 pchisq Xsq df,( )−( ):= P 0= < verified p. 441

Example: 
Testing for Normal Distribution Rosner Example 10.41 p. 441

Assumptions:
- Observed values Oj are
    a random sample in g cells

Model: O

57

330

2132

4584

4604

2119

659

251

























:= GT O∑:=
Let Expected Probabilities:
 - Pj is specified:
 - internally specified model
    with k parameters estimated 
    from the sample.
OR
 - externally specified model k=0

< internally specified
     with parameters
        Xbar & s2

GT 14736=

k 2:=

g 8:=Hypotheses:
H0: Pj are distributed according to the model
H1: Pj differ from the model < Two sided test

Constructing Expected Table:

Xbar 80.68:= < mean  & standard deviation given for sample whose 
    frequencies are tabulated in X.  
    Here we can not calculate them directly. s 12.00:=

j 0 g 1−..:=
boundary values in X > B

0

50

60

70

80

90

100

110

50

60

70

80

90

100

110

999

























:=

Ej GT pnorm Bj 1, Xbar, s,( ) pnorm Bj 0, Xbar, s,( )−( )⋅:= < calculating expected based
   on normal distribution:
   GT * prob of each cellobserved expected
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Notice that I chose 19 cells in order to have
no cell with Expected value less than 1...

Even so, the first cell violates that assumption...

length E( ) 19=
< Expected matrix E >

E∑ 1000=

B

99999−

4.4211−

0.7368

5.8947

11.0526

16.2105

21.3684

26.5263

31.6842

36.8421

42

47.1579

52.3158

57.4737

62.6316

67.7895

72.9474

78.1053

83.2632

4.4211−

0.7368

5.8947

11.0526

16.2105

21.3684

26.5263

31.6842

36.8421

42

47.1579

52.3158

57.4737

62.6316

67.7895

72.9474

78.1053

83.2632

99999























































=E

0.5109

1.155

3.1858

7.788

16.8742

32.4045

55.1543

83.2052

111.255

131.8527

138.5033

128.9534

106.416

77.8361

50.4607

28.9948

14.7666

6.6654

4.0179























































=Ej GT pnorm Bj 1, Xbar, s,( ) pnorm Bj 0, Xbar, s,( )−( )⋅:=

j 0 g 1−..:=g length B 0〈 〉( ):=

s Var X( ):=
< internally estimated
    parameters

Xbar mean X( ):=

< tailsBg 1− 1, 99999:=B0 0, 99999−:=

Bj 1+ 0, plot 0〈 〉( )
j:=

Example from Scratch:

Let's test the ability of MathCad's random number generator to make a Normal Distribution:

µ 45:= σ 15:= X rnorm 1000 µ, σ,( ):= plot histogram 19 X,( ):=

20 0 20 40 60 80 100
0

50

100

150

plot 1〈 〉

plot 0〈 〉

X

0
0
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

38.4154
34.8089

37.9007

30.728

19.7147

45.653

43.1905

53.3464

77.8768

57.131

59.7771

57.9334

58.7335

55.095

29.3353

46.0362

= plot

4.4211−

0.7368

5.8947

11.0526

16.2105

21.3684

26.5263

31.6842

36.8421

42

47.1579

52.3158

57.4737

62.6316

67.7895

72.9474

78.1053

83.2632

88.4211

2

4

7

2

26

36

77

98

127

136

139

118

78

73

45

15

8

6

3























































=

Here I had the histogram function make 19 cells with boundaries in 
X shown in the first column of variable plot.  The second column in 
plot are the counts of Observed values in each cell.

g length plot 1〈 〉( ):= g 19= j 0 g 2−..:= GT plot 1〈 〉∑:= GT 1000=

B 1〈 〉 plot 0〈 〉:=
< constructing boundary
   matrix B



2007 Biostatistics 37 Goodness of Fit 4

χ2 Test Statistic:
g 18= j 0 g 1−..:=

length O( ) 18=Xsq

j

Oj ELj
−( )2
ELj

∑:= Xsq 58.7119=

O

6

7

2

26

36

77

98

127

136

139

118

78

73

45

15

8

6

3





















































=

Critical Value of the Test:
α 0.05:= < Probability of Type I error must be explicitly set

k 2= < where: g = the number of cells, 
              k = number of parameters of the
                     internally specified model

g 18=
df g k− 1−:= df 15=

CV qchisq 1 α− df,( ):= CV 24.9958=

Decision Rule:
IF Xsq > CV THEN REJECT H0 OTHERWISE  ACCEPT H0

Xsq 58.7119= CV 24.9958=

Probability Value:
P 1 pchisq Xsq df,( )−( ):= P 4.1938 10 7−

×=

So, lumping the first two cells (BL):

g length plot 1〈 〉( ):= j 0 g 2−..:= m 0 1..:=

BLj m,
Bj 1+ m,:=

BL0 0,
99999−:=

And recalculating Expected (EL):

g length BL
0〈 〉( ):= j 0 g 1−..:=

ELj
GT pnorm BLj 1,

Xbar, s,( ) pnorm BLj 0,
Xbar, s,( )−( )⋅:=

EL

1.6659

3.1858

7.788

16.8742

32.4045

55.1543

83.2052

111.255

131.8527

138.5033

128.9534

106.416

77.8361

50.4607

28.9948

14.7666

6.6654

4.0179





















































= BL

99999−

0.7368

5.8947

11.0526

16.2105

21.3684

26.5263

31.6842

36.8421

42

47.1579

52.3158

57.4737

62.6316

67.7895

72.9474

78.1053

83.2632

0.7368

5.8947

11.0526

16.2105

21.3684

26.5263

31.6842

36.8421

42

47.1579

52.3158

57.4737

62.6316

67.7895

72.9474

78.1053

83.2632

99999





















































=

EL∑ 1000=

length EL( ) 18=

Criterion for Approximation:
IF no more than 1/5 of the cells have
     expected values in each cell Ej 5≤  
AND no cell has expected value Ej 1<  
THEN Approximation may be used.

length EL( ) 1
5

⋅ 3.6=

3 cells with expected less than 5 so qualifies for test...

lumping the first two cells:Resizing the Observed:
g 18= j 0 g 1−..:= Oj plot 1〈 〉( )

j 1+:=

O0 plot 1〈 〉( )
0 plot 1〈 〉( )

1+:=
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< new calculation of Xsq

Critical Value of the Test:
α 0.05:= < Probability of Type I error must be explicitly set

k 0:= < where: g = the number of cells, 
          k = number of parameters of the
                internally specified model

g 18= ELE

1.5844

2.9824

7.2462

15.6603

30.1043

51.4756

78.2927

105.9231

127.4713

136.4541

129.9313

110.051

82.9137

55.5659

33.1237

17.5636

8.2838

5.3726





















































=
df g k− 1−:= df 17=

CVE qchisq 1 α− df,( ):= CVE 27.5871=

^new critical value
Decision Rule:

IF Xsq > CV THEN REJECT H0 OTHERWISE  ACCEPT H0

Xsq 58.7119= CVE 27.5871=

Probability Value:
PE 1 pchisq Xsq df,( )−( ):= PE 1.7118 10 6−

×= < new probability

Prototype in R: Data transferred from MathCAD
Random Normal Example.txt

observed probabilities
1 6 0.001666
2 7 0.003186
3 2 0.007788
4 26 0.016874
5 36 0.032405
6 77 0.055154
7 98 0.083205
8 127 0.111255
9 136 0.131853

10 139 0.138503
11 118 0.128953
12 78 0.106416
13 73 0.077836
14 45 0.050461
15 15 0.028995
16 8 0.014767
17 6 0.006665
18 3 0.004018

COMMANDS:
> RN=read.table("c:/2007BiostatsData/
Random Normal Example.txt")
> RN
> attach RN
> X=observed
> P=probabilities
> chisq.test(X,p=P)

        Chi-squared test for given probabilities

data:  X 
X-squared = 58.7106, df = 17, p-value = 1.713e-06

Warning message:
Chi-squared approximation may be 
incorrect in: chisq.test(X, p = P) 

^ value of Xsq verified

1 pchisq Xsq g 1−,( )− 1.7118 10 6−
×= < Note that R considers the vector of probabilities P

    to be an externally specified model.  Under these
    circumstances k=0 and df=17, and P is confirmed.
    BUT  We can be more specific here...

Using Externally Specified Model:

µ 45= σ 15= < externally specified parameters we gave the random number generator

ELEj
GT pnorm BLj 1,

µ, σ,( ) pnorm BLj 0,
µ, σ,( )−( )⋅:= < new calculation of Expected

ELE∑ 1000=χ2 Test Statistic:
g 18= j 0 g 1−..:=

length ELE( ) 18=

XsqE

j

Oj ELEj
−( )2
ELEj

∑:= XsqE 82.3532=
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< Two sided test

Probability Value:
< for all tables 0 to observed table a, 
    and a + (a+1) up to max table kP 2 min PT0

PT1
, .., PTa

,( ) PTa
PTa 1+
, .., PTk,( ), 0.5, 

⋅:= k

^ this probability is interpreted as the probability of obtaining a table 
     as extreme as the one observed.

Note  that "one-sided" tests are possible here 
where P=min(PT's) directly, but these
must be formulated in terms of the binomial 
parameter p1 & p2 - see Biostatistics 34 for this.

One-sided probability Values:

P PT0
PT1
, .., PTa

,( ):= .. < for alternative 
   hypothesis H1: p1 < p2

Point Estimates of 
Binomial Proportions:P PTa

PTa 1+
, .., PTk,( ):=

a
< for alternative 
   hypothesis H1: p1 > p2

p1hat
a

a b+
:=

b
p2hat

c
c d+

:=
d

Critical Value of the Test & Decision Rule:

α 0.05:= < Probability of Type I error must be explicitly set

IF P < α THEN REJECT H0 OTHERWISE  ACCEPT H0

ORIGIN 0≡
Fisher's Exact Test

Fisher's Exact Test may be used for 2 X 2 contingency tables that fail the criterion for use of 
the Normal Approximation.  

Assumptions:

a b a+b

c d c+d

a+c b+d n

Contingency Table- Observed values X1, X2, X3, ... Xn1 are a random sample 
  Observed values Y1, Y2, Y3, ... Yn2 .are a random sample.

Model:
Let Probabilities: - Pi = P(X=i)

- Pj = P(Y=j)
- Pij = (X=i, Y=j)

Criterion for Normal Approximation:
- IF expected values in each cell Eij 5≥  THEN Approximation may be used
  OTHERWISE use Exact Test e.g., Fisher's Exact Test 

Fisher's Exact Test:
Enumerate all Possible Contingency Tables:

- Enumerate all possible 2X2 Contingency tables with identical row and column
    totals as the observed table.
- Calculate the exact probability of each table based on the Hypergeometric Distribution.

Hypergeometric Probability of a 2X2 contingency table: 

< a,b,c,d,n are specified as in the table above.
PT

a b+( )! c d+( )!⋅ a c+( )!⋅ b d+( )!⋅

n! a!⋅ b!⋅ c!⋅ d!⋅
:=

n

Hypotheses:
H0: p1 = (Pi)(Pj)
H1: Pij <> (Pi)(Pj)  

< That is, variables X & Y are independent!
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a 1:=

Table 1:

PT0
0.0174=PT0

a b+( )! c d+( )!⋅ a c+( )!⋅ b d+( )!⋅

n! a!⋅ b!⋅ c!⋅ d!⋅
:=T0

0

7

25

28







=T0
a

c

b

d







:=

Hypergeometric Probability:d R1 c−:=c C0 a−:=

b R0 a−:=a 0:=
CT 7 53( )=

Table 0:

d 30=c 5=
C

a c+

b d+







:=R
25

35







=

PT2
0.2522=PT2

a b+( )! c d+( )!⋅ a c+( )!⋅ b d+( )!⋅

n! a!⋅ b!⋅ c!⋅ d!⋅
:=T2

2

5

23

30







=T2
a

c

b

d







:=

Hypergeometric Probability:d R1 c−:=c C0 a−:=

b R0 a−:=a 2:=

Table 2 (The Observed Table):

PT1
0.1051=PT1

a b+( )! c d+( )!⋅ a c+( )!⋅ b d+( )!⋅

n! a!⋅ b!⋅ c!⋅ d!⋅
:=T1

1

6

24

29







=T1
a

c

b

d







:=

Hypergeometric Probability:d R1 c−:=c C0 a−:=

b R0 a−:=

C
a c+

b d+







:=R
a b+

c d+







:=
- Observed values X1, X2, X3, ... Xn1 are a random sample 
  Observed values Y1, Y2, Y3, ... Yn2 .are a random sample.

Assumptions:

n! 8.321 1081
×=n 60=n a b+ c+ d+:=

d! 2.6525 1032
×=c! 120=d 30:=c 5:=

b! 2.5852 1022
×=a! 2=b 23:=a 2:=

Rosner Example 10.20 p. 406

Example: 
a b a+b

c d c+d

a+c b+d n

Contingency Table

R
a b+

c d+







:=Ta
2

5

23

30







=Ta
a

c

b

d







:=
b 23=a 2=

Observed Table:

Enumeration of all Possible Contingency Tables:

Fisher's Exact Test:

d 30=c 5=
< Fisher's Exact Test must be used...b 23=a 2=

- IF expected values in each cell Eij 5≥  THEN Normal Approximation may be used
  OTHERWISE use Exact Test e.g., Fisher's Exact Test 

Criterion for Normal Approximation:

Let Probabilities: - Pi = P(X=i)
- Pj = P(Y=j)
- Pij = (X=i, Y=j)

^ Row and Column totalsModel:
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Probability Value:

< Two sided test
< That is, variables X & Y are independent!H0: p1 = (Pi)(Pj)

H1: Pij <> (Pi)(Pj)  

Hypotheses:

PT7
0.0012=PT7

a b+( )! c d+( )!⋅ a c+( )!⋅ b d+( )!⋅

n! a!⋅ b!⋅ c!⋅ d!⋅
:=T7

7

0

18

35







=T7
a

c

b

d







:=

Hypergeometric Probability:d R1 c−:=c C0 a−:=

b R0 a−:=a 7:=

Table 7:

PT6
0.016=PT6

a b+( )! c d+( )!⋅ a c+( )!⋅ b d+( )!⋅

n! a!⋅ b!⋅ c!⋅ d!⋅
:=T6

6

1

19

34







=

α 0.05=P 0.7493=

IF P < α THEN REJECT H0 OTHERWISE  ACCEPT H0

< Probability of Type I error must be explicitly setα 0.05:=

values confirmed p. 406 ^Critical Value of the Test & Decision Rule:

< confirmed p. 407P 0.7493=P 2 min A( ) B( ), 0.5,[ ]⋅:=

Two sided Probability:

< confirmed p. 407B 0.8775=B PT2
PT3

+ PT4
+ PT5

+ PT6
+ PT7

+:=
PT

0.0174

0.1051

0.2522

0.3118

0.2144

0.0819

0.016

0.0012

























=

< confirmed p. 407A 0.3747=A PT0
PT1

+ PT2
+:=

T4
4

3

21

32







=T4
a

c

b

d







:=

Hypergeometric Probability:d R1 c−:=c C0 a−:=

b R0 a−:=a 4:=

Table 4:

PT3
0.3118=PT3

a b+( )! c d+( )!⋅ a c+( )!⋅ b d+( )!⋅

n! a!⋅ b!⋅ c!⋅ d!⋅
:=T3

3

4

22

31







=T3
a

c

b

d







:=

Hypergeometric Probability:d R1 c−:=c C0 a−:=

b R0 a−:=a 3:=

Table 3:

T6
a

c

b

d







:=

Hypergeometric Probability:d R1 c−:=c C0 a−:=

b R0 a−:=a 6:=

Table 6:

PT5
0.0819=PT5

a b+( )! c d+( )!⋅ a c+( )!⋅ b d+( )!⋅

n! a!⋅ b!⋅ c!⋅ d!⋅
:=T5

5

2

20

33







=T5
a

c

b

d







:=

Hypergeometric Probability:d R1 c−:=c C0 a−:=

b R0 a−:=a 5:=

Table 5:

PT4
0.2144=PT4

a b+( )! c d+( )!⋅ a c+( )!⋅ b d+( )!⋅

n! a!⋅ b!⋅ c!⋅ d!⋅
:=
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Prototype in R:

COMMANDS:
> X=matrix(c(2,23,5,30),nrow=2,byrow=T)
> X
> fisher.test(X,alternative="two.sided",conf.level=0.95)

        Fisher's Exact Test for Count Data

data:  X 
p-value = 0.6882
alternative hypothesis: true odds ratio is not equal to 1 
95 percent confidence interval:
 0.04625243 3.58478157 
sample estimates:
odds ratio 
  0.527113 

PT

0.0174

0.1051

0.2522

0.3118

0.2144

0.0819

0.016

0.0012

























=

^ Here the calculations from Rosner & R's output are similar in result,
 but clearly do not match.  Perhaps this represents rounding error.

Note that R also has a Hypergeometric Distribution function that may be used here:

COMMANDS:
> X=0:7
> X
> dhyper(X,7,53,25)

[1] 0.017411703 0.105070619 0.252169485 0.311822481 0.214377956 0.081853401
[7] 0.016049687 0.001244670

^ These numbers match calculation of vector PT above

PT

0.0174

0.1051

0.2522

0.3118

0.2144

0.0819

0.016

0.0012

























=

> phyper(X,7,53,25)

[1] 0.01741170 0.12248232 0.37465181 0.68647429 0.90085224 0.98270564 0.99875533
[8] 1.00000000

^ These numbers are the cumulative probabilities used in calcuation of A above. 

A 0.3747=

This suggests that R's fisher.test() calculates probabilites somewhat differently... 
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< deviation of each value Yi from Regression line = Yhatiei Yhati
Yi−:= Y

Residuals:

< using estimated coefficients and each value of the independent
    variable to estimate dependent value points on the Regression line.

Yhati
a b Xi⋅+:= X

Estimted values of Y (Yhat):

< sample estimate of αa Ybar b Xbar⋅−:= Xbar

< sample estimate of βb
Lxy

Lxx
:=

Lxx

Estimated Regression Coefficients for Y =  α + βX:

< corrected Sum of cross productsLxy

i

Xi Xbar−( ) Yi Ybar−( )⋅∑:= Ybar

< corrected Sum of squares of YLyy

i

Yi Ybar−( )2∑:= Ybar

< corrected Sum of squares of XLxx

i

Xi Xbar−( )2∑:= Xbar

Sums of Squares and Cross Products corrected for mean location:

Least Squares Estimation of the Regression Line:

Y = α + βX + ε

where: α is the y intercept of the regression line (translation)
 β is the slope of the regression line (scaling coefficient)
 ε is the error factor in prediction of Y given that it is a 

             random variable distributed as N(0,σ2).

Model:

- Standard Linear Regression depends on specifying in advance which variable is to be
    considered 'dependent' and which 'independent'.  This decision matters as changing
    roles for Y & X usually produces a different result.
- Y1, Y2, Y3, ... , Yn (dependent variable) is a random sample ~ N(µ,σ2).
- X1, X2, X3, ... , Xn (independent variable) with each value of Xi matched to Yi

Assumptions:

Linear Regression and the so-called "General Linear Model" represent a class of methods that 
seek to relate values of an observed "dependent" random variable (Y) that is Normally distributed 
to one or more "independent" (or predictor) variables (X) using a linear function analogous to a 
linear transformation - i.e., using only translation and change of scale.  We typically employ 
"linear coeficients" (not to be confused with the probability of types I & II errors in statistical 
tests) to describe translation (α) and change of scale (β).  Thus a function such as Y = 5 + 23X 
qualifies as a linear function whereas Y = X2 or Y= 5 +X3 would not.  Note, however, that with the 
use of an appropriate non-linear transformations of the data, many non-linear functions can be 
treated by general linear methods also.  For instance, taking the square root allows one to model Y 
= X2 as  Y = a X, and taking logs allows one to model the famous allometric equation: Y = aXb  as 
ln(Y) = ln(a) + b(ln(X)). 

"Simple" Linear Regression
ORIGIN 0≡



2007 Biostatistics 39 "Simple" Linear Regression 2

^ verified p. 471

Lyy

i

Yi Ybar−( )2∑:= Lyy 680.9677=

^ close but not the same as p. 478 

Lxy

i

Xi Xbar−( ) Yi Ybar−( )⋅∑:= Lxy 410.7742=

^ close but not the same as p. 471 

My guesss here is that there's an 
error in his Table 11.1 or my 
GreenTouchStone Study.xls

Estimated Regression Coefficients for Y =  α+  βX:

b
Lxy

Lxx
:= b 0.6064= < sample estimate of β

a Ybar b Xbar⋅−:= a 21.5869= < sample estimate of α

Estimted values of Y (Yhat):

Yhati
a b Xi⋅+:= < using estimated coefficients and each value of the independent

    variable to estimate dependent value points on the Regression line.

Residuals: < deviation of each value Yi from Regression line = Yhati

ei Yhati
Yi−:=

Example: 

Rosner Example 11.8 p. 471 K READPRN "c:/2007BiostatsData/GreenTouchstone Study2.txt"( ):=

Assumptions:
- Let independent variable X be Estriol level in the first column of K
- Let dependent variable Y be Birthweight in the second column of K
- Y is a random sample ~N(µ,σ2)

Model:

Y = α + βX + ε

K

0 1
0
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

7 25
9 25

9 25

12 27

14 27

16 27

16 24

14 30

16 30

16 31

17 30

19 31

21 30

24 28

15 32

16 32

=

Least Squares Estimation of the Regression Line:

X K 0〈 〉
:= Xbar mean X( ):= Xbar 17.2258=

Y K 1〈 〉
:= Ybar mean Y( ):= Ybar 32.0323=

n length Y( ):= i 0 n 1−..:= n 31=

Sums of Squares and Cross Products corrected for mean location:

Lxx

i

Xi Xbar−( )2∑:= Lxx 677.4194=
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5 10 15 20 25 30
10

0

10

20

30

40

50

Yi

Yhati

ei

Xi

Plot of Values:

Prototype in R:

COMMANDS:
> K=read.table("c:/2007BiostatsData/GreenTouchstone.txt")
> K
> attach(K)
> X=Estriol
> Y=BirthWeight
> lsfit(X,Y)

a 21.5869=
coefficients confirmed

b 0.6064=

$coefficients
Intercept         X 
21.586857  0.606381 

$residuals
 [1] -0.83152381 -2.04428571 -2.04428571 -1.86342857 -3.07619048
 [6] -4.28895238 -7.28895238 -0.07619048 -1.28895238 -0.28895238
[11] -1.89533333 -2.10809524 -4.32085714 -8.14000000  1.31742857
[16]  0.71104762  0.10466667 -4.74638095 -3.95914286  3.31742857
[21]  3.31742857  4.31742857  4.71104762  0.89190476  2.49828571
[26]  4.10466667  4.49828571  4.28552381  5.07276190  2.25361905
[31]  6.86000000

And much more stuff...

e

0
0
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0.8315
2.0443

2.0443

1.8634

3.0762

4.289

7.289

0.0762

1.289

0.289

1.8953

2.1081

4.3209

8.14

-1.3174

-0.711

=
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Prototype in R:
Call:
lm(formula = Y ~ X)

Coefficients:
(Intercept)            X  
    21.5869       0.6064

COMMANDS:
 > lm(Y~X)

COMMANDS:
> predict(lm(Y~X))
> fitted(lm(Y~X))

< just the estimates 
   of α and β

       1        2        3        4        5        6        7        8 
25.83152 27.04429 27.04429 28.86343 30.07619 31.28895 31.28895 30.07619 
       9       10       11       12       13       14       15       16 
31.28895 31.28895 31.89533 33.10810 34.32086 36.14000 30.68257 31.28895 
      17       18       19       20       21       22       23       24 
31.89533 36.74638 37.95914 30.68257 30.68257 30.68257 31.28895 33.10810 
      25       26       27       28       29       30       31 
32.50171 31.89533 32.50171 33.71448 34.92724 36.74638 36.14000

< Yhat values 
    calculated

COMMANDS:
> PRED=predict(lm(Y~X))
> RESIDUALS=resid(lm(Y~X))
> RESULTS=data.frame(Y,X,PRED,RESIDUALS)
> RESULTS
> plot(X,Y)
> abline(lm(Y~X),col="blue")
> segments(X,predict(lm(Y~X)),X,Y,col="red")

< In data frame format:

    Y  X     PRED   RESIDUALS
1  25  7 25.83152 -0.83152381
2  25  9 27.04429 -2.04428571
3  25  9 27.04429 -2.04428571
4  27 12 28.86343 -1.86342857
5  27 14 30.07619 -3.07619048
6  27 16 31.28895 -4.28895238
7  24 16 31.28895 -7.28895238
8  30 14 30.07619 -0.07619048
9  30 16 31.28895 -1.28895238
10 31 16 31.28895 -0.28895238
11 30 17 31.89533 -1.89533333
12 31 19 33.10810 -2.10809524
13 30 21 34.32086 -4.32085714
14 28 24 36.14000 -8.14000000
15 32 15 30.68257  1.31742857
16 32 16 31.28895  0.71104762
17 32 17 31.89533  0.10466667
18 32 25 36.74638 -4.74638095
19 34 27 37.95914 -3.95914286
20 34 15 30.68257  3.31742857
21 34 15 30.68257  3.31742857
22 35 15 30.68257  4.31742857
23 36 16 31.28895  4.71104762
24 34 19 33.10810  0.89190476
25 35 18 32.50171  2.49828571
26 36 17 31.89533  4.10466667
27 37 18 32.50171  4.49828571
28 38 20 33.71448  4.28552381
29 40 22 34.92724  5.07276190
30 39 25 36.74638  2.25361905
31 43 24 36.14000  6.86000000

10 15 20 25

25
30

35
40

X

Y

Plot with Fitted values (blue)
and Residuals (red)
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Compare Values:

X

7

9

9

12

14

16

16

14

16

16

17

19

21

24

15

16

17

25

27

15

15

15

16

19

18

17

18

20

22

25

24
























































































= Y

25

25

25

27

27

27

24

30

30

31

30

31

30

28

32

32

32

32

34

34

34

35

36

34

35

36

37

38

40

39

43
























































































= Yhat

25.8315

27.0443

27.0443

28.8634

30.0762

31.289

31.289

30.0762

31.289

31.289

31.8953

33.1081

34.3209

36.14

30.6826

31.289

31.8953

36.7464

37.9591

30.6826

30.6826

30.6826

31.289

33.1081

32.5017

31.8953

32.5017

33.7145

34.9272

36.7464

36.14
























































































= e
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< Two sided test
< Slope of the Regression is zero implying no relationship between Xi and Yi H0: β = 0

H1:β <> β  

Hypotheses:

And the ratio of SSR to SSE can be used as a measure of "fit" of the data to the regression.

SST SSR SSE+:= SSE

These Sums of Squares tally as follows:

< Residual (also called "Error") Sum of SquaresSSE

i

Yi Yhati
−( )2∑:= Yhat

< Regression Sum of SquaresSSR

i

Yhati
Ybar−( )2∑:= Ybar

< Total Sum of SquaresSST

i

Yi Ybar−( )2∑:= Ybar

Note that variance here is addressed in terms of "Sums of Squares" the numerator as this is 
the only important part of variance to consider at this point:

Once a regression model (Y = α + βX + ε) is fitted with data, one still needs to determine 
how useful the regression might be, especially whether knowledge about the Xi provide 
insight into interpreting the Yi as a random variable from a Normal distribution with error εi.
This is done by considering a "partition" of total variance in the sample of Yi.

Variance (Sum of Squares) Decomposition of the Regression:

Y = α + βX + ε

where: α is the y intercept of the regression line (translation)
 β is the slope of the regression line (scaling coefficient)
 ε is the error factor in prediction of Y given that it is a 

             random variable with N(0,σ2)

Model:

- Standard Linear Regression depends on specifying in advance which variable is to be
    considered 'dependent' and which 'independent'.  This decision matters as changing
    roles for Y & X usually produces a different result.
- Y1, Y2, Y3, ... , Yn (dependent variable) is a random sample ~ N(µ,σ2).
- X1, X2, X3, ... , Xn (independent variable) with each value of Xi matched to Yi

Assumptions:

Goodness of fit of a fitted regression line can be tested using the F-test for Regression (also 
known as the ANOVA for "Analysis of Variance" for Regression) or alternatively, and 
equivalently, the t-test of Regression. Here we consider the ANOVA approach.   

ANOVA for "Simple" Linear Regression

ORIGIN 0≡
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< Probability of Type I error must be explicitly set

CV inverseΦF 1 α−( ):= inverseΦF CV qF 1 α− 1, n 2−,( ):= n

Decision Rule:

IF F > CV, THEN REJECT H0 

OTHERWISE  ACCEPT H0

Probability Value:

P = 1- ΦF(F) P 1 pF F 1, n 2−,( )−:= F

Example: 

Rosner Example 11.12 p. 477 K READPRN "c:/2007BiostatsData/GreenTouchstone Study2.txt"( ):=

Assumptions:
- Let independent variable X be Estriol level in the first column of K
- Let dependent variable Y be Birthweight in the second column of K
- Y is a random sample ~N(µ,σ2)

Model:
Y = α + βX + ε

Least Squares Estimation of the Regression Line:

X K 0〈 〉
:= Xbar mean X( ):= Xbar 17.2258=

Y K 1〈 〉
:= Ybar mean Y( ):= Ybar 32.0323=

n length Y( ):= i 0 n 1−..:= n 31=

ANOVA for Linear Regression:
ANOVA TABLECompute ANOVA Table:

SS df MS 

Regression: SSR 1 MSR
SSR

1
:=

SSR

Residual: SSE n 2−( ) MSE
SSE

n 2−( )
:=

n

TOTAL: SST n 1−( ) MST
SST

n 1−( )
:=

n
Test Statistic:

F
MSR

MSE
:=

MSE
< F is the ratio of sample variances

Sampling Distribution:

If Assumptions hold and H0 is true, then F ~F(1)/(n-2)

Critical Value of the Test:
α 0.05:=
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< Residual (also called "Error") Sum of Squares

Hypotheses:
H0: β = 0
H1:β <> β  

< Slope of the Regression is zero implying no relationship between Xi and Yi 

< Two sided test

ANOVA for Linear Regression:
ANOVA TABLECompute ANOVA Table:

SS df MS 

Regression: SSR 249.0856= 1 MSR
SSR

1
:= MSR 249.0856=

Residual: SSE 431.8821= n 2−( ) MSE
SSE

n 2−( )
:= MSE 14.8925=

TOTAL: SST 680.9677= n 1−( ) MST
SST

n 1−( )
:= MST 22.6989=

Sums of Squares and Cross Products corrected for mean location:

Lxx

i

Xi Xbar−( )2∑:= Lxx 677.4194=

Lyy

i

Yi Ybar−( )2∑:= Lyy 680.9677=

Lxy

i

Xi Xbar−( ) Yi Ybar−( )⋅∑:= Lxy 410.7742=

Estimated Regression Coefficients for Y =  α+  βX:

b
Lxy

Lxx
:= b 0.6064= < sample estimate of β

a Ybar b Xbar⋅−:= a 21.5869= < sample estimate of α

Estimted values of Y (Yhat):

Yhati
a b Xi⋅+:= < using estimated coefficients and each value of the independent

    variable to estimate dependent value points on the Regression line.

Residuals: < deviation of each value Yi from Regression line = Yhati

ei Yhati
Yi−:=

Sums of Squares:

SST

i

Yi Ybar−( )2∑:= < Total Sum of Squares - same as Lyy above

SSR

i

Yhati
Ybar−( )2∑:= < Regression Sum of Squares

SSE

i

Yi Yhati
−( )2∑:=
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^ ANOVA results match above

Analysis of Variance Table

Response: Y
          Df Sum Sq Mean Sq F value    Pr(>F)    
X   1 249.09  249.09  16.726 0.0003134 ***
Residuals 29 431.88   14.89                      
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

COMMANDS:
> anova(lm(Y~X))
or
> anova.lm(lm(Y~X))

< a & b values same as above

Call:
lm(formula = Y ~ X)

Coefficients:
(Intercept)            X  
    21.5869       0.6064  

COMMANDS:
 > K=read.table("c:/2007BiostatsData/GreenTouchstone.txt")
> K
> attach(K)
> X=Estriol
> Y=BirthWeight
> X
> lm(Y~X)

Prototype in R:

P 0.0003=P 1 pF F 1, n 2−,( )−:=

Powerful stuff!!Probability Value:

CV 4.183=F 16.7256=

IF F > CV, THEN REJECT H0 OTHERWISE  ACCEPT H0

Decision Rule:

CV 4.183=CV qF 1 α− 1, n 2−,( ):=

< Probability of Type I error must be explicitly setα 0.05:=

Critical Value of the Test:
If Assumptions hold and H0 is true, then F ~F(1)/(n-2)

Sampling Distribution:

F 16.7256=< F is the ratio of sample variancesF
MSR

MSE
:=

Test Statistic:
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Prototype in SYSTAT:

Dep Var: BIRTHWT   N: 31   Multiple R: 0.60480   Squared multiple R: 0.36578
 

Adjusted squared multiple R: 0.34391   Standard error of estimate: 3.85908
 

Effect         Coefficient    Std Error     Std Coef Tolerance     t   P(2 Tail)
 

CONSTANT          21.58686      2.64645      0.00000    .       8.15690  0.00000
ESTRIOL            0.60638      0.14827      0.60480   1.00000  4.08969  0.00031

 
                             Analysis of Variance

 
Source             Sum-of-Squares   df  Mean-Square     F-ratio       P
 
Regression             249.08565     1    249.08565    16.72559     0.00031
Residual               431.88210    29     14.89249

-------------------------------------------------------------------------------
 
 

Durbin-Watson D Statistic     0.714
First Order Autocorrelation   0.588

^ values of tables match results above

Plot of Residuals against Predicted Values
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Critical Value of the Test:
α 0.05:= < Probability of Type I error must be explicitly set

C1 inverseΦt
α

2






:= inverseΦt C2 inverseΦt 1
α

2
−





:= inverseΦt

Note degrees of freedom = (n-2)
C1 qt

α

2
n 2−,





:= n C2 qt 1
α

2
− n 2−,





:= n

Decision Rule:

IF |t| > C, THEN REJECT H0 OTHERWISE  ACCEPT H0

Probability Value:

P = minimum(2 Φt(t),1-2 Φt(t) < Rosner Eq 11.8, p. 481

P min 2 pt t n 2−,( )⋅ 2 1 pt t n 2−,( )−( )⋅,[ ]:= n
    Note that C1 and C2 are
    explicitly evaluated above so C1

     is already negative in value.  So
    it is added to Xbar here to find
<  the Lower Bound of the CI.

Confidence Interval for the Regression (β):

CIR b C1
MSE

Lxx
⋅+ b C2

MSE

Lxx
⋅+








:= C2

ORIGIN 0≡

The t-Test Approach and Interval Estimation for "Simple" Linear Regression

Goodness of fit of a fitted regression line can be tested using a t-test approach.  This 
method also provides for a direct estimation of confidence intervals for the slope parameter 
β.  Interval estimates can also be derived for the Regression line itself as a mean, as well 
as for prediction of "new" observations.  

Assumptions:
- Standard Linear Regression depends on specifying in advance which variable is to be
    considered 'dependent' and which 'independent'.  This decision matters as changing
    roles for Y & X usually produces a different result.
- Y1, Y2, Y3, ... , Yn (dependent variable) is a random sample ~ N(µ,σ2).
- X1, X2, X3, ... , Xn (independent variable) with each value of Xi matched to Yi

Model: where: α is the y intercept of the regression line (translation)
 β is the slope of the regression line (scaling coefficient)
 ε is the error factor in prediction of Y given that it is a 

             random variable with N(0,σ2)

Y = α + βX + ε

t-Test for Simple Linear Regression:

Hypotheses:
H0: β = 0
H1:β <> 0  

< Slope of the Regression is zero implying no relationship between Xi and Yi 

< Two sided test

Test Statistic:
< b is unbiased point estimate of β

t
b

MSE

Lxx

:=

Lxx

< MSE is Mean Square Error from ANOVA table also denoted s2
x.y

< Lxx Corrected sums of squares of X as defined in Regression
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Ybar mean Y( ):= Ybar 32.0323=

n length Y( ):= i 0 n 1−..:= n 31=

Sums of Squares and Cross Products corrected for mean location:

Lxx

i

Xi Xbar−( )2∑:= Lxx 677.4194=

Lyy

i

Yi Ybar−( )2∑:= Lyy 680.9677=

Lxy

i

Xi Xbar−( ) Yi Ybar−( )⋅∑:= Lxy 410.7742=

Estimated Regression Coefficients for Y =  α+  βX:

b
Lxy

Lxx
:= b 0.6064= < sample estimate of β

a Ybar b Xbar⋅−:= a 21.5869= < sample estimate of α

Estimted values of Y (Yhat):

Yhati
a b Xi⋅+:= < using estimated coefficients and each value of the independent

    variable to estimate dependent value points on the Regression line.

Confidence Interval for Regression Estimates Yhat and New Predictions of Y:

One or more values of Xn must be explicitly specified to obtain a prediction CI for Yhat: 

Xni
Xi:= X < here using all original values of X, but any X values may be specified instead...

Confidence Interval (CI):

CIRLi
Yhati

C1 MSE
1
n

Xni
Xbar−( )2

Lxx
+











⋅⋅+:=
Lxx

CIRUi
Yhati

C2 MSE
1
n

Xni
Xbar−( )2

Lxx
+











⋅⋅+:=
Lxx

Prediction Interval (PI):

PIRLi
Yhati

C1 MSE 1
1
n

+
Xni

Xbar−( )2

Lxx
+











⋅⋅+:=
Lxx

PIRUi
Yhati

C2 MSE 1
1
n

+
Xni

Xbar−( )2

Lxx
+











⋅⋅+:=
Lxx

Example: 
Rosner Example 11.12 p. 477 K READPRN "c:/2007BiostatsData/GreenTouchstone Study2.txt"( ):=

Assumptions:
- Let independent variable X be Estriol level in the first column of K
- Let dependent variable Y be Birthweight in the second column of K
- Y is a random sample ~ N(µ,σ2)

Model:
Y = α + βX + ε

Least Squares Estimation of the Regression Line:

X K 0〈 〉
:= Xbar mean X( ):= Xbar 17.2258=

Y K 1〈 〉
:=
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TOTAL: SST 680.9677= n 1−( ) MST
SST

n 1−( )
:= MST 22.6989=

Hypotheses:
H0: β = 0
H1:β <> 0  

< Slope of the Regression is zero implying no relationship between Xi and Yi 

< Two sided test

Test Statistic:

t
b

MSE

Lxx

:= t 4.0897=

Critical Value of the Test:
α 0.05:= < Probability of Type I error must be explicitly set

C1 qt
α

2
n 2−,





:= C1 2.0452−=

Note degrees of freedom = (n-2)
C2 qt 1

α

2
− n 2−,





:= C2 2.0452=

Decision Rule:

IF |t| > C, THEN REJECT H0 OTHERWISE  ACCEPT H0

t 4.0897= C1 2.0452−= C2 2.0452=

Residuals:

ei Yhati
Yi−:= < deviation of each value Yi from Regression line = Yhati

Sums of Squares:

SST

i

Yi Ybar−( )2∑:= < Total Sum of Squares

SSR

i

Yhati
Ybar−( )2∑:= < Regression Sum of Squares

SSE

i

Yi Yhati
−( )2∑:= < Residual (also called "Error") Sum of Squares

ANOVA for Linear Regression:
ANOVA TABLECompute ANOVA Table:

SS df MS 

Regression: SSR 249.0856= 1 MSR
SSR

1
:= MSR 249.0856=

Residual: SSE 431.8821= n 2−( ) MSE
SSE

n 2−( )
:= MSE 14.8925=
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5 10 15 20 25 30
15

20

25

30

35

40

45

50

Yi

Yhati

CIRLi

CIRUi

PIRLi

PIRUi

Xi

Plot of Regression and Prediction Interval:

X1 9=for point: X=PIRL1
PIRU1( ) 18.6463 35.4423( )=

PIRUi
Yhati

C2 MSE 1
1
n

+
Xni

Xbar−( )2

Lxx
+











⋅⋅+:=PIRLi
Yhati

C1 MSE 1
1
n

+
Xni

Xbar−( )2

Lxx
+











⋅⋅+:=

Prediction Interval (PIR):

X1 9=for point: X=CIRL1
CIRU1( ) 24.1752 29.9134( )=

CIRUi
Yhati

C2 MSE
1
n

Xni
Xbar−( )2

Lxx
+











⋅⋅+:=CIRLi
Yhati

C1 MSE
1
n

Xni
Xbar−( )2

Lxx
+











⋅⋅+:=

Confidence Interval (CIR):

< here using all original values of X, but any X values may be specified instead...Xni
Xi:=

One or more values of Xn must be explicitly specified to obtain a prediction CI for Yhat: 

Confidence Interval for Regression Estimates Yhat and New Predictions of Y:

CIR 0.3031 0.9096( )=

CIR b C1
MSE

Lxx
⋅+ b C2

MSE

Lxx
⋅+








:=

b 0.6064=

Confidence Interval for the Regression (β):

P 0.0003=P min 2 pt t n 2−,( )⋅ 2 1 pt t n 2−,( )−( )⋅,[ ]:=

Probability Value:
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Prototype in SYSTAT:

Dep Var: BIRTHWT   N: 31   Multiple R: 0.60480   Squared multiple R: 0.36578
 

Adjusted squared multiple R: 0.34391   Standard error of estimate: 3.85908
 

Effect         Coefficient    Std Error     Std Coef Tolerance     t   P(2 Tail)
 

CONSTANT          21.58686      2.64645      0.00000    .       8.15690  0.00000
ESTRIOL            0.60638      0.14827      0.60480   1.00000  4.08969  0.00031

 
                             Analysis of Variance

 
Source             Sum-of-Squares   df  Mean-Square     F-ratio       P
 
Regression             249.08565     1    249.08565    16.72559     0.00031
Residual               431.88210    29     14.89249

-------------------------------------------------------------------------------
 
 

Durbin-Watson D Statistic     0.714
First Order Autocorrelation   0.588

Prototype in R:
COMMANDS:
> K=read.table("c:/2007BiostatsData/GreenTouchstone.txt")
>K
> attach(K)
> X=Estriol
> Y=BirthWeight
> summary(lm(Y~X))

Call:
lm(formula = Y ~ X)

Residuals:
     Min       1Q   Median       3Q      Max 
-8.14000 -2.07619 -0.07619  3.31743  6.86000 

Coefficients:
 Estimate Std. Error t value Pr(>|t|)    
(Intercept)  21.5869     2.6465   8.157  5.4e-09 ***
X          0.6064     0.1483   4.090 0.000313 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 3.859 on 29 degrees of freedom
Multiple R-Squared: 0.3658,     Adjusted R-squared: 0.3439 
F-statistic: 16.73 on 1 and 29 DF,  p-value: 0.0003134 
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Plotting Intervals in R:

COMMANDS:
> PRED=predict(lm(Y~X),interval="prediction",level=0.95)
> PR=data.frame(PRED)
> PR
> CONF=predict(lm(Y~X),interval="confidence",level=0.95)
>CN=data.frame(CONF)
> plot(X,Y)
> abline(lm(Y~X),col="blue")
> segments(X,PR$lwr,X,PR$upr,col="red")
> segments(X,CN$lwr,X,CN$upr,col="green")
> points(X,CN$lwr,col="green")
> points(X,CN$upr,col="green")
> points(X,PR$lwr,col="red")
> points(X,PR$upr,col="red")
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Comparison of Confidence and Prediction Intervals:
In R:

COMMANDS:
> CN
> PR

CONFIDENCE INTERVAL (CN) PREDICTION (PR)

        fit      lwr      upr
1  25.83152 22.42192 29.24113
2  27.04429 24.17517 29.91340
3  27.04429 24.17517 29.91340
4  28.86343 26.73721 30.98965
5  30.07619 28.35386 31.79852
6  31.28895 29.82345 32.75445
7  31.28895 29.82345 32.75445
8  30.07619 28.35386 31.79852
9  31.28895 29.82345 32.75445
10 31.28895 29.82345 32.75445
11 31.89533 30.47611 33.31456
12 33.10810 31.59186 34.62433
13 34.32086 32.49893 36.14278
14 36.14000 33.64411 38.63589
15 30.68257 29.11251 32.25263
16 31.28895 29.82345 32.75445
17 31.89533 30.47611 33.31456
18 36.74638 33.99550 39.49726
19 37.95914 34.67360 41.24469
20 30.68257 29.11251 32.25263
21 30.68257 29.11251 32.25263
22 30.68257 29.11251 32.25263
23 31.28895 29.82345 32.75445
24 33.10810 31.59186 34.62433
25 32.50171 31.06483 33.93859
26 31.89533 30.47611 33.31456
27 32.50171 31.06483 33.93859
28 33.71448 32.06607 35.36288
29 34.92724 32.90103 36.95345
30 36.74638 33.99550 39.49726
31 36.14000 33.64411 38.63589

        fit      lwr      upr
1  25.83152 17.23384 34.42920
2  27.04429 18.64628 35.44229
3  27.04429 18.64628 35.44229
4  28.86343 20.68935 37.03751
5  30.07619 21.99775 38.15463
6  31.28895 23.26135 39.31656
7  31.28895 23.26135 39.31656
8  30.07619 21.99775 38.15463
9  31.28895 23.26135 39.31656
10 31.28895 23.26135 39.31656
11 31.89533 23.87605 39.91462
12 33.10810 25.07107 41.14512
13 34.32086 26.22060 42.42111
14 36.14000 27.86206 44.41794
15 30.68257 22.63522 38.72992
16 31.28895 23.26135 39.31656
17 31.89533 23.87605 39.91462
18 36.74638 28.38803 45.10473
19 37.95914 29.40990 46.50838
20 30.68257 22.63522 38.72992
21 30.68257 22.63522 38.72992
22 30.68257 22.63522 38.72992
23 31.28895 23.26135 39.31656
24 33.10810 25.07107 41.14512
25 32.50171 24.47929 40.52414
26 31.89533 23.87605 39.91462
27 32.50171 24.47929 40.52414
28 33.71448 25.65148 41.77748
29 34.92724 26.77860 43.07587
30 36.74638 28.38803 45.10473
31 36.14000 27.86206 44.41794
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As calculated above:

Yhat: CONFIDENCE INTERVAL: PREDICTION INTERVAL:

Yhat

25.8315

27.0443

27.0443

28.8634

30.0762

31.289

31.289

30.0762

31.289

31.289

31.8953

33.1081

34.3209

36.14

30.6826

31.289

31.8953

36.7464

37.9591

30.6826

30.6826

30.6826

31.289

33.1081

32.5017

31.8953

32.5017

33.7145

34.9272

36.7464

36.14
























































































= CIRL

22.4219

24.1752

24.1752

26.7372

28.3539

29.8235

29.8235

28.3539

29.8235

29.8235

30.4761

31.5919

32.4989

33.6441

29.1125

29.8235

30.4761

33.9955

34.6736

29.1125

29.1125

29.1125

29.8235

31.5919

31.0648

30.4761

31.0648

32.0661

32.901

33.9955

33.6441
























































































= CIRU

29.2411

29.9134

29.9134

30.9897

31.7985

32.7545

32.7545

31.7985

32.7545

32.7545

33.3146

34.6243

36.1428

38.6359

32.2526

32.7545

33.3146

39.4973

41.2447

32.2526

32.2526

32.2526

32.7545

34.6243

33.9386

33.3146

33.9386

35.3629

36.9534

39.4973

38.6359
























































































= PIRL

17.2338

18.6463

18.6463

20.6894

21.9978

23.2613

23.2613

21.9978

23.2613

23.2613

23.876

25.0711

26.2206

27.8621

22.6352

23.2613

23.876

28.388

29.4099

22.6352

22.6352

22.6352

23.2613

25.0711

24.4793

23.876

24.4793

25.6515

26.7786

28.388

27.8621
























































































= PIRU

34.4292

35.4423

35.4423

37.0375

38.1546

39.3166

39.3166

38.1546

39.3166

39.3166

39.9146

41.1451

42.4211

44.4179

38.7299

39.3166

39.9146

45.1047

46.5084

38.7299

38.7299

38.7299

39.3166

41.1451

40.5241

39.9146

40.5241

41.7775

43.0759

45.1047

44.4179
























































































=

^ values match those derived from R.
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< equivalentr b
sx

sy
⋅:=

sy
r b

Lxx

Lyy
⋅:=

Lyy

< equivalentb r
sy

sx
⋅:=

sx
b r

Lyy

Lxx
⋅:=

Lxx

Correlation coefficient related to regression slope (b as estimate of β):

< correlation coefficient in terms of 
    covariance & standard deviations

r
sxy

sx sy⋅
:=

sy

sy Lyy:= Lyysx Lxx:= Lxxsxy
Lxy

n 1−( )
:=

n

Correlation Coefficient Related to Sample Covariance & Standard Deviation:

Note: Values of r and R2 range between -1 and 1.  The closer R2 is to -1 or 1, the stronger 
the linear relationship between the variables is potentially observed. R2 or r near zero 
suggests no association. However, no single number can capture the situation exactly.  It is 
possible, for data to show non-linear relationships, and for there to be high 
correlation/determination without necessarily a "good"regression fit or precison in 
prediction.

Rsq 1
SSE

SST
−:=

SST
Rsq

SSR

SST
:=

SST
Rsq

Lxy
2

Lxx Lyy⋅
:=

Lyy

< equivalent

Rsq r2:= r

Coefficient of Determination:

< equivalentr 1
SSE

SST
−:=

SST
r

SSR

SST
:=

SST
r

Lxy

Lxx Lyy⋅
:=

Lyy

Coefficient of Correlation:

From values defined in constructing Regression or the ANOVA table:

Coefficient of Determination (R2) and Coefficient of Correlation (r):

Once it is determined by ANOVA F or t-tests that an association between variables exists by 
testing H0: β = 0, summary statistics such as the coefficient of determination (r2 or R2) 
and coefficient of correlation (r) may prove helpful.  More usefully, further inferences 
may be made concerning the degree of association.  This may be done by testing of H0: β = β0 or 
providing confidence limits on β. Alternatively, one can test and provide confidence limits on 
the population correlation coefficient (ρ) via its sample estimate (r).  Tests using 
correlation are particularly useful when the reseacher is unwilling to specify in advance which of 
two variables (X or Y) should be considered  independent versus dependent.

Association and Correlation in "Simple" Regression

ORIGIN 0≡
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Yhati
a b Xi⋅+:= ei Yhati

Yi−:=

ANOVA Sums of Squares:

SST

i

Yi Ybar−( )2∑:= SSR

i

Yhati
Ybar−( )2∑:= SSE

i

Yi Yhati
−( )2∑:=

SST 680.9677= SSR 249.0856= SSE 431.8821=

Coefficient of Correlation:

r
Lxy

Lxx Lyy⋅
:= r 0.6048=

SSR

SST
0.6048= 1

SSE

SST
− 0.6048= < equivalent

Coefficient of Determination:

Rsq r2:= Rsq 0.3658=
Lxy

2

Lxx Lyy⋅
0.3658=

SSR

SST
0.3658= 1

SSE

SST
− 0.3658= < equivalent

Prototype in R:
COMMANDS:
> K=read.table("c:/2007BiostatsData/GreenTouchstone.txt")
> K
> X=K$Estriol
> Y=K$BirthWeight
> summary(lm(Y~X))

Call:
lm(formula = Y ~ X)

Residuals:
     Min       1Q   Median       3Q      Max 
-8.14000 -2.07619 -0.07619  3.31743  6.86000 

Coefficients:
            Estimate Std. Error  t value Pr(>|t|)    
(Intercept)  21.5869   2.6465    8.157 5.4e-09 ***
X             0.6064    0.1483  4.090 0.000313 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 3.859 on 29 degrees of freedom
Multiple R-Squared: 0.3658,     Adjusted R-squared: 0.3439 
F-statistic: 16.73 on 1 and 29 DF,  p-value: 0.0003134 

R2 reported here >

Example: 
Rosner Example 11.12 p. 477 K READPRN "c:/2007BiostatsData/GreenTouchstone Study2.txt"( ):=

Calculating the Correlation:

X K 0〈 〉
:= Y K 1〈 〉

:= Xbar mean X( ):= Xbar 17.2258= Ybar mean Y( ):= Ybar 32.0323=

n length Y( ):= i 0 n 1−..:= n 31=

Sums of Squares and Cross Products (from means):

Lxx

i

Xi Xbar−( )2∑:= Lyy

i

Yi Ybar−( )2∑:= Lxy

i

Xi Xbar−( ) Yi Ybar−( )⋅∑:=

Lxx 677.4194= Lyy 680.9677= Lxy 410.7742=

Estimated Regression Coefficients for Y =  α+  βX:

b
Lxy

Lxx
:= b 0.6064= a Ybar b Xbar⋅−:= a 21.5869=

Estimted values of Y (Yhat): Residuals:
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CIR b C1
MSE

Lxx
⋅+ b C2

MSE

Lxx
⋅+








:=

MSE

Confidence Interval for the Regression (β):
< Note that C1 and C2 are
    explicitly evaluated above so C1

     is already negative in value.  So
    it is added to Xbar here to find
    the Lower Bound of the CI.

P min 2 pt t n 2−,( )⋅ 2 1 pt t n 2−,( )−( )⋅,[ ]:= t

P = minimum(2 Φt(t),1-2 Φt(t)

Probability Value:

IF |t| > C, THEN REJECT H0 OTHERWISE  ACCEPT H0

Decision Rule:

C2 qt 1
α

2
− n 2−,





:=C1 qt
α

2
n 2−,





:=
Note degrees of freedom = (n-2)

C2 inverseΦt 1
α

2
−





:= inverseΦtC1 inverseΦt
α

2






:= inverseΦt

< Probability of Type I error must be explicitly setα 0.05:=

Critical Value of the Test:

< Lxx Corrected sums of squares of X as defined in Regression

< MSE is Mean Square Error from ANOVA table also denoted s2
x.y

t
b β0−

MSE

Lxx

:=
MSE

< b is unbiased point estimate of β

Test Statistic:

< Two sided test
< Slope of the Regression is β0 - this value must be explicitly stated. H0: β = β0

H1: β <> β0  

Hypotheses:

Y = α + βX + ε

< where: α is the y intercept of the regression line (translation)
  β is the slope of the regression line (scaling coefficient)
  ε is the error factor in prediction of Y given that it is a 

               random variable with N(µ,σ2)

Model:

- Standard Linear Regression depends on specifying in advance which variable is to be
    considered 'dependent' and which 'independent'.  This decision matters as changing
    roles for Y & X usually produces a different result.
- Y1, Y2, Y3, ... , Yn (dependent variable) is a random sample ~ N(µ,σ2).
- X1, X2, X3, ... , Xn (independent variable) with each value of Xi matched to Yi

Assumptions:

This test allows statistical appraisal of specific values for slope (β) not just whether β is zero.

Note: this test is a generalization of the t-Test for H0: β = 0.

One sample t-Test for β = β0: 
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α 0.05:= < Probability of Type I error must be explicitly set

C1 qt
α

2
n 2−,





:= C2 qt 1
α

2
− n 2−,





:= < Note degrees of freedom = (n-2)

C1 2.0452−= C2 2.0452=

Decision Rule:
IF |t| > C, THEN REJECT H0 OTHERWISE  ACCEPT H0

t 0.7175= C1 2.0452−= C2 2.0452=

Probability Value:
P min 2 pt t n 2−,( )⋅ 2 1 pt t n 2−,( )−( )⋅,[ ]:= P 0.4788=

Confidence Interval for the Regression (β):

CIR b C1
MSE

Lxx
⋅+ b C2

MSE

Lxx
⋅+








:=

CIR 0.3031 0.9096( )= < same CI as in the test H0: β = 0 ...

Prototype in R:

This test you must do by hand.  Obtain MSE from anova(lm(Y~X)).  Calculate t statistic with 
formula above.  Use function qt() for C1 & C2.  

Example: observed slope:

From above: b 0.6064= So let's test: β0 0.5:=

We also need from ANOVA: MSE
SSE

n 2−
:= < Note degrees of freedom = (n-2)

One sample t-Test for β = β0: 

Assumptions:
- Y1, Y2, Y3, ... , Yn (dependent variable) is a random sample ~ N(µ,σ2).
- X1, X2, X3, ... , Xn (independent variable) with each value of Xi matched to Yi

Model:
Y = α + βX + ε

Hypotheses:
H0: β = β0 = 0.5
H1: β <> β0  

< Slope of the Regression is β0 - this value must be explicitly stated. 

< Two sided test

Test Statistic:

t
b β0−

MSE

Lxx

:= t 0.7175=

Critical Value of the Test:
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P min 2 pt t n 2−,( )⋅ 2 1 pt t n 2−,( )−( )⋅,[ ]:=

P = minimum(2 Φt(t),1-2 Φt(t)

Probability Value:

IF |t| > C, THEN REJECT H0 OTHERWISE  ACCEPT H0

Decision Rule:

C2 qt 1
α

2
− n 2−,





:=C1 qt
α

2
n 2−,





:=
Note degrees of freedom = (n-2)

C2 inverseΦt 1
α

2
−





:= inverseΦtC1 inverseΦt
α

2






:= inverseΦt

< Probability of Type I error must be explicitly setα 0.05:=

Critical Value of the Test:

t
r n 2−⋅

1 r2−

:=

Test Statistic:

< Two sided test
< No correlationH0: ρ = 0

H1: ρ <> 0  

Hypotheses:

< correlation coefficient ρ defined in terms of Regression slope β 
    and standard deviations σx & σy.

ρ = β(σx/σy)

Y = α + βX + ε

< where: α is the y intercept of the regression line (translation)
   β is the slope of the regression line (scaling coefficient)
   ε is the error factor in prediction of Y given that it is a 

                 random variable with N(µ,σ2)

Model:

- Standard Linear Regression depends on specifying in advance which variable is to be
    considered 'dependent' and which 'independent'.  This decision matters as changing
    roles for Y & X usually produces a different result.
- Y1, Y2, Y3, ... , Yn (dependent variable) is a random sample ~ N(µ,σ2).
- X1, X2, X3, ... , Xn (independent variable) with each value of Xi matched to Yi

Assumptions:

This test, using ρ instead of β, is an equivalent alternative to the previous H0: β=β0 t-test.

One sample t-Test for ρ = 0: 
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< Probability of Type I error must be explicitly set

C1 qt
α

2
n 2−,





:= C2 qt 1
α

2
− n 2−,





:= < Note degrees of freedom = (n-2)

C1 2.0452−= C2 2.0452=

Decision Rule:
IF |t| > C, THEN REJECT H0 OTHERWISE  ACCEPT H0

t 4.0897= C1 2.0452−= C2 2.0452=

Probability Value:
P min 2 pt t n 2−,( )⋅ 2 1 pt t n 2−,( )−( )⋅,[ ]:= P 0.0003= < Same result as t-test of H0: β = 0 

Call:
lm(formula = Y ~ X)

Residuals:
     Min       1Q   Median       3Q      Max 
-8.14000 -2.07619 -0.07619  3.31743  6.86000 

Coefficients:
 Estimate Std. Error t value Pr(>|t|)    
(Intercept)  21.5869     2.6465   8.157  5.4e-09 ***
X          0.6064     0.1483   4.090 0.000313 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 3.859 on 29 degrees of freedom
Multiple R-Squared: 0.3658,     Adjusted R-squared: 0.3439 
F-statistic: 16.73 on 1 and 29 DF,  p-value: 0.0003134 

Prototype in R:

COMMANDS:
> summary(lm(Y~X))

t statistic & P     > 
values are 
identical to the 
t-test for H0: β = 0

Example:
From above, observed correlation coefficient: r 0.6048=

One sample t-Test for ρ = 0: 
Assumptions:

- Y1, Y2, Y3, ... , Yn (dependent variable) is a random sample ~ N(µ,σ2).
- X1, X2, X3, ... , Xn (independent variable) with each value of Xi matched to Yi

Model:
Y = α + βX + ε

ρ = β(σx/σy)

Hypotheses:
H0: ρ = 0
H1: ρ <> 0  

< No correlation

< Two sided test

Test Statistic:

t
r n 2−⋅

1 r2−

:= t 4.0897= < Same value reported from t-test of H0: β = 0

Critical Value of the Test:
α 0.05:=
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< Probability of Type I error must be explicitly set

C1 inverseΦN
α

2






:= inverseΦN C2 inverseΦN 1
α

2
−





:= inverseΦN

< Note use of N(0,1) here!

C1 qnorm
α

2
0, 1,





:= C2 qnorm 1
α

2
− 0, 1,





:=

Decision Rule:

IF |λ| > C, THEN REJECT H0 OTHERWISE  ACCEPT H0

Probability Value:
    Note that C1 and C2 are explicitly
    evaluated above so C1  is already
    negative in value.  So it is added to
    Xbar here to find the Lower Bound
<   of the CI.

P = minimum(2 ΦΝ(λ),1-2 ΦN(λ))

P min 2 pnorm λ 0, 1,( )⋅ 2 1 pnorm λ 0, 1,( )−( )⋅, := λ

Confidence Interval for ρ:

z1 z C1
1

n 3−
⋅+:= z2 z C2

1

n 3−
⋅+:= < CI in units of z (i.e., "transformed")

ρ1
e
2 z1⋅

1−

e
2 z1⋅

1+

:=
e

2 z1⋅
1−

ρ2
e
2 z2⋅

1−

e
2 z2⋅

1+

:=
e

2 z2⋅
1−

< CI in units of ρ

Fisher's One sample z-Test for ρ = ρ0: 

This test evaluates specific values of ρ0 using Fisher's z-transformation approach.  See 
Rosner p. 499ff for this.

Assumptions:

- Normal distribution for all variables used to compute correlation coefficient r. 

Hypotheses:
H0: ρ = ρ0

H1: ρ <> 0  
< Correlation Coefficient ρ0 value must be explicitly stated.

< Two sided test

Fisher's z-transformation:

z
1
2

ln
1 r+

1 r−






⋅:=

Distribution of z:

z is Normally distributed: N(µ,σ2) with: z0 = µ µ
1
2

ln
1 ρ0+

1 ρ0−








⋅:=

ρ0
σ

2 1
n 3−

:=σ
2 1

n 3−
:=

λ is the Normalized distribution of z ~ N(0,1) where: λ z z0−( ) n 3−⋅:= z0

Test Statistic:

λ z z0−( ) n 3−⋅:= z0

Critical Value of the Test:
α 0.05:=
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α 0.05:= < Probability of Type I error must be explicitly set

C1 qnorm
α

2
0, 1,





:= C2 qnorm 1
α

2
− 0, 1,





:= < Note use of N(0,1) here!

C1 1.96−= C2 1.96=

Decision Rule:

IF |λ| > C, THEN REJECT H0 OTHERWISE  ACCEPT H0

λ 0.8817−= C1 1.96−= C2 1.96=

Probability Value:
P min 2 pnorm λ 0, 1,( )⋅ 2 1 pnorm λ 0, 1,( )−( )⋅, := P 0.378=

Confidence Interval for ρ:

z1 z C1
1

n 3−
⋅+:= z2 z C2

1

n 3−
⋅+:= < CI in units of z (i.e., "transformed")

z1 0.3303= z2 1.0711=
< CI in units of ρ

Here we use the exponential function 
exp() for number e= 2.7183 Since we 
already used symbol e to refer to the 
residual vector above....

ρ1
exp 2 z1⋅( ) 1−

exp 2 z1⋅( ) 1+
:= ρ2

exp 2 z2⋅( ) 1−

exp 2 z2⋅( ) 1+
:=

ρ1 0.3188= ρ2 0.7899=

Example: 
From above: r 0.6048= And let's test: ρ0 0.7:=

Fisher's One sample z-Test for ρ = ρ0: 
Assumptions:

- Normal distribution for all variables used to compute correlation coefficient r. 

Hypotheses:
H0: ρ = ρ0 = 0.7
H1: ρ <> 0  

< Correlation Coefficient ρ0 value must be explicitly stated.

< Two sided test
Fisher's z-transformation:

z
1
2

ln
1 r+

1 r−






⋅:= z 0.7007=

Distribution of z:

z is Normally distributed: N(µ,σ2) with: z0 = µ µ
1
2

ln
1 ρ0+

1 ρ0−








⋅:= σ

2 1
n 3−

:=σ
2 1

n 3−
:=

λ is the Normalized distribution of z ~N(0,1) where: λ z z0−( ) n 3−⋅:= z0

Test Statistic:
µ 0.8673=

z0 µ:= λ z z0−( ) n 3−⋅:= λ 0.8817−=

Critical Value of the Test:



Assignment for Week 11 
Today we begin our final push toward the end of the semester looking at Linear Regression first and 
then ANOVA.  In fact, the two are closely related under an encompassing rubric called �linear modeling� 
or �glm� (for the general linear model).  At heart, all of these methods involving specifying a statistical 
model allowing observations of a dependent variable to be interpreted in light of observations for one or 
more independent variables plus a general hypothesis of uncontrolled or unexplained variability often 
called �error� or �residual�.  Many different models can be used.  In �Simple� and �Multiple� Linear 
Regression, a single dependent variable Y is specified in terms of an intercept coefficient α plus one or 
more regression (or slope) coefficients βi exactly associated with the independent variables Xi  (with i = 1 
in �simple� or more than one in �multiple� regression).  The first step in Linear Regression is to �fit� the 
regression � in other words find the �best� line describing the relationship between independent and 
dependent variables.  One way to do this is the least squares method which involves finding a line 
through the points that minimizes the squared distances between points on the line itself, with the 
observations Y for each X.   

Once fitted, the line becomes the regression prediction Yhat of where the Expected (or mean) values of 
each Y are to be found, and the distance between Yhat and Y becomes the residual unexplained 
variance.  Of course, the smaller the residual, the better the fit between Y and Xi.  To measure this fit, 
variance is usually expressed in terms of Sums of Squares � the numerator in variance calculations.  
Here, residual unexplained variance becomes the Total Sums of Squares SST that is partitioned into 
Regression Sums of Squares SSR and Within (or Error) Sums of Squares SSE such that SSR + SSE = 
SST.  With this partition of variance, one sets up a standard ANOVA table displaying the Source of the 
variance, Sums of Squares SS, degrees of freedom df, and Mean Squares MS.  From a standard 
ANOVA table, several inference procedures may be followed to test hypotheses about the linear model 
parameters with the fitted data.  

Our objective this week is to prototype regression fitting and the associated tests with real data.  Pick a 
data set from one of your data sources, and perform the following: 

1.  Fit your data using a �Simple� Linear Regression model.  Also recover and display your regression 
predictions and residuals.  Draw a graph displaying your results. [see Biostatistics Worksheet 39]. 

2.  Calculate the ANOVA table.  [see Worksheet 39] 

3.  Perform a F-Test for β = 0 and interpret the results.  [see Worksheet 40] 

4.  Perform a t-Test for  β = 0, calculate the confidence interval for β, and interpret the results.  [see 
Worksheet 41] 

5.  Calculate confidence intervals for the regression prediction and for confidence interval for new 
observations.  [see Worksheet 41] 

6.  Calculate the coefficient of determination and coefficient of correlation.  [see Worksheet 42] 

7.  Perform a t-Test for β = β0 (a value you wish to test), and interpret results.  [see Worksheet 42]  

8.  Perform a t-Test for ρ = 0 (no correlation), and interpret results.  [see Worksheet 42] 

9.  Perform Fisher�s z-Test for ρ = ρ0 (you supply the test value), and interpret results.  [see Worksheet 
42] 



lsfit {stats} R Documentation

Find the Least Squares Fit 

Description 

The least squares estimate of b in the model  

y = X b + e 

is found.  

Usage 

lsfit(x, y, wt = NULL, intercept = TRUE, tolerance = 1e-07, 
      yname = NULL) 

Arguments 

x a matrix whose rows correspond to cases and whose columns correspond to 
variables. 

y the responses, possibly a matrix if you want to fit multiple left hand sides. 
wt an optional vector of weights for performing weighted least squares. 
intercept whether or not an intercept term should be used. 
tolerance the tolerance to be used in the matrix decomposition. 
yname names to be used for the response variables. 

Details 

If weights are specified then a weighted least squares is performed with the weight given 
to the jth case specified by the jth entry in wt.  

If any observation has a missing value in any field, that observation is removed before the 
analysis is carried out. This can be quite inefficient if there is a lot of missing data.  

The implementation is via a modification of the LINPACK subroutines which allow for 
multiple left-hand sides.  

Value 

A list with the following named components:  

coef the least squares estimates of the coefficients in the model (b as stated



above). 
residuals residuals from the fit. 
intercept indicates whether an intercept was fitted. 
qr the QR decomposition of the design matrix. 

References 

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. 
Wadsworth & Brooks/Cole.  

See Also 

lm which usually is preferable; ls.print, ls.diag.  

Examples 

 
##-- Using the same data as the lm(.) example: 
lsD9 <- lsfit(x = unclass(gl(2,10)), y = weight) 
ls.print(lsD9) 
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m {stats} R Documentation

Fitting Linear Models 

Description 

lm is used to fit linear models. It can be used to carry out regression, single stratum 
analysis of variance and analysis of covariance (although aov may provide a more 
convenient interface for these).  

Usage 

lm(formula, data, subset, weights, na.action, 
   method = "qr", model = TRUE, x = FALSE, y = FALSE, qr = TRUE, 
   singular.ok = TRUE, contrasts = NULL, offset, ...) 

Arguments 

formula a symbolic description of the model to be fit. The details of model 
specification are given below. 

data an optional data frame, list or environment (or object coercible by 
as.data.frame to a data frame) containing the variables in the model. If not 
found in data, the variables are taken from environment(formula), 
typically the environment from which lm is called. 

subset an optional vector specifying a subset of observations to be used in the 
fitting process. 

weights an optional vector of weights to be used in the fitting process. Should be 
NULL or a numeric vector. If non-NULL, weighted least squares is used 
with weights weights (that is, minimizing sum(w*e^2)); otherwise 
ordinary least squares is used. 

na.action a function which indicates what should happen when the data contain NAs. 
The default is set by the na.action setting of options, and is na.fail if that 
is unset. The “factory-fresh” default is na.omit. Another possible value is 
NULL, no action. Value na.exclude can be useful. 

method the method to be used; for fitting, currently only method = "qr" is 
supported; method = "model.frame" returns the model frame (the same 
as with model = TRUE, see below). 

model, x, 
y, qr 

logicals. If TRUE the corresponding components of the fit (the model 
frame, the model matrix, the response, the QR decomposition) are 
returned.  

singular.ok logical. If FALSE (the default in S but not in R) a singular fit is an error. 



contrasts an optional list. See the contrasts.arg of model.matrix.default. 
offset this can be used to specify an a priori known component to be included in 

the linear predictor during fitting. This should be NULL or a numeric 
vector of length either one or equal to the number of cases. One or more 
offset terms can be included in the formula instead or as well, and if both 
are specified their sum is used. See model.offset. 

... additional arguments to be passed to the low level regression fitting 
functions (see below). 

Details 

Models for lm are specified symbolically. A typical model has the form response ~ 
terms where response is the (numeric) response vector and terms is a series of terms 
which specifies a linear predictor for response. A terms specification of the form first 
+ second indicates all the terms in first together with all the terms in second with 
duplicates removed. A specification of the form first:second indicates the set of terms 
obtained by taking the interactions of all terms in first with all terms in second. The 
specification first*second indicates the cross of first and second. This is the same as 
first + second + first:second.  

If the formula includes an offset, this is evaluated and subtracted from the response.  

If response is a matrix a linear model is fitted separately by least-squares to each column 
of the matrix.  

See model.matrix for some further details. The terms in the formula will be re-ordered so 
that main effects come first, followed by the interactions, all second-order, all third-order 
and so on: to avoid this pass a terms object as the formula (see aov and demo(glm.vr) 
for an example).  

A formula has an implied intercept term. To remove this use either y ~ x - 1 or y ~ 0 
+ x. See formula for more details of allowed formulae.  

lm calls the lower level functions lm.fit, etc, see below, for the actual numerical 
computations. For programming only, you may consider doing likewise.  

All of weights, subset and offset are evaluated in the same way as variables in 
formula, that is first in data and then in the environment of formula.  

Value 

lm returns an object of class "lm" or for multiple responses of class c("mlm", "lm").  
The functions summary and anova are used to obtain and print a summary and analysis of 
variance table of the results. The generic accessor functions coefficients, effects, 



fitted.values and residuals extract various useful features of the value returned by 
lm.  
An object of class "lm" is a list containing at least the following components:  

coefficients a named vector of coefficients 
residuals the residuals, that is response minus fitted values. 
fitted.values the fitted mean values. 
rank the numeric rank of the fitted linear model. 
weights (only for weighted fits) the specified weights. 
df.residual the residual degrees of freedom. 
call the matched call. 
terms the terms object used. 
contrasts (only where relevant) the contrasts used. 
xlevels (only where relevant) a record of the levels of the factors used in fitting.
offset the offset used (missing if none were used). 
y if requested, the response used. 
x if requested, the model matrix used. 
model if requested (the default), the model frame used. 

 
In addition, non-null fits will have components assign, effects and (unless not 
requested) qr relating to the linear fit, for use by extractor functions such as summary and 
effects. 

Using time series 

Considerable care is needed when using lm with time series.  

Unless na.action = NULL, the time series attributes are stripped from the variables 
before the regression is done. (This is necessary as omitting NAs would invalidate the time 
series attributes, and if NAs are omitted in the middle of the series the result would no 
longer be a regular time series.)  

Even if the time series attributes are retained, they are not used to line up series, so that 
the time shift of a lagged or differenced regressor would be ignored. It is good practice to 
prepare a data argument by ts.intersect(..., dframe = TRUE), then apply a suitable 
na.action to that data frame and call lm with na.action = NULL so that residuals and 
fitted values are time series.  

Note 



Offsets specified by offset will not be included in predictions by predict.lm, whereas 
those specified by an offset term in the formula will be.  

Author(s) 

The design was inspired by the S function of the same name described in Chambers 
(1992). The implementation of model formula by Ross Ihaka was based on Wilkinson & 
Rogers (1973).  

References 

Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical Models in S eds J. M. 
Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.  

Wilkinson, G. N. and Rogers, C. E. (1973) Symbolic descriptions of factorial models for 
analysis of variance. Applied Statistics, 22, 392–9.  

See Also 

summary.lm for summaries and anova.lm for the ANOVA table; aov for a different 
interface.  

The generic functions coef, effects, residuals, fitted, vcov.  

predict.lm (via predict) for prediction, including confidence and prediction intervals; 
confint for confidence intervals of parameters.  

lm.influence for regression diagnostics, and glm for generalized linear models.  

The underlying low level functions, lm.fit for plain, and lm.wfit for weighted regression 
fitting.  

More lm() examples are available e.g., in anscombe, attitude, freeny, LifeCycleSavings, 
longley, stackloss, swiss.  

Examples 

## Annette Dobson (1990) "An Introduction to Generalized Linear 
Models". 
## Page 9: Plant Weight Data. 
ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14) 
trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69) 
group <- gl(2,10,20, labels=c("Ctl","Trt")) 
weight <- c(ctl, trt) 
anova(lm.D9 <- lm(weight ~ group)) 
summary(lm.D90 <- lm(weight ~ group - 1))# omitting intercept 
summary(resid(lm.D9) - resid(lm.D90)) #- residuals almost identical 
 



opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0)) 
plot(lm.D9, las = 1)      # Residuals, Fitted, ... 
par(opar) 
 
## model frame : 
stopifnot(identical(lm(weight ~ group, method = "model.frame"), 
                    model.frame(lm.D9))) 
 
### less simple examples in "See Also" above 
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Extract Model Fitted Values 

Description 

fitted is a generic function which extracts fitted values from objects returned by 
modeling functions. fitted.values is an alias for it.  

All object classes which are returned by model fitting functions should provide a fitted 
method. (Note that the generic is fitted and not fitted.values.)  

Methods can make use of napredict methods to compensate for the omission of missing 
values. The default and nls methods do.  

Usage 

fitted(object, ...) 
fitted.values(object, ...) 

Arguments 

object an object for which the extraction of model fitted values is meaningful. 
... other arguments. 

Value 

Fitted values extracted from the object x. 

References 

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & 
Brooks/Cole.  

See Also 

coefficients, glm, lm, residuals.  
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Predict method for Linear Model Fits 

Description 

Predicted values based on linear model object.  

Usage 

## S3 method for class 'lm': 
predict(object, newdata, se.fit = FALSE, scale = NULL, df = Inf,  
        interval = c("none", "confidence", "prediction"), 
        level = 0.95, type = c("response", "terms"), 
        terms = NULL, na.action = na.pass, pred.var = res.var/weights, 
        weights = 1, ...) 

Arguments 

object Object of class inheriting from "lm" 
newdata An optional data frame in which to look for variables with which to predict. 

If omitted, the fitted values are used. 
se.fit A switch indicating if standard errors are required. 
scale Scale parameter for std.err. calculation 
df Degrees of freedom for scale 
interval Type of interval calculation. 
level Tolerance/confidence level 
type Type of prediction (response or model term). 
terms If type="terms", which terms (default is all terms) 
na.action function determining what should be done with missing values in newdata. 

The default is to predict NA. 
pred.var the variance(s) for future observations to be assumed for prediction intervals. 

See Details. 
weights variance weights for prediction. This can be a numeric vector or a one-sided 

model formula. In the latter case, it is interpreted as an expression evaluated 
in newdata 

... further arguments passed to or from other methods. 

Details 



predict.lm produces predicted values, obtained by evaluating the regression function in 
the frame newdata (which defaults to model.frame(object). If the logical se.fit is 
TRUE, standard errors of the predictions are calculated. If the numeric argument scale is 
set (with optional df), it is used as the residual standard deviation in the computation of 
the standard errors, otherwise this is extracted from the model fit. Setting intervals 
specifies computation of confidence or prediction (tolerance) intervals at the specified 
level, sometimes referred to as narrow vs. wide intervals.  

If the fit is rank-deficient, some of the columns of the design matrix will have been 
dropped. Prediction from such a fit only makes sense if newdata is contained in the same 
subspace as the original data. That cannot be checked accurately, so a warning is issued.  

If newdata is omitted the predictions are based on the data used for the fit. In that case 
how cases with missing values in the original fit is determined by the na.action 
argument of that fit. If na.action = na.omit omitted cases will not appear in the 
residuals, whereas if na.action = na.exclude they will appear (in predictions, 
standard errors or interval limits), with residual value NA. See also napredict.  

The prediction intervals are for a single observation at each case in newdata (or by 
default, the data used for the fit) with error variance(s) pred.var. This can be a multiple 
of res.var, the estimated value of sigma^2: the default is to assume that future 
observations have the same error variance as those used for fitting. If weights is 
supplied, the inverse of this is used as a scale factor. For a weighted fit, if the prediction 
is for the original data frame, weights defaults to the weights used for the model fit, with 
a warning since it might not be the intended result. If the fit was weighted and newdata is 
given, the default is to assume constant prediction variance, with a warning.  

Value 

predict.lm produces a vector of predictions or a matrix of predictions and bounds with 
column names fit, lwr, and upr if interval is set. If se.fit is TRUE, a list with the 
following components is returned:  

fit vector or matrix as above 
se.fit standard error of predicted means
residual.scale residual standard deviations 
df degrees of freedom for residual 

Note 

Variables are first looked for in newdata and then searched for in the usual way (which 
will include the environment of the formula used in the fit). A warning will be given if 
the variables found are not of the same length as those in newdata if it was supplied.  



Offsets specified by offset in the fit by lm will not be included in predictions, whereas 
those specified by an offset term in the formula will be.  

Notice that prediction variances and prediction intervals always refer to future 
observations, possibly corresponding to the same predictors as used for the fit. The 
variance of the residuals will be smaller.  

Strictly speaking, the formula used for prediction limits assumes that the degrees of 
freedom for the fit are the same as those for the residual variance. This may not be the 
case if res.var is not obtained from the fit.  

See Also 

The model fitting function lm, predict, SafePrediction  

Examples 

## Predictions 
x <- rnorm(15) 
y <- x + rnorm(15) 
predict(lm(y ~ x)) 
new <- data.frame(x = seq(-3, 3, 0.5)) 
predict(lm(y ~ x), new, se.fit = TRUE) 
pred.w.plim <- predict(lm(y ~ x), new, interval="prediction") 
pred.w.clim <- predict(lm(y ~ x), new, interval="confidence") 
matplot(new$x,cbind(pred.w.clim, pred.w.plim[,-1]), 
        lty=c(1,2,2,3,3), type="l", ylab="predicted y") 
 
## Prediction intervals, special cases 
##  The first three of these throw warnings 
w <- 1 + x^2 
fit <- lm(y ~ x) 
wfit <- lm(y ~ x, weights = w) 
predict(fit, interval = "prediction") 
predict(wfit, interval = "prediction") 
predict(wfit, new, interval = "prediction") 
predict(wfit, new, interval = "prediction", weights = (new$x)^2) 
predict(wfit, new, interval = "prediction", weights = ~x^2) 
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ANOVA for Linear Model Fits 

Description 

Compute an analysis of variance table for one or more linear model fits.  

Usage 

## S3 method for class 'lm': 
anova(object, ...) 
 
anova.lmlist(object, ..., scale = 0, test = "F") 

Arguments 

object, 
... 

objects of class lm, usually, a result of a call to lm. 

test a character string specifying the test statistic to be used. Can be one of "F", 
"Chisq" or "Cp", with partial matching allowed, or NULL for no test. 

scale numeric. An estimate of the noise variance sigma^2. If zero this will be 
estimated from the largest model considered.  

Details 

Specifying a single object gives a sequential analysis of variance table for that fit. That is, 
the reductions in the residual sum of squares as each term of the formula is added in turn 
are given in as the rows of a table, plus the residual sum of squares.  

The table will contain F statistics (and P values) comparing the mean square for the row 
to the residual mean square.  

If more than one object is specified, the table has a row for the residual degrees of 
freedom and sum of squares for each model. For all but the first model, the change in 
degrees of freedom and sum of squares is also given. (This only make statistical sense if 
the models are nested.) It is conventional to list the models from smallest to largest, but 
this is up to the user.  

Optionally the table can include test statistics. Normally the F statistic is most 
appropriate, which compares the mean square for a row to the residual sum of squares for 
the largest model considered. If scale is specified chi-squared tests can be used. 
Mallows' Cp statistic is the residual sum of squares plus twice the estimate of sigma^2 
times the residual degrees of freedom.  



Value 

An object of class "anova" inheriting from class "data.frame". 

Warning 

The comparison between two or more models will only be valid if they are fitted to the 
same dataset. This may be a problem if there are missing values and R's default of 
na.action = na.omit is used, and anova.lmlist will detect this with an error.  

Note 

Versions of R prior to 1.2.0 based F tests on pairwise comparisons, and this behaviour 
can still be obtained by a direct call to anovalist.lm.  

References 

Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical Models in S eds J. M. 
Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.  

See Also 

The model fitting function lm, anova.  

drop1 for so-called ‘type II’ anova where each term is dropped one at a time respecting 
their hierarchy.  

Examples 

## sequential table 
fit <- lm(sr ~ ., data = LifeCycleSavings) 
anova(fit) 
 
## same effect via separate models 
fit0 <- lm(sr ~ 1, data = LifeCycleSavings) 
fit1 <- update(fit0, . ~ . + pop15) 
fit2 <- update(fit1, . ~ . + pop75) 
fit3 <- update(fit2, . ~ . + dpi) 
fit4 <- update(fit3, . ~ . + ddpi) 
anova(fit0, fit1, fit2, fit3, fit4, test="F") 
 
anova(fit4, fit2, fit0, test="F") # unconventional order 
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Summarizing Linear Model Fits 

Description 

summary method for class "lm".  

Usage 

## S3 method for class 'lm': 
summary(object, correlation = FALSE, symbolic.cor = FALSE, ...) 
 
## S3 method for class 'summary.lm': 
print(x, digits = max(3, getOption("digits") - 3), 
      symbolic.cor = x$symbolic.cor, 
      signif.stars = getOption("show.signif.stars"), ...) 

Arguments 

object an object of class "lm", usually, a result of a call to lm. 
x an object of class "summary.lm", usually, a result of a call to 

summary.lm. 
correlation logical; if TRUE, the correlation matrix of the estimated parameters is 

returned and printed. 
digits the number of significant digits to use when printing. 
symbolic.cor logical. If TRUE, print the correlations in a symbolic form (see symnum) 

rather than as numbers. 
signif.stars logical. If TRUE, “significance stars” are printed for each coefficient. 
... further arguments passed to or from other methods. 

Details 

print.summary.lm tries to be smart about formatting the coefficients, standard errors, 
etc. and additionally gives “significance stars” if signif.stars is TRUE.  

Correlations are printed to two decimal places (or symbolically): to see the actual 
correlations print summary(object)$correlation directly.  

Value 



The function summary.lm computes and returns a list of summary statistics of the fitted 
linear model given in object, using the components (list elements) "call" and "terms" 
from its argument, plus  

residuals the weighted residuals, the usual residuals rescaled by the square root of 
the weights specified in the call to lm. 

coefficients a p x 4 matrix with columns for the estimated coefficient, its standard 
error, t-statistic and corresponding (two-sided) p-value. Aliased 
coefficients are omitted. 

aliased named logical vector showing if the original coefficients are aliased. 
sigma the square root of the estimated variance of the random error  

sigma^2 = 1/(n-p) Sum(w[i] R[i]^2), 

where R[i] is the i-th residual, residuals[i]. 
df degrees of freedom, a 3-vector (p, n-p, p*), the last being the number of 

non-aliased coefficients. 
fstatistic (for models including non-intercept terms) a 3-vector with the value of 

the F-statistic with its numerator and denominator degrees of freedom. 
r.squared R^2, the “fraction of variance explained by the model”,  

R^2 = 1 - Sum(R[i]^2) / Sum((y[i]- y*)^2), 

where y* is the mean of y[i] if there is an intercept and zero otherwise. 
adj.r.squared the above R^2 statistic “adjusted”, penalizing for higher p. 
cov.unscaled a p x p matrix of (unscaled) covariances of the coef[j], j=1, ..., p. 
correlation the correlation matrix corresponding to the above cov.unscaled, if 

correlation = TRUE is specified. 
symbolic.cor (only if correlation is true.) The value of the argument 

symbolic.cor. 
na.action from object, if present there. 

See Also 

The model fitting function lm, summary.  

Function coef will extract the matrix of coefficients with standard errors, t-statistics and 
p-values.  

Examples 

 



##-- Continuing the  lm(.) example: 
coef(lm.D90)# the bare coefficients 
sld90 <- summary(lm.D90 <- lm(weight ~ group -1))# omitting intercept 
sld90 
coef(sld90)# much more 

 
[Package stats version 2.4.1 Index] 
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ORIGIN 0≡

Multiple Regression

Multiple Regression is an extension of the technique of linear regression that describes the 
relationship between a single dependent variable (Y) and multiple independent (predictor) 
variables (X1, X2, X3, ...).  Typically, multiple regression involves specifying one, or sometimes 
several, linear models, constructing the multiple regression, and then testing hypotheses often 
involving several regression coefficients (β1, β2, β3, ...) corresponding to each of the X variables. 

Assumptions:
- Multiple Linear Regression depends on specifying in advance which variable is considered 
'dependent' and which others 'independent'.  This decision matters as changing
    roles for Y versus X's usually produces a different result.
- Y1, Y2, Y3, ... , Yn (dependent variable) is a random sample ~ N(µ,σ2).

- k Vectors of Independent Variables:

- X1,1, X1,2, X1,3, ... , X1,n (independent variable) with each value of X1,i matched to Yi

- X2,1, X2,2, X2,3, ... , X2,n (independent variable) with each value of X2,i matched to Yi
...
- Xk,1, Xk,2, Xk,3, ... , Xk,n (independent variable) with each value of Xk,i matched to Yi

Model:
Yi = α + β1X1,i + β2X2,i + β3X3,i+ ... +  βkXk,i + εi for i = 1 to n

where: α is the y intercept of the regression line (translation). 
βi's are the regression coefficient (i.e., "slope") for each Xi  of

                  the regression line.
εi's are the residuals (i.e. "error") in prediction of Y given that it is a 

             random variable with N(µ,σ2)

Note that this is one of many possible linear models involving X,i's that may be squared 
or higher order functions of an original variable (i.e., X2, X3, etc.) or cross products of 
two original variables (i.e., Xa,iXb,i etc.).  This is the wonderful and extremely powerful world 
of Linear Modeling. 

Least Squares Estimation of the Regression Line:

Calculations in Multiple Regression are extensive, and best visualized using matrix algebra
where sums of squares and cross products are implicit in matrix manipulations:

X: becomes a (n X k+1) Matrix of values with a first column of 1's and each of k vectors
               above comprising a subsequent columns.
X-1 is the Inverse Matrix of X, such that X-1X = I (the identity matrix).
XT is the transpose matrix of X where rows and columns are reversed.
Y is the vector of Yi's arrayed as a column of numbers.
b is the vector of regression coefficients including α plus all βi's 
              arrayed as a single column of numbers.
Yhat is the vector of fitted values Yi arrayed as a column of numbers.
e is the vector of residuals ei arrayed as a column of numbers.
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Assumptions:
K
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

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


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
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





=- vector Y is the dependent variable
    and a random sample ~ N(µ,σ2).
- matrix X are the independent 
    variables matched to Y

Model:
Yi = α + β1X1,i + β2X2,i + εi

Estimated Regression Coefficients (b):

b XT X( ) 1−
XT Y( )⋅:=

Estimated values of Y (Yhat):

Yhat X b⋅:=

Residuals (e):

e Y Yhat−:=

b

53.450194

0.125583

5.887719









= Yhat

88.0671

92.0711

83.6717

78.4119

93.3269

98.5867

80.9235

84.2996

97.9588

88.3036

80.2956

83.0438

86.1833

95.8386

91.2067

86.8113


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


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
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






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

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
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



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
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







= e

0.9329

2.0711−

0.6717−

1.4119−

1.3269−

0.5867−

1.0765

0.7004

1.9588−

6.6964

0.2956−

4.0438−

0.1833−

1.1614

0.7933

1.1887
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
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
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
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




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





=

Values confirmed in Table 11.10 p. 512 >

Estimated Regression Coefficients (b):

b XT X( ) 1−
XT Y( )⋅:= Y < Note: all calculations here involve

    MathCad's matrix algebra functions!Estimated values of Y (Yhat):
Yhat X b⋅:= b

Residuals (e):
e Y Yhat−:= Yhat

Example: Rosner Table 11.9 p. 511. K READPRN "c:/2007BiostatsData/Rosner Table 11.9a.txt"( ):=

Y K 2〈 〉
:= < dependent variable is the 3rd column of K

n length Y( ):= n 16=

i 0 n 1−..:= Li 1:=

X augment L K 0〈 〉
, K 1〈 〉

,( ):=

^ independent variables are first
     two columns of K
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Prototype in R:

COMMANDS:
> K=read.table("c:/2007BiostatsData/Rosner Table 11.9.txt")
> K
> Y=K$SBP
> X1=K$Birthwt
> X2=K$Age
> lm(Y~X1+X2)  < Note formula format for Linear Model...

Call:
lm(formula = Y ~ X1 + X2)

Coefficients:
(Intercept)           X1           X2  
    53.4502       0.1256       5.8877 

> plot.lm(lm(Y~X1+X2))
> summary(lm(Y~X1+X2))

< Diagnostic plots for assessing Normality Assumption.

Call:
lm(formula = Y ~ X1 + X2)

Residuals:
    Min      1Q  Median      3Q     Max 
-4.0438 -1.3481 -0.2395  0.9688  6.6964 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 53.45019    4.53189  11.794 2.57e-08 ***
X1           0.12558    0.03434 3.657  0.00290 ** 
X2           5.88772   0.68021   8.656 9.34e-07 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 2.479 on 13 degrees of freedom
Multiple R-Squared: 0.8809,     Adjusted R-squared: 0.8626 
F-statistic: 48.08 on 2 and 13 DF,  p-value: 9.844e-07 

> anova(lm(Y~X1+X2))

Analysis of Variance Table

Response: Y
          Df Sum Sq Mean Sq F value Pr(>F)    
X1         1 130.54  130.54  21.238 0.0004901 ***
X2         1 460.50  460.50  74.923 9.342e-07 ***
Residuals 13  79.90   6.15                      
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
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> predict(lm(Y~X1+X2),confidence=0.95,interval="prediction")

        fit      lwr       upr
1  88.06709 82.41169  93.72250
2  92.07106 86.45813  97.68400
3  83.67168 77.94349  89.39987
4  78.41187 72.49403  84.32972
5  93.32689 87.68236  98.97143
6  98.58670 92.53982 104.63358
7  80.92354 75.05303  86.79405
8  84.29959 78.65438  89.94481
9  97.95878 91.90561 104.01195
10 88.30356 82.21745  94.38968
11 80.29562 74.44843  86.14282
12 83.04376 77.21015  88.87738
13 86.18334 80.64367  91.72302
14 95.83856 89.84909 101.82803
15 91.20667 84.91020  97.50314
16 86.81126 81.25746  92.36506
Warning message:
Predictions on current data refer to _future_ responses
 in: predict.lm(lm(Y ~ X1 + X2), confidence = 0.95, interval = "prediction")

Prototype in SYSTAT:

SYSTAT Rectangular file C:\Documents and Settings\Wm Stein\Desktop\Biostatistics Spring 
2007\Week 11\Data\Rosner Table 11.syd,

created Mon Apr 02, 2007 at 15:20:33, contains variables:

BLANKBIRTHWTAGESBP
<Bookmark(3)>

 
Dep Var: SBP   N: 16   Multiple R: 0.93857   Squared multiple R: 0.88091
 
Adjusted squared multiple R: 0.86259   Standard error of estimate: 2.47917
 
Effect Coefficient Std Error  Std Coef Tolerance t P(2 Tail)
 
CONSTANT 53.45019 4.53189      0.00000 .      11.79424 0.00000
BIRTHWT 0.12558 0.03434      0.35208 0.98859 3.65746 0.00290
AGE 5.88772 0.68021      0.83323 0.98859 8.65580 0.00000
 
                             Analysis of Variance
 
Source             Sum-of-Squares   df  Mean-Square     F-ratio       P
 
Regression             591.03564 2  295.51782    48.08063     0.00000
Residual                79.90186    13      6.14630
-------------------------------------------------------------------------------

 
*** WARNING ***

Case           10 is an outlier        (Studentized Residual =      6.75638)
 

Durbin-Watson D Statistic     2.214
First Order Autocorrelation  -0.121
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Residuals (e):
e Y Yhat−:= Yhat

ANOVA Table for Multiple Regression:

Sums of Squares: Degrees of Freedom: Mean Squares:

SSR Yhat mean Y( )−( )2∑:= Y dfR k:= k
SSR

dfR
< Regression

SSE Y Yhat−( )2
:= Yhat dfE n k− 1−:= k

SSE

dfE
< Residual

SST Y mean Y( )−( )2∑:= Y dfT n 1−:= n
SST

dfT
< Total

ORIGIN 0≡

Inference in Multiple Regression

A variety of tests may be employed testing regression coefficients in Multiple Regression in 
ways that are analogous to those in "Simple" Linear Regression. 

Assumptions:

- Y1, Y2, Y3, ... , Yn (dependent variable) is a random sample ~ N(µ,σ2).

- X Matrix of One and column vectors of Independent Variables:

- X1,1, X1,2, X1,3, ... , X1,n (independent variable) with each value of X1,i matched to Yi

- X2,1, X2,2, X2,3, ... , X2,n (independent variable) with each value of X2,i matched to Yi
...
- Xk,1, Xk,2, Xk,3, ... , Xk,n (independent variable) with each value of Xk,i matched to Yi

Model:
Yi = α + β1X1,i + β2X2,i + β3X3,i+ ... +  βkXk,i + εi for i = 1 to n

where: α is the y intercept of the regression line (translation). 
βi's are the regression coefficient (i.e., "slope") for each Xi  of

                  the regression line.
εi's are the residuals (i.e. "error") in prediction of Y given that it is a 

             random variable with N(µ,σ2)

Note that this is one of many possible linear models involving X,i's that may be squared 
or higher order functions of an original variable (i.e., X2, X3, etc.) or cross products of 
two original variables (i.e., Xa,iXb,i etc.).  This is the wonderful and extremely powerful world 
of Linear Modeling. 

Least Squares Estimation of the Regression Line:
Estimated Regression Coefficients (b):

Note: all calculations here involve
    MathCad's matrix algebra functions!b XT X( ) 1−

XT Y( )⋅:= Y

Estimated values of Y (Yhat):
Yhat X b⋅:= b n length Y( ):= Y k cols X( ) 1−:= X < calculations needed

    for size of problem
    for ANOVA table
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Example: Rosner Table 11.9 p. 511. K READPRN "c:/2007BiostatsData/Rosner Table 11.9a.txt"( ):=

Y K 2〈 〉
:= < dependent variable is the 3rd column of K

n length Y( ):= n 16=

i 0 n 1−..:= Li 1:=

X augment L K 0〈 〉
, K 1〈 〉

,( ):=

^ independent variables are first
     two columns of K
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K

135

120

100

105

130

125

125

105

120

90

120

95

120

150

160

125

3

4

3

2

4

5

2

3

5

4

2

3

3

4

3

3

89

90

83

77

92

98

82

85

96

95

80

79

86

97

92

88















































= Y

89

90

83

77

92

98

82

85

96

95

80

79

86

97

92

88















































= X

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

135

120

100

105

130

125

125

105

120

90

120

95

120

150

160

125

3

4

3

2

4

5

2

3

5

4

2

3

3

4

3

3















































=- vector Y is the dependent variable
    and a random sample ~ N(µ,σ2).
- matrix X are the independent 
    variables matched to Y

Model:
Yi = α + β1X1,i + β2X2,i + εi

Estimated Regression Coefficients (b):

b XT X( ) 1−
XT Y( )⋅:=

F-Test (ANOVA) for H0: all β's = 0 versus H1: not all β's are 0:

Hypotheses:
H0: β1 = β2 = β3 = ... = βk = 0
H1:At least one βi is NOT 0

< Note specificity of test here!

< Two sided test

Test Statistic:

F
MSR

MSE
:=

MSE
< F is the ratio of sample variances

Sampling Distribution:

If Assumptions hold and H0 is true, then F ~F(k)/(n-k-1)

Critical Value of the Test:
α 0.05:= < Probability of Type I error must be explicitly set

CV inverseΦF 1 α−( ):= inverseΦF CV qF 1 α− k, n k− 1−,( ):= n note: df = k, (n-k-1)

Decision Rule:

IF |F| > CV, THEN REJECT H0 OTHERWISE  ACCEPT H0

Probability Value:

P = 1- ΦF(F) P 1 pF F k, n k− 1−,( )−:= F
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SST 670.9375= dfT n 1−:= dfT 15= MST
SST

dfT
:= MST 44.7292=

Test Statistic: ^ values confirmed Table 11.10 p. 512

F
MSR

MSE
:= < F is the ratio of sample variances F 48.0806= < confirmed p. 516

Critical Value of the Test:
α 0.05:= < Probability of Type I error must be explicitly set

CV qF 1 α− k, n k− 1−,( ):= CV 3.8056= note: df = k, (n-k-1)

Decision Rule:
IF |F| > CV, THEN REJECT H0 OTHERWISE  ACCEPT H0

F 48.0806= CV 3.8056=

Probability Value:
P 1 pF F k, n k− 1−,( )−:= P 9.8443 10 7−

×= < confirmed p. 516

Estimated values of Y (Yhat):

Yhat X b⋅:=

Residuals (e):

e Y Yhat−:=

b

53.450194

0.125583

5.887719









= Yhat

88.0671

92.0711

83.6717

78.4119

93.3269

98.5867

80.9235

84.2996

97.9588

88.3036

80.2956

83.0438

86.1833

95.8386

91.2067

86.8113





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
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

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
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
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

= e

0.9329

2.0711−

0.6717−

1.4119−

1.3269−

0.5867−

1.0765

0.7004

1.9588−

6.6964

0.2956−

4.0438−

0.1833−

1.1614

0.7933

1.1887
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
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
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
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





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
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

=

n length Y( ):= k cols X( ) 1−:=

ANOVA Table for Multiple Regression:

Sums of Squares: Degrees of Freedom: Mean Squares:

SSR Yhat mean Y( )−( )2∑:= SSR 591.0356= dfR k:= dfR 2= MSR
SSR

dfR
:= MSR 295.5178=

SSE Y Yhat−( )2∑:= SSE 79.9019= dfE n k− 1−:= dfE 13= MSE
SSE

dfE
:= MSE 6.1463=

SST Y mean Y( )−( )2∑:=
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Prototype in R:
COMMANDS:
> K=read.table("c:/2007BiostatsData/Rosner Table 11.9.txt")
> K
> Y=K$SBP
> X1=K$Birthwt
> X2=K$Age
> anova(lm(Y~X1+X2))

Analysis of Variance Table

Response: Y
          Df Sum Sq Mean Sq F value Pr(>F)    
X1         1 130.54  130.54  21.238 0.0004901 ***
X2         1 460.50  460.50  74.923 9.342e-07 ***
Residuals 13  79.90   6.15                      
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

^ Note that in order to obtain appropriate value for MSR, one must first sum the partial Sum of 
Squares for X1 & X2 and also sum the degrees of freedom for X1 & X2.  The MSR can be 
calculated by hand, along with a new F value that is one half the sum for X1 and X2 reported here.

Prototype in SYSTAT:
SYSTAT Rectangular file C:\Documents and Settings\Wm Stein\Desktop\Biostatistics Spring 
2007\Week 11\Data\Rosner Table 11.syd,

created Mon Apr 02, 2007 at 15:20:33, contains variables:

Dep Var: SBP   N: 16   Multiple R: 0.93857   Squared multiple R: 0.88091
 
Adjusted squared multiple R: 0.86259   Standard error of estimate: 2.47917
 
Effect Coefficient Std Error  Std Coef Tolerance t P(2 Tail)
 
CONSTANT 53.45019 4.53189      0.00000 .      11.79424 0.00000
BIRTHWT 0.12558 0.03434      0.35208 0.98859 3.65746 0.00290
AGE 5.88772 0.68021      0.83323 0.98859 8.65580 0.00000
 
                             Analysis of Variance
 
Source             Sum-of-Squares   df  Mean-Square     F-ratio       P
 
Regression             591.03564 2  295.51782    48.08063     0.00000
Residual                79.90186    13      6.14630
-------------------------------------------------------------------------------

*** WARNING ***
Case           10 is an outlier        (Studentized Residual =      6.75638)

 
Durbin-Watson D Statistic     2.214
First Order Autocorrelation  -0.121

^ SYSTAT reports things our way in its ANOVA table
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Pi min 2 pt ti n k− 1−( ), ⋅  2 1 pt ti n k− 1−( ), − ⋅ , := i

P = minimum(2 Φt(t),1-2 Φt(t) for each

< Note that C1 and C2 are
    explicitly evaluated above so C1

     is already negative in value.  So
    it is added to Xbar here to find
    the Lower Bound of the CI.

Probability Value:

IF |t| > C, THEN REJECT H0 OTHERWISE  ACCEPT H0

Decision Rule:

C2 qt 1
α

2
− n k− 1−,





:=C1 qt
α

2
n k− 1−,





:=
Note degrees of freedom = (n-k-1)

C2 inverseΦt 1
α

2
−





:= inverseΦtC1 inverseΦt
α

2






:= inverseΦt

< Probability of Type I error must be explicitly setα 0.05:=

Critical Value of the Test:

If Assumptions hold and H0 is true, then F ~F(k)/(n-k-1)

Sampling Distribution:

ti 1−

bi

SEBi 1−

:=

Test Statistic:

< Standard Error for each b.
    See Rosner p. 483.

SEB
MSE

Lxx
:=

< corrected Sums of Squares for each
     independent variable in matrix X

Lxxi 1−
X i〈 〉

mean X i〈 〉( )−( )2

∑:=

i 1 k..:=

Calculating Standard Errors for regression parameters β:

< Two sided test
< one only of the regression parameter is zeroH0: βj = 0 and all other βi's <> 0

H0: βj <> 0 and all other βi's <> 0

Hypotheses:

Note:  This t-test approach is equivalent to the Partial F-Test approach (Rosner p. 519) as far 
as inference on coefficients for each independent variable goes.  However partial F-test 
approaches (also called "maximum liklihood" or "full and reduced model" methods) are 
generally more useful and form the core of so-called "General Linear Modeling" strategies.  
Most statistical packagaes including R & SYSTAT routinely report partial F in addition to, 
or instead of, t-test results.

t-Test for H0: βj = 0 and all other βi's <> 0:
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< Probability of Type I error must be explicitly set

C1 qt
α

2
n k− 1−,





:= C2 qt 1
α

2
− n k− 1−,





:= < Note degrees of freedom = (n-k-1)

C1 2.1604−= C2 2.1604=

Decision Rule:
IF |t| > C, THEN REJECT H0 OTHERWISE  ACCEPT H0

< for β1t
3.6785

8.7056







= C1 2.1604−= C2 2.1604=
< for β2

Probability Value:
i 0 k 1−..:=

< for β1Pi min 2 pt ti n k− 1−( ), ⋅  2 1 pt ti n k− 1−( ), − ⋅ , := P
0.0028

8.7597 10 7−
×








=

< for β2
> summary(lm(Y~X1+X2))

Call:
lm(formula = Y ~ X1 + X2)

Residuals:
    Min      1Q  Median      3Q     Max 
-4.0438 -1.3481 -0.2395  0.9688  6.6964 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 53.45019    4.53189  11.794 2.57e-08 ***
X1           0.12558    0.03434 3.657  0.00290 ** 
X2           5.88772   0.68021   8.656 9.34e-07 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 2.479 on 13 degrees of freedom
Multiple R-Squared: 0.8809,     Adjusted R-squared: 0.8626 
F-statistic: 48.08 on 2 and 13 DF,  p-value: 9.844e-07 

t & P values
approximately >
match...
rounding?

Example: (same data as above)

t-Test for H0: βj = 0 and all other βi's <> 0:

Hypotheses:
H0: βj = 0 and all other βi's <> 0
H0: βj <> 0 and all other βi's <> 0

< one only of the regression parameter is not zero

< Two sided test

Calculating Standard Errors for regression parameters β:
i 1 k..:= k 2=

Lxxi 1−
X i〈 〉

mean X i〈 〉( )−( )2

∑:= Lxx
5273.4375

13.4375







=

SEB
MSE

Lxx
:= SEB

0.0341

0.6763







= < close but not quite the same
   as Table 11.10 

Test Statistic: MSE 6.1463=

^ this is the same
ti 1−

bi

SEBi 1−

:= t
3.6785

8.7056







=

Critical Value of the Test:
α 0.05:=
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ORIGIN 0≡

Interpreting Regression Results from Statistics Packages

"Industrial strength" Statistical packages, such as those provided by R, SYSTAT, SPSS, 
Minitab or SAS are clearly the way to go for routine analysis of these stastical problems.  Each 
provides slightly different output that is characteristically dense with information.   The 
packages also provide multiple diagnostic tools for determining the appropriateness of Linear 
Regression to different datasets.  Provided in this sheet is a brief summary of terms useful for 
interpreting results based on things we have seen in previous Worksheets.

SYSTAT Output of Multiple Linear Regression:

SYSTAT Rectangular file C:\Documents and Settings\Wm Stein\Desktop\Biostatistics Spring 
2007\Week 11\Data\Rosner Table 11.syd,

created Mon Apr 02, 2007 at 15:20:33, contains variables:

BLANKBIRTHWTAGESBP

 
Dep Var: SBP   N: 16   Multiple R: 0.93857   Squared multiple R: 0.88091
 
Adjusted squared multiple R: 0.86259   Standard error of estimate: 2.47917
 
Effect Coefficient Std Error  Std Coef Tolerance t P(2 Tail)
 
CONSTANT 53.45019 4.53189      0.00000 .      11.79424 0.00000
BIRTHWT 0.12558 0.03434      0.35208 0.98859 3.65746 0.00290
AGE 5.88772 0.68021      0.83323 0.98859 8.65580 0.00000
 
                             Analysis of Variance
 
Source             Sum-of-Squares   df  Mean-Square     F-ratio       P
 
Regression             591.03564 2  295.51782    48.08063     0.00000
Residual                79.90186    13      6.14630
-------------------------------------------------------------------------------

 
*** WARNING ***

Case           10 is an outlier        (Studentized Residual =      6.75638)
 

Durbin-Watson D Statistic     2.214
First Order Autocorrelation  -0.121

Dependent Variable:
SBP is the name I gave to the dependent variable Y in the SYSTAT data table.

N:
Number of matched Y with X's in the study.

Multiple R & Squared multiple R:

Squared multiple R is the Coefficient of Determination:
SSR

SST
< from the ANOVA table
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Given here are standard names for portions of the chart:

"Regression" is a row for reporting SSR, dfR & MSR Sometimes, as in R output more than
               one "partial regression" row needs to be summed for all "Regression" values.      

In Source: 

This is the standard ANOVA table for the multiple regression 
< See Worksheets 40 & 44Analysis of Variance:

Note that a test for α has not been given...

< See Worksheet 44
H0: βj = 0 and all other βi's <> 0
H0: βj <> 0 and all other βi's <> 0

These are the t-statistics and Probability values calculated in the t-test:

t & P(2 Tail): 

Standardized coefficients are useful because relative magnitude reported are all in the 
same units of standard deviation, whereas the "raw" Regression coefficients also reflect 
the magnitude of the scale for each X variable, and these may be greatly different.

coefficients standardized by multiplying the 
  ratio of standard deviations for each estimate of α & βi

bsi
bi

sxi

sy








⋅:=

sy

< See Rosner p. 513These are Standardized Regression Coefficients:

Standardized Coefficients:

for coefficient estimate of αSEa MSE
1
n

Xbar
2

Lxx
+







⋅:=

Lxx

< See Rosner p. 483
for coefficients estimates of βiSEbi

MSE

Lxxi

:=
Lxx

These are standard errors of the Regression coefficients:  

Standard Errors:

These are estimates of the regression coefficients α & βi

Coefficients:

"Constant" is the variable name for coefficient α - it involves only translation
                                                                                    in dependent variable Y
"BIRTHWT" are the variable names I gave to the two independent variables X
"AGE"            in this study

These are the names employed for the Independent portion ofthe the Regression Equation:
Yi = α + β1X1,i + β2X2,i + β3X3,i+ ... +  βkXk,i + εi

Effect:
< square-root of the Coefficient of Determination

SSR

SST

Multiple R is the Coefficient of Correlation:
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2.9 2.359574− 0.5404=

difference in means 
calculated above match
estimate for coefficient 
β1 here.

t statistic& P match >

Call:
lm(formula = Y ~ X)

Residuals:
     Min       1Q   Median       3Q      Max 
-0.90000 -0.25957 -0.05957  0.30000  1.00000 

Coefficients:
 Estimate Std. Error t value Pr(>|t|)    

(Intercept)  2.35957    0.06051  38.997  < 2e-16 ***
X 0.54043    0.07372   7.331 1.59e-11 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 0.4148 on 142 degrees of freedom
Multiple R-Squared: 0.2745,     Adjusted R-squared: 0.2694 
F-statistic: 53.74 on 1 and 142 DF,  p-value: 1.590e-11 

COMMANDS:
> Y=dcats$Bwt
> X=dcats$Sex
> summary(lm(Y~X))

Regression approach: with dummy variable for Sex: F=0 M=1

        Two Sample t-test

data:  X1 and X2 
t = -7.3307, df = 142, p-value = 1.590e-11
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval:
 -0.6861584 -0.3946927 
sample estimates:
mean of x mean of y 
 2.359574  2.900000       < mean difference: 2.9 2.359574− 0.5404=

cats

0 1 2 3
0
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1 0 2 7
2 0 2 7.4

3 0 2 9.5

4 0 2.1 7.2

5 0 2.1 7.3

6 0 2.1 7.6

7 0 2.1 8.1

8 0 2.1 8.2

9 0 2.1 8.3

10 0 2.1 8.5

11 0 2.1 8.7

12 0 2.1 9.8

13 0 2.2 7.1

14 0 2.2 8.7

15 0 2.2 9.1

16 0 2.2 9.7

=

COMMANDS:
> dcats=read.table("c:/2007BiostatsData/dcats.txt")
> dcats
> X1=dcats$Bwt[dcats$Sex=="0"]
> X2=dcats$Bwt[dcats$Sex=="1"]
> t.test(X1,X2,alternative="two.sided",var.equal=T)

t-test approach: two populations equal variance
Calculations in R:

cats READPRN "c:/2007BiostatsData/dcats.txt"( ):=

Cats data previously analyzed in Biostatistics Worksheet 27:Example:

Multiple Linear Regression is not restricted to cardinal data, but may be readily adapted to 
other forms of data.  In this guise - the so called "General Linear Model" or "GLM", is a very 
wide-ranging method that can be shown to unify much of standard statistics including t-tests, 
χ2, ANOVA, and many non-parametric statistical techniques.  Shown here is one standard 
extension to independent variables in data classes through the judicious use of "dummy 
coding".  Because all variables can be "binned" into data classes (as in histograms), this 
approach has broad application.   

Regression and General Linear Models:

ORIGIN 0≡



Assignment for Week 12 

Let�s broaden our attack on Regression and ANOVA this week using both R an SPSS. 

Using a dataset of choice, including several I have placed in the Data Section this week, do the following:  

Multiple Regression � As discussed in lecture, multiple regression involves extension of the regression 
technique using least squares to the commonly encountered situations with more than one independent 
variable. 

1.  Fit your data using a Multiple Linear Regression model with at least two independent variables.  Also 
recover and display your regression predictions and residuals.  Draw graphs displaying your 
results comparing the dependent variable with each multiple independent variables. [see 
Biostatistics Worksheet 39 for making graphs & 43 for Multiple Regression]. 

2.  Calculate the ANOVA table.  [see Worksheet 44 & 45] 

3.  Perform a F-Test for H0: all β's = 0 versus H1: not all β's are 0 and interpret the results.  [see 
Worksheet 44 & 45] 

4.  Perform a t-Test for H0: βj = 0 and all other βi's <> 0, and interpret the results.  [see Worksheet 44 & 
45] 

5.  Now try the same thing again using SPSS.  The important thing to think about here is how to structure 
your data in an appropriate way in order to use SPSS�s Graphical User�s Interface (GUI).  My 
sense is that SPSS is generally less flexible than R, but once you figure out how it works, 
probably more efficient. 

One-Way ANOVA for fixed effects � Now find data that will work with this approach.  Some datasets 
already have categorical variables as text fields whereas others list categories as dummy 
variables.  See Biostatistics Worksheet 46 and dataset dcats.txt for an example of this. 

6.  Run the dcats.dta set both as a regression and as an ANOVA and compare your results.  Are the 
number ni in each sample of the ANOVA equal?  If not, drop some observations from dcat.txt to 
make them equal and re-run Regression and ANOVA.  Do these results differ?   If so, how?  
What parts are comparable? 

7. Using data you chose, perform the F-Test for All αi = 0 in One-Way ANOVA with Fixed Effects 
Model, and compare the results in both R and SPSS. 

8. Assuming you can with the data (if not, find another dataset that makes this test meaningful), now 
perform the t-Test for αi = αj versus H1: αi <> αj for specific i�s & j�s you choose (try more than 
one).  Interpret your results. 



End of Term Assignment for Graduate Students 
The Department of Biological Sciences mandates that I require something ‘extra’ from 
graduate students in courses simultaneously taught at both graduate and undergraduate 
levels.  Whereas this course primarily consists of introducing the theoretical framework 
of statistics with quite a bit of practice with specific procedures, the objectives of all 
students are basically the same.  However, graduate students have chosen a field of study 
with its own peculiar problems, methodology, literature, and style of ‘scientific’ 
reportage.  No doubt, all fields utilize some sort of statistical appraisal, and it is important 
to become familiar with techniques actually used by your colleagues-to-be.  Therefore, 
we have an excellent rationale for this end-term requirement.   

Here’s what I want you to hand in by the last day of term: 
The report need not be all that long or involved.  As far as I’m concerned the fewer words 
the better.  What I want is a brief summary of the literature in your chosen field of study.  
In fact, I need this information as I endeavor to better fit this course in the future to its 
intended target audience.  Please provide me with the following: 

1.  I need a basic summary of the research objectives of your field of study.  What, and 
how do leading researchers report their findings.  What kinds of study are 
typically conducted.  Who is the intended audience?   

2.  What journals or other forms of publications represent the most prestigious outlets for 
research in your field?  What, typically, is reported in these journals? 

3.  I need an annotated bibliography of 10-15 recent papers reporting statistical results 
in your field.  Please include a complete and correctly formatted reference list.  
Following each reference, provide me a sentence or two describing the statistical 
tests utilized.  Please be as specific as possible.  Some tests probably have been 
covered in this course, whereas others may not have been.  Either way, try to be 
as specific as you can about: statistical hypothesis tested, assumptions of the 
test (if stated by the authors or that you would expect to be in force), statistical 
model utilized, and each paper’s conclusion.  

 4.  Finally, I need a list of statistical procedures/tests that in your opinion, would 
constitute an important set for your field of study. 



factor {base} R Documentation

Factors 

Description 

The function factor is used to encode a vector as a factor (the terms ‘category’ and 
‘enumerated type’ are also used for factors). If ordered is TRUE, the factor levels are 
assumed to be ordered. For compatibility with S there is also a function ordered.  

is.factor, is.ordered, as.factor and as.ordered are the membership and coercion 
functions for these classes.  

Usage 

factor(x = character(), levels = sort(unique.default(x), na.last = 
TRUE), 
       labels = levels, exclude = NA, ordered = is.ordered(x)) 
ordered(x, ...) 
 
is.factor(x) 
is.ordered(x) 
 
as.factor(x) 
as.ordered(x) 

Arguments 

x a vector of data, usually taking a small number of distinct values. 
levels an optional vector of the values that x might have taken. The default is the set 

of values taken by x, sorted into increasing order. 
labels either an optional vector of labels for the levels (in the same order as levels 

after removing those in exclude), or a character string of length 1. 
exclude a vector of values to be excluded when forming the set of levels. This should be 

of the same type as x, and will be coerced if necessary. 
ordered logical flag to determine if the levels should be regarded as ordered (in the 

order given). 
... (in ordered(.)): any of the above, apart from ordered itself. 

Details 

The type of the vector x is not restricted.  



Ordered factors differ from factors only in their class, but methods and the model-fitting 
functions treat the two classes quite differently.  

The encoding of the vector happens as follows. First all the values in exclude are 
removed from levels. If x[i] equals levels[j], then the i-th element of the result is j. 
If no match is found for x[i] in levels, then the i-th element of the result is set to NA.  

Normally the ‘levels’ used as an attribute of the result are the reduced set of levels after 
removing those in exclude, but this can be altered by supplying labels. This should 
either be a set of new labels for the levels, or a character string, in which case the levels 
are that character string with a sequence number appended.  

factor(x, exclude=NULL) applied to a factor is a no-operation unless there are unused 
levels: in that case, a factor with the reduced level set is returned. If exclude is used it 
should also be a factor with the same level set as x or a set of codes for the levels to be 
excluded.  

The codes of a factor may contain NA. For a numeric x, set exclude=NULL to make NA an 
extra level ("NA"), by default the last level.  

If "NA" is a level, the way to set a code to be missing is to use is.na on the left-hand-side 
of an assignment. Under those circumstances missing values are printed as <NA>.  

is.factor is generic: you can write methods to handle specific classes of objects, see 
InternalMethods.  

Value 

factor returns an object of class "factor" which has a set of integer codes the length of 
x with a "levels" attribute of mode character. If ordered is true (or ordered is used) 
the result has class c("ordered", "factor").  
Applying factor to an ordered or unordered factor returns a factor (of the same type) 
with just the levels which occur: see also [.factor for a more transparent way to achieve 
this.  
is.factor returns TRUE or FALSE depending on whether its argument is of type factor or 
not. Correspondingly, is.ordered returns TRUE when its argument is ordered and FALSE 
otherwise.  
as.factor coerces its argument to a factor. It is an abbreviated form of factor.  
as.ordered(x) returns x if this is ordered, and ordered(x) otherwise. 

Warning 

The interpretation of a factor depends on both the codes and the "levels" attribute. Be 
careful only to compare factors with the same set of levels (in the same order). In 
particular, as.numeric applied to a factor is meaningless, and may happen by implicit 



coercion. To “revert” a factor f to its original numeric values, 
as.numeric(levels(f))[f] is recommended and slightly more efficient than 
as.numeric(as.character(f)).  

The levels of a factor are by default sorted, but the sort order may well depend on the 
locale at the time of creation, and should not be assumed to be ASCII.  

Comparison operators and group generic methods 

There are "factor" and "ordered" methods for the group generic Ops, which provide 
methods for the Comparison operators. (The rest of the group and the Math and Summary 
groups generate an error as they are not meaningful for factors.)  

Only == and != can be used for factors: a factor can only be compared to another factor 
with an identical set of levels (not necessarily in the same ordering) or to a character 
vector. Ordered factors are compared in the same way, but the general dispatch 
mechanism precludes comparing ordered and unordered factors.  

All the comparison operators are available for ordered factors. Sorting is done by the 
levels of the operands: if both operands are ordered factors they must have the same level 
set.  

Note 

Storing character data as a factor is more efficient storage if there is even a small 
proportion of repeats. On a 32-bit machine storing a string of n bytes takes 28 + 
8*ceiling((n+1)/8) bytes whereas storing a factor code takes 4 bytes. (On a 64-bit 
machine 28 is replaced by 56 or more.) Only if they were computed from the same values 
(or in some cases read from a file: see scan) will identical strings share storage.  

References 

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & 
Brooks/Cole.  

See Also 

[.factor for subsetting of factors.  

gl for construction of “balanced” factors and C for factors with specified contrasts. 
levels and nlevels for accessing the levels, and unclass to get integer codes.  

Examples 

(ff <- factor(substring("statistics", 1:10, 1:10), levels=letters)) 
as.integer(ff)  # the internal codes 



factor(ff)      # drops the levels that do not occur 
ff[, drop=TRUE] # the same, more transparently 
 
factor(letters[1:20], label="letter") 
 
class(ordered(4:1)) # "ordered", inheriting from "factor" 
 
## suppose you want "NA" as a level, and to allowing missing values. 
(x <- factor(c(1, 2, "NA"), exclude = "")) 
is.na(x)[2] <- TRUE 
x  # [1] 1    <NA> NA, <NA> used because NA is a level. 
is.na(x) 
# [1] FALSE  TRUE FALSE 
factor() 
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Anova Tables 

Description 

Compute analysis of variance (or deviance) tables for one or more fitted model objects.  

Usage 

anova(object, ...) 

Arguments 

object an object containing the results returned by a model fitting function (e.g., lm or 
glm). 

... additional objects of the same type. 

Value 

This (generic) function returns an object of class anova. These objects represent analysis-
of-variance and analysis-of-deviance tables. When given a single argument it produces a 
table which tests whether the model terms are significant.  
When given a sequence of objects, anova tests the models against one another in the 
order specified.  
The print method for anova objects prints tables in a “pretty” form. 

Warning 

The comparison between two or more models will only be valid if they are fitted to the 
same dataset. This may be a problem if there are missing values and R's default of 
na.action = na.omit is used.  

References 

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S, Wadsworth & 
Brooks/Cole.  

See Also 

coefficients, effects, fitted.values, residuals, summary, drop1, add1.  

 



[Package stats version 2.4.1 Index] 
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ANOVA for Linear Model Fits 

Description 

Compute an analysis of variance table for one or more linear model fits.  

Usage 

## S3 method for class 'lm': 
anova(object, ...) 
 
anova.lmlist(object, ..., scale = 0, test = "F") 

Arguments 

object, 
... 

objects of class lm, usually, a result of a call to lm. 

test a character string specifying the test statistic to be used. Can be one of "F", 
"Chisq" or "Cp", with partial matching allowed, or NULL for no test. 

scale numeric. An estimate of the noise variance sigma^2. If zero this will be 
estimated from the largest model considered.  

Details 

Specifying a single object gives a sequential analysis of variance table for that fit. That is, 
the reductions in the residual sum of squares as each term of the formula is added in turn 
are given in as the rows of a table, plus the residual sum of squares.  

The table will contain F statistics (and P values) comparing the mean square for the row 
to the residual mean square.  

If more than one object is specified, the table has a row for the residual degrees of 
freedom and sum of squares for each model. For all but the first model, the change in 
degrees of freedom and sum of squares is also given. (This only make statistical sense if 
the models are nested.) It is conventional to list the models from smallest to largest, but 
this is up to the user.  

Optionally the table can include test statistics. Normally the F statistic is most 
appropriate, which compares the mean square for a row to the residual sum of squares for 
the largest model considered. If scale is specified chi-squared tests can be used. 
Mallows' Cp statistic is the residual sum of squares plus twice the estimate of sigma^2 
times the residual degrees of freedom.  



Value 

An object of class "anova" inheriting from class "data.frame". 

Warning 

The comparison between two or more models will only be valid if they are fitted to the 
same dataset. This may be a problem if there are missing values and R's default of 
na.action = na.omit is used, and anova.lmlist will detect this with an error.  

Note 

Versions of R prior to 1.2.0 based F tests on pairwise comparisons, and this behaviour 
can still be obtained by a direct call to anovalist.lm.  

References 

Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical Models in S eds J. M. 
Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.  

See Also 

The model fitting function lm, anova.  

drop1 for so-called ‘type II’ anova where each term is dropped one at a time respecting 
their hierarchy.  

Examples 

## sequential table 
fit <- lm(sr ~ ., data = LifeCycleSavings) 
anova(fit) 
 
## same effect via separate models 
fit0 <- lm(sr ~ 1, data = LifeCycleSavings) 
fit1 <- update(fit0, . ~ . + pop15) 
fit2 <- update(fit1, . ~ . + pop75) 
fit3 <- update(fit2, . ~ . + dpi) 
fit4 <- update(fit3, . ~ . + ddpi) 
anova(fit0, fit1, fit2, fit3, fit4, test="F") 
 
anova(fit4, fit2, fit0, test="F") # unconventional order 

 
[Package stats version 2.4.1 Index] 
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< Between (Treatment) Sum of SquaresSSB

i j

Xbari GM−( )2∑∑:= GM

< Within (Error) Sum of SquaresSSW

i j

Xi j, Xbari−( )2∑∑:= Xbar

< Total Sum of SquaresSST

i j

Xi j, GM−( )2∑∑:= GM

Sums of Squares:

Xbari mean X i〈 〉( ):= X

< grand mean - sample estimate of µGM
1
n

i j

Xi j,∑∑






⋅:= X

< total number of observationsn

i

ni∑:= n

Number & Means:

εij are a random sample ~ N(0,σ2) 

Assumptions: 
< See Rosner p. 558

ORIGIN 0≡

One-Way Analysis of Variance with Fixed Effects Model

Analysis of Variance (ANOVA) are a broad class of statistical models that fall under the GLM 
framework.  However unlike typical regression where all variables are usually continuous, the 
independent variable(s) in ANOVA involve membership in classes.  Since more than two 
classes may be present, this approach allows extension of the t-test strategy to comparisions of 
multiple populations.  Since ANOVA is ubiquitous in many experimental settings in biology, its 
proficient use is often viewed as evidence of good experimental design.    

Objects 
(Replicates) #1 #2 #3 … #k

1
2
3
…
n n1 n2 n3 nk

means: Xbar.1 Xbar.2 Xbar.3 … Xbar.k

One-Way ANOVA
Treatment Classes:

Data Structure:
k groups with not
necessarily the same
numbers of observations
and different means.

Let index i,j indicate 
the ith column 
(treatment class) and 
jth row (object).

Model: µ is the grand mean of all objects.
αi is the mean of i = µ +αi for each class i.
εi,j is the error term specific to each object i,j

Xi,j = µ + αi + εi,j < where:

Restriction: 
< allows estimation of k parameters. 
    Other restrictions are also possible:

i

ni αi⋅∑ 0:=

i

ni αi⋅∑ 0:=

i

αi∑ 0:=

i

αi∑ 0:= or αk 0:=k
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n n0 n1+ n2+:= n 84=

j0 0 n0 1−..:= j1 0 n1 1−..:= j2 0 n2 1−..:=

X0j0
V 3〈 〉( )

j0:= X1j1
V 3〈 〉( )

j1 n0+:= X2j2
V 3〈 〉( )

j2 n0+ n1+:=

Xbar0
mean X0( ):= Xbar1

mean X1( ):= Xbar2
mean X2( ):=

Xbar

3.949167

4.471786

4.462045









= < means for each class

GM mean V 3〈 〉( ):= GM 4.392024=
n0 Xbar0

⋅ n1 Xbar1
⋅+ n2 Xbar2

⋅+

n
4.392024=

^ Grand mean

Sums of Squares:
i 0 2..:=

SST

j0

X0j0
GM−( )2∑

j1

X1j1
GM−( )2∑+

j2

X2j2
GM−( )2∑+:= SST 47.641=

SSW

j0

X0j0
Xbar0

−( )2∑
j1

X1j1
Xbar1

−( )2∑+
j2

X2j2
Xbar2

−( )2∑+:= SSW 44.8936=

SSB

j0

Xbar0
GM−( )2∑

j1

Xbar1
GM−( )2∑+

j2

Xbar2
GM−( )2∑+:= SSB 2.7473=

SSB SSW+ 47.641=

One-Way ANOVA Table:

Source: SS df MS

Between SSB k 1−
SSB

k 1−

Within SSW n k−
SSW

n k−

TOTAL SST

Example:
Vital Capacity Data in this week's Data folder:

V READPRN "c:/2007BiostatsData/vital.txt"( ):=

n0 12:= n0 12= < determined by
   looking at 
   row numbers
   in the first 
   column...

n1 39 11−:= n1 28=

n2 83 39−:= n2 44= V

0 1 2 3
0
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1 1 39 4.62
2 1 40 5.29

3 1 41 5.52

4 1 41 3.71

5 1 45 4.02

6 1 49 5.09

7 1 52 2.7

8 1 47 4.31

9 1 61 2.7

10 1 65 3.03

11 1 58 2.73

12 1 59 3.67

13 2 29 5.21

14 2 29 5.17

15 2 33 4.88

16 2 32 4.5

=
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^ These values match above.

Analysis of Variance Table

Response: Y
          Df Sum Sq Mean Sq F value  Pr(>F)  
X          2  2.747   1.374  2.4785 0.09021 .
Residuals 81 44.894   0.554                  

< here the values of variable V$group are converted into class "factors"> X=factor(V$group)
> X
> anova(lm(Y~X))

RIGHT WAY:

What this does is produce an ANOVA on the Linear Regression of the dependent variable (Y) 
with the values reported for the independent variable (X).  These values are class indicators 
(1,2,3) and are meaningless.  The fact that this is a Linear Regression ANOVA can be seen in 
the report of 1 DF for variable X in the ANOVA chart...

Analysis of Variance Table

Response: Y
Df Sum Sq Mean Sq F value  Pr(>F)  

X  1  1.609   1.609  2.8658 0.09428 .
Residuals 82 46.032  0.561                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

> anova(lm(Y~X))

WRONG WAY:

NOTE that there is a RIGHT WAY and a WRONG WAY to do ANOVA in R:

COMMANDS:
> V=read.table("c:/2007BiostatsData/vital.txt")
> V
> Y=V$vital.capacity
> X=V$group

Prototype in R:

SST 47.641=TOTAL

MSW 0.5542=MSW
SSW

n k−
:=n k− 81=SSW 44.8936=Within 

MSB 1.3737=MSB
SSB

k 1−
:=k 1− 2=SSB 2.7473=Between 

MSdfSSSource: 

One-Way ANOVA Table: < number of classesk 3:=
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> V
   group age vital.capacity
1      1  39           4.62
2      1  40           5.29
3      1  41           5.52
4      1  41           3.71
5      1  45           4.02
6      1  49           5.09
7      1  52           2.70
8      1  47           4.31
9      1  61           2.70
10     1  65           3.03
11     1  58           2.73
12     1  59           3.67
13     2  29           5.21
14     2  29           5.17
15     2  33           4.88
16     2  32           4.50
17     2  31           4.47
18     2  29           5.12
19     2  29           4.51
20     2  30           4.85
21     2  21           5.22
22     2  28           4.62
23     2  23           5.07
24     2  35           3.64
25     2  38           3.64
26     2  38           5.09
27     2  43           4.61
28     2  39           4.73
29     2  38           4.58
30     2  42           5.12
31     2  43           3.89
32     2  43           4.62
33     2  37           4.30
34     2  50           2.70
35     2  50           3.50
36     2  45           5.06
37     2  48           4.06
38     2  51           4.51
39     2  46           4.66
40     2  58           2.88
41     3  27           5.29
42     3  25           3.67

43     3  24           5.82
44     3  32           4.77
45     3  23           5.71
46     3  25           4.47
47     3  32           4.55
48     3  18           4.61
49     3  19           5.86
50     3  26           5.20
51     3  33           4.44
52     3  27           5.52
53     3  33           4.97
54     3  25           4.99
55     3  42           4.89
56     3  35           4.09
57     3  35           4.24
58     3  41           3.88
59     3  38           4.85
60     3  41           4.79
61     3  36           4.36
62     3  36           4.02
63     3  41           3.77
64     3  41           4.22
65     3  37           4.94
66     3  42           4.04
67     3  39           4.51
68     3  41           4.06
69     3  43           4.02
70     3  41           4.99
71     3  48           3.86
72     3  47           4.68
73     3  53           4.74
74     3  49           3.76
75     3  54           3.98
76     3  48           5.00
77     3  49           3.31
78     3  47           3.11
79     3  52           4.76
80     3  58           3.95
81     3  62           4.60
82     3  65           4.83
83     3  62           3.18
84     3  59           3.03
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Prototype in SYSTAT:

Effects coding used for categorical variables in model.
 

Categorical values encountered during processing are:
GROUP (3 levels)
          1,        2,        3
 
Dep Var: VITALCAPACI   N: 84   Multiple R: 0.24014   Squared multiple R: 0.05767
 
 
                             Analysis of Variance
 
Source             Sum-of-Squares   df  Mean-Square     F-ratio       P
 
GROUP                    2.74734     2      1.37367     2.47846     0.09021
 
Error                   44.89362    81      0.55424

Durbin-Watson D Statistic     1.692
First Order Autocorrelation   0.126

Least Squares Means

1 2 3
GROUP

2

3

4

5

6

V
IT

AL
C

A
PA

C
I
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SS df MS

Between SSB k 1−
SSB

k 1−

Within SSW n k−
SSW

n k−

TOTAL SST

Hypotheses:
H0: αi = 0 for all i
H1: At least one αi <> 0  

< All treatment class deviations from the grand mean are 0 

< Two sided test

Test Statistic:

F
MSB

MSW
:=

MSW
< Ratio of "between" versus "within" Mean Squares

Distribution of the test Statistic F:
If H0 is true then F ~F((k-1),(n-k)) where: k = number of classes

n = total number of observations

ORIGIN 0≡

F-Test for H0: All αi = 0 in One-Way ANOVA with Fixed Effects Model

Inferences on the means of the multiple populations indicated by the class ("factor" or 
"group") variable follow directly from the ANOVA table.    

Objects 
(Replicates) #1 #2 #3 … #k

1
2
3
…
n n1 n2 n3 nk

means: Xbar.1 Xbar.2 Xbar.3 … Xbar.k

One-Way ANOVA
Treatment Classes:

Data Structure:
k groups with not
necessarily the same
numbers of observations
and different means.

Let index i,j indicate 
the ith column 
(treatment class) and 
jth row (object).

F Test for Overall Comparison of Class Means:
Model: µ is the grand mean of all objects.

αi is the mean of i = µ +αi for each class i.
εi,j is the error term specific to each object i,j

Xi,j = µ + αi + εi,j < where:

Restriction: 
< allows estimation of k parameters. 
    Other restrictions are also possible:

i

ni αi⋅∑ 0:=

i

ni αi⋅∑ 0:=

i

αi∑ 0:=

i

αi∑ 0:= or αk 0:=k < See Rosner p. 558

Assumptions: 

εij are a random sample ~ N(0,σ2) 

One-Way ANOVA Table:

Source: 
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MSB 1.3735=

Within SSW 44.894:= n k− 81= MSW
SSW

n k−
:= MSW 0.5542=

TOTAL SST SSB SSW+:= SST 47.641=

Test Statistic:

F
MSB

MSW
:= F 2.4781=

Critical Value of the Test:
α 0.05:= < Probability of Type I error must be explicitly set

CV qF 1 α− k 1−( ), n k−( ), := CV 3.1093=

Decision Rule:
IF F > C, THEN REJECT H0 OTHERWISE  ACCEPT H0

F 2.4781= CV 3.1093=

Probability Value:
P min pF F k 1−( ), n k−( ),[ ] 1 pF F k 1−( ), n k−( ),[ ]−,[ ]:= P 0.0902=

^ values match R output above

Critical Value of the Test:
α 0.05:= < Probability of Type I error must be explicitly set

CV inverseΦF 1 α−( ):= inverseΦF CV qF 1 α− k 1−( ), n k−( ), := n

Decision Rule:

IF F > C, THEN REJECT H0 OTHERWISE  ACCEPT H0

Probability Value:
P = minimum(ΦF(F),1-ΦF(F)

P min pF F k 1−( ), n k−( ),[ ] pF F k 1−( ), n k−( ),[ ],[ ]:= F

Example:
Vital Capacity Data in this week's Data folder:

k 3:= < number of classesOne-Way ANOVA Table:
n 84:=From R:

Analysis of Variance Table

Response: Y
          Df Sum Sq Mean Sq F value  Pr(>F)  
X          2  2.747   1.374  2.4785 0.09021 .
Residuals 81 44.894   0.554                  

Source: SS df MS

Between SSB 2.747:= k 1− 2= MSB
SSB

k 1−
:=
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MSW
SSW

n k−
:= MSW 0.265=

TOTAL SST SSB SSW+:= SST 102.168=

Test Statistic:

F
MSB

MSW
:= F 119.2649=

Critical Value of the Test:
α 0.05:= < Probability of Type I error must be explicitly set

CV qF 1 α− k 1−( ), n k−( ), := CV 3.0576=

Decision Rule:
IF F > C, THEN REJECT H0 OTHERWISE  ACCEPT H0

F 119.2649= CV 3.0576=

Probability Value:
P min pF F k 1−( ), n k−( ),[ ] 1 pF F k 1−( ), n k−( ),[ ]−,[ ]:= P 0=

Note: Rejection of H0 here allows one to continue testing for values of specific αi's

Another Example:

R COMMANDS:
> Iris=read.table("c:/2007BiostatsData/iris.txt")
> Iris
> Y=Iris$Sepal.Length
> length(Y)
> X=Iris$Species
> anova(lm(Y~X))

Iris dataset:

k 3:= < number of classes

n 150:= < number of objects

One-Way ANOVA Table:

From R: Analysis of Variance Table
Response: Y

Df Sum Sq Mean Sq F value    Pr(>F)    
X 2 63.212  31.606  119.26 < 2.2e-16 ***
Residuals 147 38.956   0.265                      
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Source: SS df MS

Between SSB 63.212:= k 1− 2= MSB
SSB

k 1−
:= MSB 31.606=

Within SSW 38.956:= n k− 147=
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SS df MS

Between SSB k 1−
SSB

k 1−

Within SSW n k−
SSW

n k−
TOTAL SST

Hypotheses:
H0: αi = αj for specific i & j
H1: αi <> αj for specific i & j  

< Means in treatment classes i & j are the same as grand mean

< Two sided test
Test Statistic:

t
Xbari

Xbarj
−

MSW
1
ni

1
n j

+






⋅

:=

n

< Normalized distance between mean of class i & j 

Distribution of the test Statistic t:
If H0 is true then t ~t(n-k) where: k = number of classes

n = total number of observations

ORIGIN 0≡
t-Test for H0: αi = αj versus H1: αi <> αj 

in One-Way ANOVA with Fixed Effects Model

When the  F-Test for ANOVA rejects the null hypothesis that all αi's = 0, then one usually 
wants to determine specifically which of the αi's <> 0.  This test allow us to do this within the  
context of multiple possible tests in ANOVA. 

Objects 
(Replicates) #1 #2 #3 … #k

1
2
3
…
n n1 n2 n3 nk

means: Xbar.1 Xbar.2 Xbar.3 … Xbar.k

One-Way ANOVA
Treatment Classes:

Data Structure:
k groups with not
necessarily the same
numbers of observations
and different means.

Let index i,j indicate 
the ith column 
(treatment class) and 
jth row (object).

t-Test for Comparison of Means for Specific Class Pairs:
Model: µ is the grand mean of all objects.

αi is the mean of i = µ +αi for each class i.
εi,j is the error term specific to each object i,j

Xi,j = µ + αi + εi,j < where:

Restriction: 
< allows estimation of k parameters. 
    Other restrictions are also possible:

i

ni αi⋅∑ 0:=

i

ni αi⋅∑ 0:=

i

αi∑ 0:=

i

αi∑ 0:= or αk 0:=k < See Rosner p. 558

Assumptions: 

εij are a random sample ~ N(0,σ2) 

One-Way ANOVA Table:

Source: 
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[1] 12 n1 12:= Xbar1
3.949:= < number of objects & mean of X1

> summary(X2)

> length(X2)
  Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  2.700   4.240   4.615   4.472   5.062   5.220

[1] 28 n2 28:= Xbar2
4.472:= < number of objects & mean of X2

> length(X3)

[1] 44 n3 44:=
n n1 n2+ n3+:= n 84=> Y=vital.capacity

> X=factor(group)
> anova(lm(Y~X))

One-Way ANOVA Table:

From R: Analysis of Variance Table
Response: Y
 Df Sum Sq Mean Sq F value  Pr(>F)  
X 2  2.747   1.374  2.4785 0.09021 .
Residuals 81 44.894   0.554                  
--

MSW 0.554:= < MS Residuals

Critical Value of the Test:
α 0.05:= < Probability of Type I error must be explicitly set

C1 inverseΦt
α

2






:= inverseΦt C2 inverseΦt 1
α

2
−





:= inverseΦt
Note degrees of freedom = (n-k)

C1 qt
α

2
n k−,





:= k C2 qt 1
α

2
− n k−,





:= k

Decision Rule:
IF |t| > C, THEN REJECT H0 OTHERWISE  ACCEPT H0

Probability Value:
P = minimum(2 Φt(t),1-2 Φt(t)

P min 2 pt t n k−,( )⋅ 2 1 pt t n k−,( )−( )⋅,[ ]:= k

Example: Vital Capacity dataset by group

R COMMANDS:
> V=read.table("c:/2007BiostatsData/vital.txt")
> summary(V)

      group            age        vital.capacity 
 Min.   :1.000   Min.   :18.00   Min.   :2.700  
 1st Qu.:2.000   1st Qu.:32.00   1st Qu.:3.935  
 Median :3.000   Median :41.00   Median :4.530  
 Mean   :2.381   Mean   :40.55   Mean   :4.392  
 3rd Qu.:3.000   3rd Qu.:48.00   3rd Qu.:4.947  
 Max.   :3.000   Max.   :65.00   Max.   :5.860  

> attach(V)
> X1=vital.capacity[group=="1"]
> X2=vital.capacity[group=="2"]
> X3=vital.capacity[group=="3"]
> summary(X1)

k 3:= < number of classes = groups

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  2.700   2.955   3.865   3.949   4.737   5.520 > length(X1)
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< values match for
    difference in means

  and Probability

ROW GROUP
  1  1
  2  2
  3  3
Using least squares means.
Post Hoc test of VITALCAPACI
---------------------------------------------------------
Using model MSE of 0.554 with 81 df.
Matrix of pairwise mean differences:
                         1           2           3
              1        0.00000
              2        0.52262     0.00000
              3        0.51288    -0.00974     0.00000
Fisher's Least-Significant-Difference Test.
Matrix of pairwise comparison probabilities:
                         1           2           3
              1        1.00000
              2        0.04516     1.00000
              3        0.03747     0.95697     1.00000

Effects coding used for categorical variables in model.
 
Categorical values encountered during processing are:
GROUP (3 levels)
          1,        2,        3
 
Dep Var: VITALCAPACI   N: 84   Multiple R: 0.24014   Squared multiple R: 0.05767
                         Analysis of Variance

 
Source             Sum-of-Squares   df  Mean-Square     F-ratio       P
 
GROUP                    2.74734     2      1.37367     2.47846     0.09021
 
Error                   44.89362    81      0.55424
 

Prototype in SYSTAT:

P 0.045=P min 2 pt t n k−,( )⋅ 2 1 pt t n k−,( )−( )⋅,[ ]:=

Probability Value:
C2 1.9897=C1 1.9897−=t 2.0365−=

IF |t| > C, THEN REJECT H0 OTHERWISE  ACCEPT H0

Decision Rule:

C2 1.9897=C2 qt 1
α

2
− n k−,





:=C1 1.9897−=C1 qt
α

2
n k−,





:=

< Probability of Type I error must be explicitly setα 0.05:=

Critical Value of the Test:

Xbar1
Xbar2

− 0.523−=t 2.0365−=t
Xbar1

Xbar2
−

MSW
1
n1

1
n2

+






⋅

:=

Test Statistic:
< Two sided test
< Means in treatment classes i & j are the same as grand meanH0: αi = αj for specific i & j

H1: αi <> αj for specific i & j  

Hypotheses:
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Xbar2
6.588:=

> Y=Sepal.Length
> X=Species
> anova(lm(Y~X))

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  4.900   6.225   6.500   6.588   6.900   7.900

> summary(X2)
Xbar1

5.006:=

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  4.300   4.800   5.000   5.006   5.200   5.800 

< number of objectsn 100=n n1 n2+:=
> attach(iris)
> X1=Sepal.Length[Species="setosa"]
> X2=Sepal.Length[Species=="virginica"]
> summary(X1)

n2 50:=

n1 50:=

< number of classes = speciesk 3:=

  Sepal.Length  Sepal.Width     Petal.Length    Petal.Width   
 Min.   :4.300   Min.   :2.000   Min.   :1.000   Min.   :0.100  
 1st Qu.:5.100   1st Qu.:2.800   1st Qu.:1.600   1st Qu.:0.300  
 Median :5.800   Median :3.000   Median :4.350   Median :1.300  
 Mean   :5.843   Mean   :3.057   Mean   :3.758   Mean   :1.199  
 3rd Qu.:6.400   3rd Qu.:3.300   3rd Qu.:5.100   3rd Qu.:1.800  
 Max.   :7.900   Max.   :4.400   Max.   :6.900   Max.   :2.500  
       Species  
 setosa    :50  
 versicolor:50  
 virginica :50  

R COMMANDS:
> iris=read.table("c:/2007BiostatsData/iris.txt")
> summary(iris)

Iris dataset
Sepal Length:

Another Example:

< pairwise Probabilities match SYSTAT

        Pairwise comparisons using t tests with pooled SD 
data:  Y and X 

  1     2    
2 0.045 -    
3 0.037 0.957

P value adjustment method: none

^ values match SYSTAT above
> pairwise.t.test(Y,X,p.adj="none")

Analysis of Variance Table

Response: Y
          Df Sum Sq Mean Sq F value  Pr(>F)  
X          2  2.747   1.374  2.4785 0.09021 .
Residuals 81 44.894   0.554                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

COMMANDS:
> V=read.table("c:/2007BiostatsData/vital.txt")
> V
> attach(V)
> Y=vital.capacity
> X=factor(group)
> anova(lm(Y~X))

Prototype in R:
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P 0=P min 2 pt t n k−,( )⋅ 2 1 pt t n k−,( )−( )⋅,[ ]:=

Probability Value:
C2 1.9847=C1 1.9847−=t 15.3657−=

IF |t| > C, THEN REJECT H0 OTHERWISE  ACCEPT H0

Decision Rule:

C2 1.9847=C2 qt 1
α

2
− n k−,





:=C1 1.9847−=C1 qt
α

2
n k−,





:=

< Probability of Type I error must be explicitly setα 0.05:=

Critical Value of the Test:

Xbar1
Xbar2

− 1.582−=t 15.3657−=t
Xbar1

Xbar2
−

MSW
1
n1

1
n2

+






⋅

:=

Test Statistic:
< Two sided test
< Means in treatment classes i & j are the same as grand meanH0: αi = αj for specific i & j

H1: αi <> αj for specific i & j  

Hypotheses:
< MS ResidualsMSW 0.265:=

Analysis of Variance Table
Response: Y

Df Sum Sq Mean Sq F value    Pr(>F)    
X 2 63.212  31.606  119.26 < 2.2e-16 ***
Residuals 147 38.956   0.265                      
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

From R:

One-Way ANOVA Table:
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Results in SYSTAT:

 
Effects coding used for categorical variables in model.
 
Categorical values encountered during processing are:
SPECIES$ (3 levels)
   setosa, versicolor, virginica
3 case(s) deleted due to missing data.
 
Dep Var: SEPALLENGTH   N: 150   Multiple R: 0.78658   Squared multiple R: 0.61871

  
                             Analysis of Variance
Source             Sum-of-Squares   df  Mean-Square     F-ratio       P
SPECIES$                63.21213     2     31.60607   119.26450     0.00000
Error                   38.95620   147      0.26501

Durbin-Watson D Statistic     2.043
First Order Autocorrelation  -0.028
COL/
ROW SPECIES$
  1  setosa
  2  versicolor
  3  virginica
Using least squares means.
Post Hoc test of SEPALLENGTH
--------------------------------------------------------------------
Using model MSE of 0.265 with 147 df.
Matrix of pairwise mean differences:
                         1           2           3
              1        0.00000
              2        0.93000     0.00000
              3        1.58200     0.65200     0.00000 
Fisher's Least-Significant-Difference Test.
Matrix of pairwise comparison probabilities:
                         1           2           3
              1        1.00000
              2        0.00000     1.00000
              3        0.00000     0.00000     1.00000

^ Although agreeing, the probabilities here are simply to small to use as prototype.
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εij are a random sample ~ N(0,σ2) 

Assumptions: 

< restriction for the linear contrast
0

k 1−

i

ci∑
=

0:=

0

k 1−

i

ci∑
=

0:=

< See Rosner p. 558αk 0:=kor

i

αi∑ 0:=

i

αi∑ 0:=
i

ni αi⋅∑ 0:=

i

ni αi⋅∑ 0:=
< allows estimation of k parameters. 
    Other restrictions are also possible:

Restrictions: 

< mean of the Linear ContrastµL

0

k 1−

i

ci αi⋅∑
=

:= α

< definition of Linear ContrastL = c1Xbar1 + c2Xbar2  + c3Xbar3 + ... + ckXbark

< where:

ORIGIN 0≡
t-Test for Linear Contrasts H0: L = 0 versus H1: L <> 0 

in One-Way ANOVA with Fixed Effects Model

When the  F-Test for ANOVA rejects the null hypothesis that all αi's = 0, then one usually wants 
to determine specifically which of the αi's <> 0.  This test is a generalization of the t-test 
comparing pairs of means.  
Here any linear combination L = c1Xbar1 + c2Xbar2  + c3Xbar3 + ... + ckXbark can be tested where 
X1, X2, X3 .. Xk represent samples derived from different populations 1,2, 3 ...k.

Objects 
(Replicates) #1 #2 #3 … #k

1
2
3
…
n n1 n2 n3 nk

means: Xbar.1 Xbar.2 Xbar.3 … Xbar.k

One-Way ANOVA
Treatment Classes:

Data Structure:
k groups with not
necessarily the same
numbers of observations
and different means.

Let index i,j indicate 
the ith column 
(treatment class) and 
jth row (object).

Linear Combination:

L

0

k 1−

i

ci Xbari
⋅∑

=

:= Xbar < L = c1Xbar1 + c2Xbar2  + c3Xbar3 + ... + ckXbark

With Further Condition as Linear Contrast:

0

k 1−

i

ci∑
=

0:=

0

k 1−

i

ci∑
=

0:= < coefficients of the Linear combination must add to zero

t-Test for Linear Contrasts H0: L = 0 versus H1: L <> 0:
Model: µ is the grand mean of all objects.

αi is the mean of i = µ +αi for each class i.
εi,j is the error term specific to each object i,j

Xi,j = µ + αi + εi,j 
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C2 inverseΦt 1
α

2
−





:= inverseΦt

Note degrees of freedom = (n-k)
C1 qt

α

2
n k−,





:= k C2 qt 1
α

2
− n k−,





:= k

Decision Rule:
IF |t| > C, THEN REJECT H0 OTHERWISE  ACCEPT H0

Probability Value:
P = minimum(2 Φt(t),1-2 Φt(t)

P min 2 pt t n k−,( )⋅ 2 1 pt t n k−,( )−( )⋅,[ ]:= k

Example: Rosner Pulmonary Disease Example 12.10 p. 572

MSW 0.636:= < given from ANOVA Table 12.3 p. 564

< means & number of observations
    given from summary
     Table 12.1 p. 558

Xbar

3.78

3.30

3.32

3.23

2.73

2.59



















:= n

200

200

50

200

200

200



















:= c

1.0

0

0

0.1−

0.7−

0.2−



















:=

Linear contrast vector
             of coefficients >

k 6:= < number of classes

N n∑:= N 1050= < total number of observationsThe Linear Contrast:

L cT Xbar⋅:= < matrix algebra multiplication of vectors L 1.028( )= < confirmed p. 572

One-Way ANOVA Table:
Source: SS df MS

Between SSB k 1−
SSB

k 1−

Within SSW n k−
SSW

n k−
TOTAL SST

Hypotheses:
H0: µL = 0 
H1: µL <> 0

< Means of Linear Contrast is zero

< Two sided test
Test Statistic:

t
L

MSW

i

ci( )2
ni

∑⋅
:=

L < Linear Contrast normalized by standard Error

Distribution of the test Statistic t:
If H0 is true then t ~t(n-k) where: k = number of classes

n = total number of observations

Critical Value of the Test:
α 0.05:= < Probability of Type I error must be explicitly set

C1 inverseΦt
α

2






:= inverseΦt
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N k− 1044= < confirmed p. 572P = minimum(2 Φt(t),1-2 Φt(t)

P min 2 pt t N k−,( )⋅ 2 1 pt t N k−,( )−( )⋅,[ ]:= P 0= < confirmed p. 572

Another Example: Vital Capacity dataset by group

R COMMANDS:
> V=read.table("c:/2007BiostatsData/vital.txt")
> summary(V)

      group            age        vital.capacity 
 Min.   :1.000   Min.   :18.00   Min.   :2.700  
 1st Qu.:2.000   1st Qu.:32.00   1st Qu.:3.935  
 Median :3.000   Median :41.00   Median :4.530  
 Mean   :2.381   Mean   :40.55   Mean   :4.392  
 3rd Qu.:3.000   3rd Qu.:48.00   3rd Qu.:4.947  
 Max.   :3.000   Max.   :65.00   Max.   :5.860  

> attach(V)
> X1=vital.capacity[group=="1"]
> X2=vital.capacity[group=="2"]
> X3=vital.capacity[group=="3"]
> summary(X1) k 3:= < number of classes = groups

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  2.700   2.955   3.865   3.949   4.737   5.520 > length(X1)

[1] 12 nn0 12:= Xnbar0
3.949:= < number of objects & mean of X1

> summary(X2)

> length(X2)
  Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  2.700   4.240   4.615   4.472   5.062   5.220

[1] 28 nn1 28:= Xnbar1
4.472:= < number of objects & mean of X2

Standard Error of the Linear Contrast:
i 0 k 1−..:=

MSW

i

ci( )2
ni

∑⋅ 0.07= < confirmed p. 572

Hypotheses:
H0: µL = 0 
H1: µL <> 0

< Means of Linear Contrast is zero

< Two sided test
Test Statistic:

t
L

MSW

i

ci( )2
ni

∑⋅
:= t 14.6899( )= < confirmed p. 572

Critical Value of the Test:
α 0.05:= < Probability of Type I error must be explicitly set

C1 qt
α

2
N k−,





:= C2 qt 1
α

2
− N k−,





:=

C1 1.9622−= C2 1.9622=

Decision Rule:
IF |t| > C, THEN REJECT H0 OTHERWISE  ACCEPT H0

t 14.6899( )= C1 1.9622−= C2 1.9622=

Probability Value:
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< matrix algebra multiplication of vectors L 0.523−( )=

Standard Error of the Linear Contrast:
i 0 k 1−..:= Standard Error of two-sample t-test in Biostatistics 49:

MSW

i

ci( )2
nni

∑⋅ 0.2568= MSW
1

nn0

1
nn1

+






⋅ 0.2568=

^ same resultHypotheses:
H0: µL = 0 
H1: µL <> 0 from two-sample t-test:

Test Statistic:
t

Xnbar0
Xnbar1

−

MSW
1

nn0

1
nn1

+






⋅

:=t
L

MSW

i

ci( )2
nni

∑⋅
:= t 2.0365−( )=t 2.0365−( )=

^ same result

Critical Value of the Test:
α 0.05:= < Probability of Type I error must be explicitly set

C1 qt
α

2
N k−,





:= C2 qt 1
α

2
− N k−,





:=
< different again from the 
    two-sample case.C1 1.9897−= C2 1.9897=

> summary(X3)

> length(X3)

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  3.030   4.010   4.530   4.462   4.902   5.860 

[1] 44 nn2 44:= Xnbar2
4.462:= < number of objects & mean of X3

> Y=vital.capacity
> X=factor(group)
> anova(lm(Y~X))

N nn∑:= N 84= nn

12

28

44









=

One-Way ANOVA Table:
From R: Analysis of Variance Table

Response: Y
 Df Sum Sq Mean Sq F value  Pr(>F)  
X 2  2.747   1.374  2.4785 0.09021 .
Residuals 81 44.894   0.554                  
--
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

MSW 0.554:= < MS Residuals

< means & number of observations
    given from summary
     Table 12.1 p. 558

Xnbar

3.949

4.472

4.462









= nn

12

28

44









=

Linear contrast vector
             of coefficients >

c

1

1−

0









:=k 3:= < number of classes

N 84= < total number of observations

The Linear Contrast:
L cT Xnbar⋅:=
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Decision Rule:
IF |t| > C, THEN REJECT H0 OTHERWISE  ACCEPT H0

t 2.0365−( )= C1 1.9897−= C2 1.9897=

Probability Value:
P = minimum(2 Φt(t),1-2 Φt(t)

P min 2 pt t N k−,( )⋅ 2 1 pt t N k−,( )−( )⋅,[ ]:= P 0.045=

Prototype in SYSTAT:

Use GLM in the Statistics Menu, Estimate Model and under Category specify variable "group" 
as a categorical variable.  The Run estimate.  Now go back to GLM Hypothesis Test, specify 
"group" in the Effects box, and select the Contrast Button.  In the pop-up box, write the 
contrast vector as cT above. Run Hypothesis.

Effects coding used for categorical variables in model.
 
Categorical values encountered during processing are:
GROUP (3 levels)
          1,        2,        3
 
Dep Var: VITAL   N: 84   Multiple R: 0.24014   Squared multiple R: 0.05767
 
 
                             Analysis of Variance
 
Source             Sum-of-Squares   df  Mean-Square     F-ratio       P
 
GROUP                    2.74734     2      1.37367     2.47846     0.09021
 
Error                   44.89362    81      0.55424

Durbin-Watson D Statistic     1.692
First Order Autocorrelation   0.126

Test for effect called:     GROUP
 
A Matrix
 
                         1           2           3
                       0.00000     1.00000    -1.00000
Test of Hypothesis
 
       Source       SS        df       MS              F              P
 
  Hypothesis      2.29430     1      2.29430        4.13952        0.04516
  Error          44.89362    81      0.55424
 

^ equivalent Probability (P) reported here on the basis of an equivalent F test.



Assignment for Week 13 and 20 point Quiz 

For your final assignment of this term – and a Quiz – Using a small data set of your own, I 
want you to do the following using hand calculations (as calculations like this might be on 
Exam 3): 

1.  Biostatistics 39 - Perform “simple” linear regression: 

 a. show calculations for: Lxx, Lyy, and Lxy. 

b. calculate α and β. 

c. calculate regression predictions (Yhat) and residuals. 

2. Biostatistics 40 – Calculate the ANOVA for Regression standard table: 

 a. show calculations for Sum of Squares: SS Total, SS Regression & SS error. 

 b. Show the completed ANOVA chart with degrees of freedom & Mean Squares. 

3. Biostatistics 40 – Perform the omnibus F test for the Regression  

Show your work including assumptions, model, hypotheses, decision rule, 
probability values & result. 

4. Biostatistics 41 – Calculate the following confidence/prediction intervals for your 
“simple” regression: 

a. Confidence interval for regression slope. 

b. Confidence interval for your regression predictions. 

c. Prediction interval for new observations based on your regression. 

5. Biostatistics 42 – Calculate the following for your “simple” regression: 

a. coefficient of correlation. 

b. coefficient of determination. 

6. Biostatistics 42 – Perform the following tests based on your “simple” regression:  

a. Test for a specified value of regression slope (β0). 

b. Test for presence of correlation (ρ). 

7. Biostatistics 43 – Perform a multiple regression using R based on a dataset that you 
compose.  Extract and report the ANOVA table from R’s results.   

8. Biostatistics 44 – Using the output from R: 

a. Perform the omnibus F test for the Regression – show all work. 

b. Test each slope parameter (β) separately  – show your work including calculation 
of the test statistic. 

9. Biostatistics 47 – Perform a One-Way ANOVA for fixed effects.  Show calculations for:  

a. Sums of Squares & Mean Squares 

b. Show your ANOVA standard table 



10. Biostatistics 48 – Perform the omnibus F test for the One-Way ANOVA – show all work. 

11. Biostatistics 49 – Perform the test for equivalence of means between specific pairs of 
groups in One-Way ANOVA – show your work. 

12. Biostatistics 50 – Perform a test for a chosen Linear Contrast in One-Way ANOVA – 
show all work. 

13. Biostatistics 51 – Perform a Two-Way ANOVA with fixed effects: 

a. Set up the ANOVA standard table – show your work. 

14. Biostatistics 51 – Perform the omnibus F tests for the Two-Way ANOVA – show all 
work. 

15. Biostatistics 52 – Perform an example Kruskal-Wallis test.  Show all work. 

16. Biostatistics 53 – Perform a specific Fishers LSD comparison between two means in a 
One-Way ANOVA.  Show all work in the test and calculate the associated 
confidence interval. 

17. Biostatistics 54 – Perform the omnibus F tests for Repeated Measures One-Way 
ANOVA – show all work. 

18. Biostatistics 55 – Perform an example Kruskal-Wallis test.  Show all work. 
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for all i & j

Assumptions: 
− εijk are a random sample ~ N(0,σ2)
− variance is homogeneous across cells  

Data in Each Cell:

Yi j, k,
< k Observations in each cell defined by rows i, & columns j 

Number & Means:
N < Total number of observations found by multiplying k by the number of cells

Ybarij.
< Cell means - averages of observations within a cell

Ybari.
< Row means - averages for each row

Ybar. j
< Column means - averages for each column

Ybar..
< Grand mean - average of all observations

ORIGIN 0≡
Two-Way ANOVA - Equal Sample Sizes

The ANOVA approach analyzes means from multiple populations with membership in each 
sample determined by discrete values of a classification variable.  The Two-Way (and higher) 
ANOVA stategy extends the system of classifications to two (or more) variables.  Here we look at 
analysis of fully randomized ballanced designs in which numbers of observatios in each class (or 
block) of data are all the same. 

#1 #2 #3 … #j
#1 n n n … n
#2 n n n … n
#3 n n n … n
… … … … … …
#i n n n … n

Treatment Classes of Variable C:

Each cell consists of n replicates with means Ybarij

Two-Way ANOVATreatment 
Classes of 

Variable R:

Data Structure:
Data are structured as an 
R X C Contingency Table 
with cells representing 
simultaneous classification 
by two variables.  Numeric 
values Yij for n objects are 
placed in each cell 

Let index i,j indicate the 
ith row (treatment classes 
of Variable R) and jth 
column (treatment classes 
of Variable C)

Also let: Ybari. = mean over all columns for row i.
Ybarj. = mean over all rows for column j.
Ybar.. = overall mean.

Model: 
Yi,j = µ + αi + βj + γij+ εijk where:

µ is a constant = grand mean of all objects.
αi is effect coefficient for classes i in Variable R.
βj is effect coefficient for classes j in Variable C.
γij is interaction coefficient for classes i,j between Variables R and C.
εijk is the error term specific to each object i,j,kRestrictions: 

i

αi∑ 0:=

i

αi∑ 0:=

j

β j∑ 0:=

j

β j∑ 0:=

i

γij∑ 0:=

i

γij∑ 0:=

j

γij∑ 0:=

j

γij∑ 0:=



2007 Biostatistics 51 Two-Way ANOVA 2

Number & Means:
n length a( ):= n 5= < number in each cell Z

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

16.5

18.4

12.7

14

12.8

14.5

11

10.8

14.3

10

39.1

26.2

21.3

35.8

40.2

32

23.8

28.8

25

29.3

0

0

0

0

0

1

1

1

1

1

0

0

0

0

0

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1
























































=

N 4 n⋅:= N 20= < total number of observations

YBbar
mean a( )

mean c( )

mean b( )

mean d( )







:= YBbar
14.88

32.52

12.12

27.78







= < cell means (Ybarij.)

i 0 1..:= j 0 1..:= k 0 n 1−..:=

YRbari
1
2

j

YBbari j,∑⋅:= YRbar
13.5

30.15







= < row means (Ybari..)

YCbarj

1
2

i

YBbari j,∑⋅:= YCbar
23.7

19.95







= < column means (Ybar.j.)

Y Z 1〈 〉
:= Ybar mean Y( ):= Ybar 21.825= < Grand Mean (Ybar...)

Sums of Squares:
I 2:= < total number of rows

J 2:= < total number of columns

K 5:= < total number of replicates = n

SSRows J K⋅

i

Ybari.
Ybar..

−( )2∑⋅:=
..

< Sum of Squares for Rows

SSCols I K⋅

j

Ybar. j
Ybar..

−( )2∑⋅:=
.

< Sum of Squares for Columns

SSInt K

j i

Ybarij
Ybari.

− Ybar. j
− Ybar..

+( )2∑∑






⋅:=
.

< Sum of Squares for Interactions

SSE

k j i

Yijk Ybarij
−( )2∑∑∑:=

ij
< Sum of Squares for Error (Within)

SST

0

N 1−

k

Yijk Ybar..
−( )2∑

=

:=
..

< Total Sum of Squares

Example: Calcium Concentration measured with two factors: Sex & Hormone Treatment:

Z READPRN "c:/2007BiostatsData/ZarExample12.1a.txt"( ):=

Data in Each Cell:

a

16.5

18.4

12.7

14.0

12.8

















:= b

14.5

11.0

10.8

14.3

10.0

















:= c

39.1

26.2

21.3

35.8

40.2

















:= d

32.0

23.8

28.8

25.0

29.3

















:=
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MSR 1386.1125=

Columns SSC 70.3125= J 1− 1= MSC
SSC

J 1−
:= MSC 70.3125=

Interactions SSI 4.9005= I 1−( ) J 1−( )⋅ 1= MSI
SSI

I 1−( ) J 1−( )⋅
:= MSI 4.9005=

Within SSE 366.372= I J⋅ K 1−( )⋅ 16= MSE
SSE

I J⋅ K 1−( )⋅
:= MSE 22.8983=

TOTAL SST 1827.6975= I J⋅ K⋅ 1− 19= MST
SST

I J⋅ K⋅ 1−
:= MST 96.1946=

COMMANDS:
> Z=read.table("c:/2007BiostatsData/ZarExample12.1.txt")
> Z
> C=factor(Z$Sex)
> R=factor(Z$HormTR)
> Y=Z$CaConc
> anova(lm(Y~R*C))

Prototype in R:

< Note that Z$Sex and Z$HormTR 
are already factors here, so the 
factor() function has no effect, 
but is a safe approach anyway.

Analysis of Variance Table

Response: Y
Df Sum Sq Mean Sq F value  Pr(>F)    

R 1 1386.11 1386.11 60.5336 7.943e-07 ***
C 1   70.31   70.31  3.0706   0.09886 .  
R:C 1    4.90    4.90  0.2140   0.64987    
Residuals 16  366.37   22.90                      
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Sums of Squares:
I 2:= < total number of rows

J 2:= < total number of columns

K 5:= < total number of replicates = n

SSR J K⋅

i

YRbari
Ybar−( )2∑⋅:= < Sum of Squares for Rows

SSC I K⋅

j

YCbarj
Ybar−( )2∑⋅:= < Sum of Squares for Columns

SSI K

j i

YBbari j,
YRbari

− YCbarj
− Ybar+( )2∑∑







⋅:= < Sum of Squares for Interactions

SSE

k

ak YBbar0 0,
−( )2∑

k

bk YBbar0 1,
−( )2∑+

k

ck YBbar1 0,
−( )2∑+

k

dk YBbar1 1,
−( )2∑+:=

^ Sum of Squares Error (Within)
SST

0

N 1−

k

Yk Ybar−( )2∑
=

:= < Total Sum of Squares

Two-Way ANOVA Table:
Source: SS df MS

Rows SSR 1386.1125= I 1− 1= MSR
SSR

I 1−
:=
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Critical Value of the Test:
α 0.05:= < Probability of Type I error must be explicitly set

CV inverseΦF 1 α−( ):= inverseΦF CV qF 1 α− I 1−( ), I J⋅ K 1−( )⋅, := < Note: df = I-1, IJ(K-1)

Decision Rule:
IF F1 > C, THEN REJECT H0 OTHERWISE  ACCEPT H0

Probability Value:

P1 = 1- ΦF(F1) P1 1 pF F1 I 1−, I J⋅ K 1−( )⋅, −:=

F-Test for H0: All βj = 0 

Hypotheses:
H0: βj = 0 for all j
H1: At least one βj <> 0  

< All treatment class deviations from the grand mean are 0 

< Two sided test

Test Statistic:

F2
MSC

MSE
:= < Ratio of "column" versus "within" Mean Squares

F-Tests in Two-Way ANOVA with Fixed Effects Model:

Model: 
Yi,j = µ + αi + βj + γij+ εijk where:

µ is a constant = grand mean of all objects.
αi is effect coefficient for classes i in Variable R.
βj is effect coefficient for classes j in Variable C.
γij is interaction coefficient for classes i,j between Variables R and C.
εijk is the error term specific to each object i,j,kRestrictions: 

i

αi∑ 0:=

i

αi∑ 0:=

j

β j∑ 0:=

j

β j∑ 0:=

i

γij∑ 0:=

i

γij∑ 0:=

j

γij∑ 0:=

j

γij∑ 0:=

Assumptions: 
− εij are a random sample ~ N(0,σ2)
− variance is homogeneous across cells  

F-Test for H0: All αi = 0 

Hypotheses:
H0: αi = 0 for all i
H1: At least one αi <> 0  

< All treatment class deviations from the grand mean are 0 

< Two sided test

Test Statistic:

F1
MSR

MSE
:= < Ratio of "row" versus "within" Mean Squares
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CV inverseΦF 1 α−( ):= inverseΦF CV qF 1 α− I 1−( ) J 1−( )⋅, I J⋅ K 1−( )⋅, :=

Decision Rule: ^ Note: df = (I-1)(J-1), IJ(K-1)
IF F3 > C, THEN REJECT H0 OTHERWISE  ACCEPT H0

Probability Value:

P3 = 1- ΦF(F3) P3 1 pF F3 I 1−( ) J 1−( )⋅, I J⋅ K 1−( )⋅, −:=

Example: Continuing the Above ANOVA analysis on Sex and Hormone Treatment

F-Tests in Two-Way ANOVA with Fixed Effects Model:
Model: 

Yi,j = µ + αi + βj + γij+ εijk where:

µ is a constant = grand mean of all objects.
αi is effect coefficient for classes i in Variable R.
βj is effect coefficient for classes j in Variable C.
γij is interaction coefficient for classes i,j between Variables R and C.
εijk is the error term specific to each object i,j,kRestrictions: 

i

αi∑ 0:=

i

αi∑ 0:=

j

β j∑ 0:=

j

β j∑ 0:=

i

γij∑ 0:=

i

γij∑ 0:=

j

γij∑ 0:=

j

γij∑ 0:=

Assumptions: 
− εij are a random sample ~ N(0,σ2)
− variance is homogeneous across cells  

Critical Value of the Test:
α 0.05:= < Probability of Type I error must be explicitly set

CV inverseΦF 1 α−( ):= inverseΦF CV qF 1 α− J 1−( ), I J⋅ K 1−( )⋅, := < Note: df = J-1, IJ(K-1)

Decision Rule:
IF F2 > C, THEN REJECT H0 OTHERWISE  ACCEPT H0

Probability Value:

P2 = 1- ΦF(F2) P2 1 pF F2 J 1−, I J⋅ K 1−( )⋅, −:=

F-Test for H0: All γij = 0 

Hypotheses:
H0: γij = 0 for all ij
H1: At least one γij <> 0  

< All interactions between the two variables is 0 

< Two sided test

Test Statistic:

F3
MSI

MSE
:= < Ratio of "interactions" versus "within" Mean Squares

Critical Value of the Test:
α 0.05:= < Probability of Type I error must be explicitly set



2007 Biostatistics 51 Two-Way ANOVA 6

< All treatment class deviations from the grand mean are 0 

< Two sided test

Test Statistic:

F2
MSC

MSE
:= F2 3.0706=

Critical Value of the Test:
α 0.05:= < Probability of Type I error must be explicitly set

CV qF 1 α− J 1−( ), I J⋅ K 1−( )⋅, := CV 4.494=

Decision Rule:
IF F2 > C, THEN REJECT H0 OTHERWISE  ACCEPT H0

F2 3.0706= CV 4.494=

Probability Value:

P2 1 pF F2 J 1−, I J⋅ K 1−( )⋅, −:= P2 0.0989=

F-Test for H0: All γi = 0 

Hypotheses:
H0: γij = 0 for all ij
H1: At least one γij <> 0  

< All interactions between the two variables is 0 

< Two sided test

F-Test for H0: All αi = 0 

Hypotheses:
H0: αi = 0 for all i
H1: At least one αi <> 0  

< All treatment class deviations from the grand mean are 0 

< Two sided test

Test Statistic:

F1
MSR

MSE
:= F1 60.5336=

Critical Value of the Test:
α 0.05:= < Probability of Type I error must be explicitly set

CV qF 1 α− I 1−( ), I J⋅ K 1−( )⋅, := CV 4.494=

Decision Rule:
IF F1 > C, THEN REJECT H0 OTHERWISE  ACCEPT H0

F1 60.5336= CV 4.494=

Probability Value:

P1 1 pF F1 I 1−, I J⋅ K 1−( )⋅, −:= P1 7.9431 10 7−
×=

F-Test for H0: All βj = 0 

Hypotheses:
H0: βj = 0 for all j
H1: At least one βj <> 0  
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^ these values match

Analysis of Variance Table

Response: Y
Df Sum Sq Mean Sq F value  Pr(>F)    

R 1 1386.11 1386.11 60.5336 7.943e-07 ***
C 1   70.31   70.31  3.0706   0.09886 .  
R:C 1    4.90    4.90  0.2140   0.64987    
Residuals 16  366.37   22.90                      
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

ANOVA Table from R above:Prototype in R:

P3 0.6499=P3 1 pF F3 I 1−( ) J 1−( )⋅, I J⋅ K 1−( )⋅, −:=

Probability Value:

CV 4.494=F3 0.214=

IF F3 > C, THEN REJECT H0 OTHERWISE  ACCEPT H0

Decision Rule:

CV 4.494=CV qF 1 α− I 1−( ) J 1−( )⋅, I J⋅ K 1−( )⋅, :=

< Probability of Type I error must be explicitly setα 0.05:=

Critical Value of the Test:

< Ratio of "interactions" versus "within" Mean SquaresF3 0.214=F3
MSI

MSE
:=

Test Statistic:
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< Corrected Test StatisticH
Hs

Ω
:=

Ω

Ω 1
1

g

j

t j( )3 t j−



∑

=

N3 N−
−:=

t

correction factor >

< t represent the number of
    observations that are tied
    in groups 1 to g

OTHERWISE:

< no correction factor...H Hs:= HsIF no ties, THEN:

Hs
12

N N 1+( )⋅
i

Ri( )2
ni

∑⋅ 3 N 1+( )⋅−:=
n

< where Ri are the Rank sums
   for each treatment class i

Test Statistic:

- Pool the data over all treatment classes - Total sample size N = Σni

- Assign Data to Ranks.  In the case of ties, t observations in a rank are assigned the
   appropriate average rank.
- Compute the Rank Sum (Ri) for each treatment class i.

Rank Data and Sum:
Normal Approximation:

- IF ni 5≥  THEN Normal Approximation Applies
   OTHERWISE use Special Tables e.g. Rosner Table 15 p. 844  

Criterion for Normal Approximation:
< Two Sided Test
< No population differences in treatmentH0: ∆= 0

H1: ∆ <> 0 

Hypotheses:

- Observations in each class(block) are a random sample.
- Observations in each block are independent of observations in other class.
- Underlying distribution of observations in each cell are continuous.
- Measurement scale is at least ordinal.

Assumptions:

Let index i,j indicate 
the ith column 
(treatment class) and 
jth row (object).

k groups with not
necessarily the same
numbers of observations
and different means.

Data Structure:

Objects 
(Replicates) #1 #2 #3 … #k

1
2
3
…
n n1 n2 n3 nk

means: Xbar.1 Xbar.2 Xbar.3 … Xbar.k

One-Way ANOVA
Treatment Classes:

The Kruskal-Wallis is a non-parametric analog to the One-Way ANOVA F-Test of means.  It 
is useful when the k samples appear not to come from underlying Normal Distributions, or 
when variance in the different samples are of greatly different magnitudes 
(non-homogeneous).  As with other rank-based tests, it does not have as much power as the 
fully parametric tests, but nevertheless enjoys wide use.  Note that when the number of 
samples k=2, this test is identical to the Mann-Whitney Test.  

Kruskal-Wallis Test
ORIGIN 0≡
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n3 length Pond3( ):= n3 8=

N n∑:= N 31= < total observations

Assumptions: 9999 = missing datapont ^

- Observations in each class(block) are a random sample.
- Observations in each block are independent of observations in other class.
- Underlying distribution of observations in each cell are continuous.
- Measurement scale is at least ordinal.

Hypotheses:
H0: ∆= 0
H1: ∆ <> 0 

< No population differences in treatment

< Two Sided Test
Criterion for Normal Approximation:

- IF ni 5≥  THEN Normal Approximation Applies
   OTHERWISE use Special Tables  

n

8

8

7

8












= < so qualifies for
   Normal Approximation

Normal Approximation:
Rank Data and Sum:

Rank of each observation:

Ranks

1

2

3.5

3.5

8

10

10

17

6

10

13.5

13.5

20

20

23.5

26

13.5

16

18

20

23.5

26

28

9999

6

6

13.5

22

26

29

30

31

























:= j 0 n2 1−..:=R0 Ranks 0〈 〉∑:=

R2
j

Ranks j 2,∑:=
R1 Ranks 1〈 〉∑:=

R3 Ranks 3〈 〉∑:=

R

55

132.5

145

163.5












= < Rank Sums for each Pond (Treatment class)

Critical Value of the Test:
α 0.05:= < Probability of Type I error must be explicitly set

C inverseΦχ2 1 α−( ):= inverseΦχ2 C qchisq 1 α− k 1−,( ):= k < Note: df = (k-1)

Decision Rule:
IF H > C THEN REJECT H0 OTHERWISE  ACCEPT H0

Probability Value:
P 1 Φχ2 H( )−( ):= H P 1 pchisq Hk 1−( )−( ):= H

Example: Zar Example 10.11 p. 199: pH was measured multiple times (ni's) in Four ponds 
(treatment classes):

Z READPRN "c:/2007BiostatsData/ZarExample10.11.txt"( ):=k 4:= < treatment classes

Pond0 Z 0〈 〉:= n0 length Pond0( ):= n0 8=

Pond1 Z 1〈 〉:= n1 length Pond1( ):= n1 8=

Pond2 Z 2〈 〉:= n2 length Pond2( ) 1−:= n2 7= Z

7.68

7.69

7.7

7.7

7.72

7.73

7.73

7.76

7.71

7.73

7.74

7.74

7.78

7.78

7.8

7.81

7.74

7.75

7.77

7.78

7.8

7.81

7.84

9999

7.71

7.71

7.74

7.79

7.81

7.85

7.87

7.91

























=

Pond3 Z 3〈 〉:=
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H 11.9435= < corrected test statistic
< 3

Critical Value of the Test:
α 0.05:= < Probability of Type I error must be explicitly set ^ 7 tied groups

C qchisq 1 α− k 1−,( ):= C 7.8147=

Decision Rule:
IF H > C THEN REJECT H0 OTHERWISE  ACCEPT H0

H 11.9435= C 7.8147=

Probability Value:
P 1 pchisq H k 1−,( )−( ):= P 0.0076=

^ all values confirmed by Zar p. 199 
Prototype in R:

COMMANDS:
> Z=read.table("c:/2007BiostatsData/ZarExample10.11a.txt",na.strings="NA")
> kruskal.test(Z)

        Kruskal-Wallis rank sum test

data:  ZZ 
Kruskal-Wallis chi-squared = 11.9435, df = 3, p-value = 0.007579   < Values match

Tied groups: t =

< 2

t

2

3

3

4

3

2

3






















:= g length t( ):=
< 3

g 7=

< 3
Test Statistic:

i 0 k 1−..:=

Hs
12

N N 1+( )⋅
i

Ri( )2
ni

∑⋅ 3 N 1+( )⋅−:= < no correction factor...
< 4

Hs 11.8761=
sort stack Z 0〈 〉 Z 1〈 〉, Z 2〈 〉, Z 3〈 〉,( )( )

7.68

7.69

7.7

7.7

7.71

7.71

7.71

7.72

7.73

7.73

7.73

7.74

7.74

7.74

7.74

7.75

7.76

7.77

7.78

7.78

7.78

7.79

7.8

7.8

7.81

7.81

7.81

7.84

7.85

7.87

7.91

9999



























































































=
IF no ties, THEN: H Hs:=

OTHERWISE:

< 3
H

Hs

1
j

t j( )3 t j−



∑

N3 N−
−

:=

< 2
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k 1−
SSB

k 1−

Within SSW n k−
SSW

n k−
TOTAL SST

Hypotheses:
H0: αi = αj for specific i & j
H1: αi <> αj for specific i & j  

< Means in treatment classes i & j are the same as grand mean

< Two sided test
Test Statistic:

t
Xbari

Xbarj
−

MSW
1
ni

1
n j

+






⋅

:=

n

< Normalized distance between mean of class i & j 

Critical Value of the Test:
α 0.05:= < Probability of Type I error must be explicitly set

C1 inverseΦt
α

2






:= inverseΦt C2 inverseΦt 1
α

2
−





:= inverseΦt

Note degrees of freedom = (n-k)
C1 qt

α

2
n k−,





:= k C2 qt 1
α

2
− n k−,





:= k

ORIGIN 0≡

Single and Multiple Simultaneous Confidence Intervals in ANOVA Tests

Similar to previous statistical t-Tests, Confidence Intervals may be specified to indicate values 
of the test statistic in comparison with Critical Values (derived from the inverse cumulative 
probability t function qt) over which H0 will not be rejected, or equivalently, values of 
probability greater than a previously specified α.  In using ANOVA, however, an important 
complication arises.  In two population t-Tests, only a single comparison between population 
means (µ1 with µ2) is made.  In ANOVA, greater than two populations is standard and multiple 
pairwise or linear contrast comparisons (for instance µ1 with µ2 and µ1 with µ3 and µ2 with µ3 
for three populations) are often of interest.  In most cases, these comparisions are made 
simultaneously, and are therefore dependent upon the same sample data.  The existence of 
multple dependent probabilities derived from each comparison implies that the joint probabity 
of a family of comparisons together is greater than each one separately.  Thus, if one specifies  
α = 0.05 for one one interval (or test) then familywise α for all together is always greater (i.e., 
less significant).         

Multiple t-Test / Fisher's LSD Test for Specific Treatment Pairs:

Model: µ is the grand mean of all objects.
αi is the mean of i = µ +αi for each class i.
εi,j is the error term specific to each object i,j

Xi,j = µ + αi + εi,j < where:

Restriction: 
< allows estimation of k parameters. 
    Other restrictions are also possible:

i

ni αi⋅∑ 0:=

i

ni αi⋅∑ 0:=

i

αi∑ 0:=

i

αi∑ 0:= or αk 0:=k < See Rosner p. 558

Assumptions: 
εij are a homogeneous random sample ~ N(0,σ2) 

One-Way ANOVA Table:
Source: SS df MS

Between SSB
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n2 28:= Xbar2
4.472:= < number of objects & mean of X2

> summary(X3)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  3.030   4.010   4.530   4.462   4.902   5.860 > length(X3)

[1] 44 n3 44:= Xbar3
4.462:= < number of objects & mean of X3

> Y=vital.capacity
> X=factor(group)
> anova(lm(Y~X))

n n1 n2+ n3+:= n 84=

One-Way ANOVA Table:

From R: Analysis of Variance Table
Response: Y
 Df Sum Sq Mean Sq F value  Pr(>F)  
X 2  2.747   1.374  2.4785 0.09021 .
Residuals 81 44.894   0.554                  
--

MSW 0.554:= < MS Residuals

Hypotheses:
H0: αi = αj for specific i & j
H1: αi <> αj for specific i & j  

< Means in treatment classes i & j are the same as grand mean

< Two sided test

Decision Rule:
IF |t| > C, THEN REJECT H0 OTHERWISE  ACCEPT H0

Probability Value:
P = minimum(2 Φt(t),1-2 Φt(t)

P min 2 pt t n k−,( )⋅ 2 1 pt t n k−,( )−( )⋅,[ ]:= k

Confidence Interval:

CI Xbari
Xbarj

− C1 MSW
1
ni

1
nj

+






⋅⋅+ Xbari
Xbarj

− C2 MSW
1
ni

1
nj

+






⋅⋅+








:= C2

^ Note that C1 & C2 are explicitly evaluated above,
    so added to the difference in sample means here.

Example: Vital Capacity dataset by group

R COMMANDS:
> V=read.table("c:/2007BiostatsData/vital.txt")
> attach(V)
> X1=vital.capacity[group=="1"]
> X2=vital.capacity[group=="2"]
> X3=vital.capacity[group=="3"]
> summary(X1)

k 3:= < number of classes = groups

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  2.700   2.955   3.865   3.949   4.737   5.520 > length(X1)

[1] 12 n1 12:= Xbar1
3.949:= < number of objects & mean of X1

> summary(X2)

> length(X2)

  Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  2.700   4.240   4.615   4.472   5.062   5.220

[1] 28
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P 0.045=

Confidence Interval:

CI12 Xbar1
Xbar2

−( ) C1 MSW
1
n1

1
n2

+






⋅⋅+ Xbar1
Xbar2

−( ) C2 MSW
1
n1

1
n2

+






⋅⋅+








:=

CI12 1.034− 0.012−( )=

Between populations 1 & 3:

Test Statistic:

t
Xbar1

Xbar3
−

MSW
1
n1

1
n3

+






⋅

:= t 2.1163−= Xbar1
Xbar3

− 0.513−=

Decision Rule:
IF |t| > C, THEN REJECT H0 OTHERWISE  ACCEPT H0

t 2.1163−= C1 1.9897−= C2 1.9897=

Probability Value:
P min 2 pt t n k−,( )⋅ 2 1 pt t n k−,( )−( )⋅,[ ]:= P 0.0374=

Confidence Interval:

CI13 Xbar1
Xbar3

−( ) C1 MSW
1
n1

1
n3

+






⋅⋅+ Xbar1
Xbar3

−( ) C2 MSW
1
n1

1
n3

+






⋅⋅+








:=

CI13 0.9953− 0.0307−( )=

Critical Value of the Test:
α 0.05:= < Probability of Type I error must be explicitly set

C1 qt
α

2
n k−,





:= C1 1.9897−= C2 qt 1
α

2
− n k−,





:= C2 1.9897=

Single Comparisons:

Between populations 1 & 2:

Test Statistic:

t
Xbar1

Xbar2
−

MSW
1
n1

1
n2

+






⋅

:= t 2.0365−= Xbar1
Xbar2

− 0.523−=

Decision Rule:
IF |t| > C, THEN REJECT H0 OTHERWISE  ACCEPT H0

t 2.0365−= C1 1.9897−= C2 1.9897=

Probability Value:
P min 2 pt t n k−,( )⋅ 2 1 pt t n k−,( )−( )⋅,[ ]:=
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Note that these are Separate and Single Confidence Intervals.  Considered as a joint 
statement of probability, the familywise probability of Type I error α is potentially much 
higher.  From the mathematical end of things, statisticians routinely caution experimenters 
about the potential pitfalls of "data snooping" (to borrow a term from Neter et al. 1996).  By 
this, they mean running a large number of simultaneous tests or confidence intervals, and then 
proceeding to report significant findings as if discovered outside the context of the others, or 
worse, as the result of a strategically-chosen a priori experimental design.  The problem is that if 
enough simultaneous tests are run, the laws of probability predict that some tests will end up 
showing significance merely due to chance.  This mathematically-based caution is certainly 
correct.  Given this, are more than one significant planned or unplanned result in ANOVA tests 
to be considered valid or not?  Much depends on what exactly is meant by the foundational 
concept of α in often widely differing theoretical and experimental contexts.  Whereas 
mathematicians might like to draw a bright line between a priori and post hoc, in experimental 
practice rarely is the distinction so clear.  All experiments exist within a framework of 
pre-existing literature and laboratory/field practice for data collection.  So of course biologists 
regularly engage in "data snooping" in conceiving of problems, designing studies and analyzing 
results.  They could hardly do otherwise...

In my opinion, the a priori vs post hoc distinction is of interest from both theoretical and 
practical standpoints, and to be aware of the issues involved makes it possible to construct 
stronger scientific arguments.  The distinction also points to clear limitations in statistical 
reasoning in the sciences to the extent that all of it must be acknowledged to be nothing more 
than an approximation.  If one's data are overwealmingly clear, then difficulties in the 
approximation don't really matter.  However, if the data are unclear, then how one employs the 
approximation may influence what one might say within a test, but not necessarily what one 
might conclude.  The take-home message remains the same - the data remain unclear, and 
biological interpretation, and experimental replication, must necessarily take precedence over 
mathematical methodology.   

CI23 0.348− 0.368( )=

CI23 Xbar2
Xbar3

−( ) C1 MSW
1
n2

1
n3

+






⋅⋅+ Xbar2
Xbar3

−( ) C2 MSW
1
n2

1
n3

+






⋅⋅+








:=

Confidence Interval:

P 0.9558=P min 2 pt t n k−,( )⋅ 2 1 pt t n k−,( )−( )⋅,[ ]:=

Probability Value:

C2 1.9897=C1 1.9897−=t 0.0556=

IF |t| > C, THEN REJECT H0 OTHERWISE  ACCEPT H0

Decision Rule:

Xbar2
Xbar3

− 0.01=t 0.0556=t
Xbar2

Xbar3
−

MSW
1
n2

1
n3

+






⋅

:=

Test Statistic:

Between populations 2 & 3:
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Simultaneous Inference Procedures:

Several methods have been developed to adjust Probabilities of Tests and associated Confidence 
Interval widths to accomodate familywise assessments.  Some methods explicitly permit "data 
snooping" whereas others do not.  It will be beyond the scope of this course to worry about how 
these adjustments are calculated, but it is important to be aware of how, and under what 
circumstances, each procedure is employed.  As a practical matter, of course, standard statistical 
packages offer a full battery of possibilites and if the data permits, use of the "most conservative" 
(i..e, widest confidence intervals) is often considered evidence of good experimental design.

Multiple t-Test / Fisher's LSD Test for Specific Treatment Pairs:
Although described above in the context of single tests, in fact, Fisher's LSD (Least Significant 
Difference) Tests is often available as one of the available "multiple test" options in standard 
statistical packages.  It is useful to know that they are the same.  Fisher's LSD is often 
employed when the researcher feels that "data snooping" is not a major issue in the study 
and/or the number of multiple comparisions are relatively low.  Of course, this is a judgement 
call.  So if the data permits, use of one of the procedures below is more "conservative" and is 
often judged to be more prudent.  Many studies report both.  

Prototype in SYSTAT:

Data cut & pasted from Excel to a SYSTAT Datasheet.  Dependent Variable was named 'VC' 
and Independent categorical variable named "GROUP".  ANOVA option chosen and variables 
assigned.  Posthoc tests turned on with LSD as option.

Effects coding used for categorical variables in model.
Categorical values encountered during processing are:

GROUP (3 levels)
          1,        2,        3

Dep Var: VC   N: 84   Multiple R: 0.24014   Squared multiple R: 0.05767
        Analysis of Variance

Source             Sum-of-Squares   df  Mean-Square     F-ratio       P
GROUP                    2.74734     2      1.37367     2.47846     0.0902
Error                   44.89362    81      0.55424

COL/
ROW GROUP
  1  1
  2  2
  3  3

Using least squares means.
Post Hoc test of VC

-Using model MSE of 0.554 with 81 df.
Matrix of pairwise mean differences:

                         1           2           3
              1        0.00000
              2        0.52262     0.00000
              3        0.51288    -0.00974     0.00000
 

Fisher's Least-Significant-Difference Test.
Matrix of pairwise comparison probabilities:

                         1           2           3
              1        1.00000
              2        0.04516     1.00000
              3        0.03747     0.95697     1.00000

< differences match above

< Probabilities match above
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C1 qt
α

2 g⋅
n k−,





:= C2 qt 1
α

2 g⋅
− n k−,





:= < critical values modified to account
    for number of tests g

Between populations 1 & 2:

Test Statistic:

t
Xbar1

Xbar2
−

MSW
1
n1

1
n2

+






⋅

:= t 2.0365−= Xbar1
Xbar2

− 0.523−=

Decision Rule:
IF |t| > C, THEN REJECT H0 OTHERWISE  ACCEPT H0

t 2.0365−= C1 2.4447−= C2 2.4447=

Probability Value:
P min 2 g⋅ pt t n k−,( )⋅ 2 g⋅ 1 pt t n k−,( )−( )⋅,[ ]:= P 0.134899=

Confidence Interval:

CI12 Xbar1
Xbar2

−( ) C1 MSW
1
n1

1
n2

+






⋅⋅+ Xbar1
Xbar2

−( ) C2 MSW
1
n1

1
n2

+






⋅⋅+








:=

CI12 1.1508− 0.1048( )=

Bonferroni Multiple Comparisons Procedure:

If a specific and relatively small set of simultaneous tests are desired, this procedure will often 
give the narrowest confidence intervals, and is preferred.  Since the Bonferroni method requires 
identifying a specific set of simultaneous tests, it is not appropriate for "data snooping".

Methodology: 
Bonferroni intervals can be easily calculated given g - the number of simultaneous tests:

Critical Value of the Test:
α 0.05:= < Probability of Type I error must be explicitly set

C1 qt
α

2 g⋅
n k−,





:=C1 C2 qt 1
α

2 g⋅
− n k−,





:= 1
α

2 g⋅
− < critical values modified to account

    for number of tests g

Bonferroni Confidence Interval for Multiple Comparisons:

CIB Xbari
Xbarj

− C1 MSW
1
ni

1
nj

+






⋅⋅+ Xbari
Xbarj

− C2 MSW
1
ni

1
nj

+






⋅⋅+








:= C2

^ same as for Single CI but with adjusted Critical Values
Example: Data from above.

Critical Value of the Test:
α 0.05:= < Probability of Type I error must be explicitly set

g 3:= < Three tests set explicitly (1-2, 1-3, 2-3)
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t
Xbar2

Xbar3
−

MSW
1
n2

1
n3

+






⋅

:= t 0.0556= Xbar2
Xbar3

− 0.01=

Decision Rule:
IF |t| > C, THEN REJECT H0 OTHERWISE  ACCEPT H0

t 0.0556= C1 2.4447−= C2 2.4447=

Probability Value:
P min 2 g⋅ pt t n k−,( )⋅ 2 g⋅ 1 pt t n k−,( )−( )⋅,[ ]:= P 2.8675=

Confidence Interval:

CI13 Xbar2
Xbar3

−( ) C1 MSW
1
n2

1
n3

+






⋅⋅+ Xbar2
Xbar3

−( ) C2 MSW
1
n2

1
n3

+






⋅⋅+








:=

CI13 0.4299− 0.4499( )=

Prototype in SYSTAT:
Bonferroni Adjustment.

Matrix of pairwise comparison probabilities:
 

                         1           2           3
              1        1.00000
              2        0.13549     1.00000
              3        0.11241     1.00000     1.00000

values are close but don't exactly match >

Between populations 1 & 3:

Test Statistic:

t
Xbar1

Xbar3
−

MSW
1
n1

1
n3

+






⋅

:= t 2.1163−= Xbar1
Xbar3

− 0.513−=

Decision Rule:
IF |t| > C, THEN REJECT H0 OTHERWISE  ACCEPT H0

t 2.1163−= C1 2.4447−= C2 2.4447=

Probability Value:
P min 2 g⋅ pt t n k−,( )⋅ 2 g⋅ 1 pt t n k−,( )−( )⋅,[ ]:= P 0.1122=

Confidence Interval:

CI13 Xbar1
Xbar3

−( ) C1 MSW
1
n1

1
n3

+






⋅⋅+ Xbar1
Xbar3

−( ) C2 MSW
1
n1

1
n3

+






⋅⋅+








:=

CI13 1.1056− 0.0796( )=

Between populations 2 & 3:

Test Statistic:
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Post Hoc test of VC

Using model MSE of 0.554 with 81 df.
Matrix of pairwise mean differences:

 
                         1           2           3
              1        0.00000
              2        0.52262     0.00000
              3        0.51288    -0.00974     0.00000
 

Tukey HSD Multiple Comparisons.
Matrix of pairwise comparison probabilities:

 
                         1           2           3
              1        1.00000
              2        0.11049     1.00000
              3        0.09304     0.99839     1.00000

Output from SYSTAT:

Data from above.Example: 

CIT Xbari
Xbarj

− C MSW
1
ni

1
nj

+






⋅⋅− Xbari
Xbarj

− C MSW
1
ni

1
nj

+






⋅⋅+








:= C

Tukey Confidence Interval for Multiple Comparisons:

P min pstudentizedrange Q k, n k−,( )( ):= Q

Probability Value:

IF |Q| > C, THEN REJECT H0 OTHERWISE  ACCEPT H0

Decision Rule:

< critical value constructed from 
   "studentized" range distribution.

C
1

2
qstudentizedrange 1 α− k, n k−,( )⋅:= k

< Probability of Type I error must be explicitly setα 0.05:=

Critical Value of the Test:

Q
2 Xbari

Xbarj
−( )⋅

MSW
1
n1

1
n2

+






⋅

:=
j

Tukey Test Statistic:

Tukey intervals are calculated by consulting a studentized range distribution. 

Methodology: 

This procedure is designed to provide a simultaneous probability of α when comparing means 
of all possible pairs of populations within the ANOVA data structure.  When sample sizes 
ni differ, this procedure is also called the Tukey-Kramer Procedure.  "Data snooping" is 
permitted with this procedure as long as one is restricts "snooping" to pairwise comparisons of 
population means. 

Tukey Multiple Comparisons Procedure:
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Scheffé Multiple Comparisons Procedure:

This procedure is designed to provide a simultaneous probability of α for all possible linear 
contrasts within the ANOVA data structure.  Since all possible Linear Constrasts in a dataset 
involves an infinite set of possible comparisons including pairwise comparisons, the 
Tukey procedure will typically give smaller Confidence Intervals for only pairwise comparisons, 
and the Bonferroni procedure will give smaller Confidence Intervals, for a specific limited set of 
any kind of comparisons.  Thus the Scheffé  is a conservative approach that allows "data 
snooping" and is often preferred for methodological reasons - if the data will permit it.  Often 
the data does not.  In using this test, many researchers relax the criterion of "acceptable" 
familywise Type I error α a little (α = 0.1 is often considered acceptable for multiple 
comparisons when α = 0.05 is considered acceptable for single comparisons). 

Methodology: 
Scheffé intervals are calculated by constructing an unbiased point estimate of the mean 
of a Linear Combination of interest Lhat, standard deviation sL, and Critical Values 
calculated from the F distribution.

Critical Value of the Test:
α 0.05:= < Probability of Type I error must be explicitly set

< where g is the number of Populations in the
    ANOVA data structure, and N is the total
    number of observations Σni.

S n 1−( ) qF 1 α− g 1−, N g−,( )⋅:= N g−

Scheffé Confidence Interval for Multiple Comparisons:

CIS Lhat S MSW

1

g

i

ci( )2
ni

∑
=

⋅











⋅− Lhat S MSW

1

g

i

ci( )2
ni

∑
=

⋅











⋅+











:= S

^ where Mean Squares Within (Error) is modified by 
   coefficients ci squared for the Linear combination 
   and sample sizes ni.

If the ANOVA F-Test for H0: All αi = 0 rejects H0 then the Scheffé Procedure is guaranteed to 
find at least one contrast such that H0: Li = 0 is also rejected.

Output from SYSTAT: Post Hoc test of VC

Using model MSE of 0.554 with 81 df.
Matrix of pairwise mean differences:

 
                         1           2           3
              1        0.00000
              2        0.52262     0.00000
              3        0.51288    -0.00974     0.00000

 
Scheffe Test.

Matrix of pairwise comparison probabilities:
 

                         1           2           3
              1        1.00000
              2        0.13284     1.00000
              3        0.11329     0.99854     1.00000 



2007 Biostatistics 53 ANOVA Confidence Intervals 10

Holm Simultaneous Testing Procedure:

This procedure is an iterative refinement of the Bonferroni approach designed to provide a 
simultaneous probability of α for a specific set of tests.  Holm sometimes rejects a null 
hypothesis that Bonferroni would not with the same data and is, thus, more powerful.  
However, Holm is computationally more complex and lacks direct computation of Confidence 
Intervals.  Although Holm may be the preferred method for theoretical reasons, power 
consideration by itself may not necessarily be a good reason for chosing the test.  As with 
Bonferroni, this method is unsuitable for "data snooping".
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< means for treatments across individuals 
     (using matrix transpose function)

Xbarj mean XT( ) i〈 〉



:=

i

< means for individuals across treatmentsXbari mean X i〈 〉( ):= X

< grand mean - sample estimate of µGM
1
N

i j

Xi j,∑∑






⋅:=
N

< Total number of observationsN n k⋅:= k

< total number of objects = matched observationsn

Number & Means:

ρj are a random sample ~ N(0, σρ
2) 

εij are a random sample ~ N(0,σ2) 
ρj and εij are independent.

Assumptions: 

< allows estimation of k parameters. 
i

αi∑ 0:=

i

αi∑ 0:=

Restriction: 
< where:

Xi,j = µ + ρj + αi + εi,j 
µ is the grand mean of all objects.
ρj is a random effect for each object j
αi is a constant effect for each class i.
εi,j is the error term specific to each object i,j

Model: 

Let index i,j indicate 
the ith column 
(treatment class) and 
jth row (object).

Objects 
(Replicates) #1 #2 #3 … #k

1
2
3
…
n n n n n

means: Xbar.1 Xbar.2 Xbar.3 … Xbar.k

Repeated Measures One-Way ANOVA
Treatment Classes:

k groups (treatments) exactly matched within individuals (objects).  Typically, the order in 
which specific treatments are presented to individuals is randomized and exactly matched over 
the n replicates.  

Data Structure:

As indicated previously, One-Way ANOVA with Fixed Effects Model (also termed "Single 
Factor" and "Between Groups" ANOVA) represents an extension of the Two-Sample t-Test with 
equal variance to analyses involving k 2≥  groups (often termed "treatments" or "factor levels").  
The ANOVA extension of the Paired t-Test, in which data are matched exactly across groups 
("treatments" or "factor levels"), are called Repeated One-Way ANOVA designs (also termed 
"Within-Subjects" Single-Factor ANOVA).  They are also sometimes called "Radomized Block" 
studies emphasizing the importance of proper experimental design in the presentation of 
treatments to multiple individuals ("objects" or "replicates") within the study. Such concerns 
were also present in the Paired t-Test but become much more so in Repeated-Measures ANOVA.   
   

Repeated Measures One-Way Analysis of Variance with Fixed Effects Model

ORIGIN 0≡
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TOTAL SSTOT

Example:
WineTest.txt Data in this week's Data folder -
6 Judges each rate 4 wines in a taste test (Neter et al p 1169): 

W READPRN "c:/2007BiostatsData/WineTest.txt"( ):= W

1

2

3

4

5

6

20

15

18

26

22

19

24

18

19

26

24

21

28

23

24

30

28

27

28

24

23

30

26

25



















=

X submatrix W 0, 5, 1, 4,( ):= < extracting 
   only the
   dataNumber & Means:

n rows X( ):= k cols X( ):= i 0 cols X( ) 1−..:= j 0 rows X( ) 1−..:=

N n k⋅:=

n 6=GM
1
N

i j

Xj i,∑∑






⋅:= k 4= GM 23.6667= X

20

15

18

26

22

19

24

18

19

26

24

21

28

23

24

30

28

27

28

24

23

30

26

25



















=

XbarTi mean X i〈 〉( ):=

XbarT

20

22

26.6667

26












=
XbarIj mean XT( ) j〈 〉



:= XbarI

25

20

21

28

25

23



















=
< treatment means for
     each individual

individual means for each treatment ^

Sums of Squares:

SSTOT

i j

Xi j, GM−( )2∑∑:= GM < Total Sum of Squares

SSI k

j

Xbarj GM−( )2∑⋅:= GM < Sums of Squares for Individuals 
            (Objects or Subjects)

SST

i

Xbari GM−( )2∑⋅ < Sums of Squares for Treatments

SSE

i j

Xi j, Xbari− Xbarj− GM+( )2∑∑:= GM < Between (Treatment) Sum of Squares

Repeated Measures One-Way ANOVA Table:

Source: SS df MS

Individuals SSI n 1−
SSB

n 1−

Treatment SST k 1−
SSW

k 1−

Error SSE k 1−( ) n 1−( )⋅
SSW

k 1−( ) n 1−( )⋅
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SSE 16= k 1−( ) n 1−( )⋅ MSE
SSE

k 1−( ) n 1−( )⋅
:= MSE 1.0667=

TOTAL SSTOT 373.3333= ^ values confirmed Neter et al. p. 1171

F Test for Overall Comparison of Class Means:

Hypotheses:
H0: αi = 0 for all i
H1: At least one αi <> 0  

< All treatment class deviations from the grand mean are 0 

< Two sided test

Test Statistic:

F
MST

MSE
:= < Ratio of "treatment" versus "error" Mean Squares

Distribution of the test Statistic F:
If H0 is true then F ~F((k-1),(k-1)(n-1)) where: k = number of classes

n = number of individuals

Critical Value of the Test:
α 0.05:= < Probability of Type I error must be explicitly set

CV inverseΦF 1 α−( ):= inverseΦF CV qF 1 α− k 1−( ), k 1−( ) n 1−( )⋅, :=

Decision Rule:

IF F > C, THEN REJECT H0 OTHERWISE  ACCEPT H0

Sums of Squares:

SSTOT

i j

Xj i, GM−( )2∑∑:= SSTOT 373.3333=

SSI k

j

XbarIj GM−( )2∑⋅:= SSI 173.3333=

SST

i

n XbarTi GM−( )2⋅∑:= SST 184=

SSE

i j

Xj i, XbarTi− XbarIj− GM+( )2∑∑:= SSE 16=

Repeated Measures One-Way ANOVA Table:

Source: SS df MS

Individuals SSI 173.3333= n 1− MSI
SSI

n 1−
:= MSI 34.6667=

Treatment SST 184= k 1− MST
SST

k 1−
:= MST 61.3333=

Error 
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P 1.8538 10 8−
×=P min pF F k 1−( ), n 1−( ),[ ] 1 pF F k 1−( ), k 1−( ) n 1−( )⋅,[ ]−,[ ]:=

Probability Value:

< values confirmed Neter et al. p. 1170CV 5.417=F 57.5=

IF F > C, THEN REJECT H0 OTHERWISE  ACCEPT H0

Decision Rule:

CV 5.417=CV qF 1 α− k 1−( ), k 1−( ) n 1−( )⋅, :=

< Probability of Type I error must be explicitly setα 0.01:=

Critical Value of the Test:

< confirmed Neter et al. p. 1170F 57.5=F
MST

MSE
:=

Test Statistic:

< Two sided test
< All treatment class deviations from the grand mean are 0 H0: αi = 0 for all i

H1: At least one αi <> 0  

Hypotheses:
F Test for Overall Comparison of Class Means:

Continuing our Example from Above...

Example: 
^ Note that C1 & C2 are explicitly evaluated above,
    so added to the difference in sample means here.

P min pF F k 1−( ), n 1−( ),[ ] 1 pF F k 1−( ), N 1−( ),[ ]−,[ ]:=

P = minimum(ΦF(F),1-ΦF(F)

Probability Value:
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correction factor > < t represent the number of
    observations that are tied
    in groups 1 to g

Fr
Frs

1
1

g

j

t j( )3 t j−



∑

=

n k3 k−( )⋅
−

:=

k

OTHERWISE:

< no correction factor...Fr Frs:= FrsIF no ties, THEN:

Frs
12

n k⋅ k 1+( )⋅
i

Ri( )2∑






⋅ 3 n⋅ k 1+( )⋅−:=

i

< where Ri are the Rank sums
   for each treatment class i

Test Statistic:

- n = number of individuals, k = number of treatment classes
- Assign Data for treatment class to a Ranks considering each Individual.  In the case of
    ties, t observations in a rank are assigned the appropriate average rank.
- Compute the Rank Sum (Ri) for each treatment class i.

Rank Data and Sum:

- IF ni 8≥  THEN  Approximation Applies OTHERWISE the test is conservative.
Criterion for Approximation:

< Two Sided Test
< No population differences in treatmentH0: ∆= 0

H1: ∆ <> 0 

Hypotheses:

- The n Individuals represent a random sample.
- Underlying distribution of observations in treatment cells are continuous.
- Observations are of at least ordinal scale.

Assumptions:

Let index i,j indicate 
the ith column 
(treatment class) and 
jth row (object).  Xi,j 
represents the rank or 
average rank of the 
treatment for each 
individual.

Individuals 
(Replicates) #1 #2 #3 … #k

1
2
3
…
n n n n n

means: Xbar.1 Xbar.2 Xbar.3 … Xbar.k

Friedman's Two-Way ANOVA by Ranks
Treatment Classes:

k groups (treatments) exactly matched within individuals (objects).  Typically, the order in 
which specific treatments are presented to individuals is randomized and exactly matched over 
the n replicates.  

Data Structure:

The Friedman Two-Way ANOVA by Ranks Test is the non-parametric analog to the One-Way 
Repeated Measures ANOVA.  The object here is to compare observations exactly matched 
across treatment classes for replicate individuals.  

Friedman Two-Way Analysis of Variance by Ranks Test

ORIGIN 0≡
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Hypotheses:
H0: ∆= 0
H1: ∆ <> 0 

< No population differences in treatment

< Two Sided Test
Criterion for Approximation:

- IF ni 8≥  THEN  Approximation Applies OTHERWISE the test is conservative.

Rank Data and Sum:
n 6= k 3=

< rankings are determined
   by numerical values of 
   treatments seen for each
   individual separately.

X

9

10

7

10

7

8

7

8

5

8

5

6

4

7

3

7

2

6



















= XR

3

3

3

3

3

3

2

2

2

2

2

1.5

1

1

1

1

1

1.5



















:=

i 0 k 1−..:=

Ri XR
i〈 〉∑:=

< rank sums for each column of XRR

18

11.5

6.5









=

Test Statistic:
Frs

12
n k⋅ k 1+( )⋅

i

Ri( )2∑






⋅ 3 n⋅ k 1+( )⋅−:= Frs 11.0833=

^ confirmed Sheskin p. 456

IF no ties, THEN: Fr Frs:= < no correction factor...

Critical Value of the Test:
α 0.05:= < Probability of Type I error must be explicitly set

C inverseΦχ2 1 α−( ):= inverseΦχ2 C qchisq 1 α− k 1−,( ):= k < Note: df = (k-1)

Decision Rule:
IF Fr > C THEN REJECT H0 OTHERWISE  ACCEPT H0

Probability Value:
P 1 Φχ2 H( )−( ):= Φχ2 P 1 pchisq Fr k 1−( )−( ):= k

Example: Sheskin Table 19.1 p. 455  6 Individuals (Subjects) ranked 
for three Treatments (Conditions) :

Z READPRN "c:/2007BiostatsData/Sheskin.txt"( ):= Z

1

2

3

4

5

6

9

10

7

10

7

8

7

8

5

8

5

6

4

7

3

7

2

6



















=
X submatrix Z 0, 5, 1, 3,( ):=

n length X 0〈 〉( ):= n 6= X

9

10

7

10

7

8

7

8

5

8

5

6

4

7

3

7

2

6



















=

k length XT( ) 0〈 〉



:= k 3=

Assumptions:
- The n Individuals represent a random sample.
- Underlying distribution of observations in treatment cells are continuous.
- Observations are of at least ordinal scale.
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^ values the same as the corrected version Fr above.

        Friedman rank sum test

data:  Y 
Friedman chi-squared = 11.5652, df = 2, p-value = 0.003081

COMMANDS: 
X=read.table("c:/2007BiostatsData/Sheskin.txt")
X
Y=as.matrix(X)
Y
friedman.test(Y)

Prototype in R:

P 0.0031=P 1 pchisq Fr k 1−,( )−( ):=

Probability Value:
C 5.9915=Fr 11.5652=

IF Fr > C THEN REJECT H0 OTHERWISE  ACCEPT H0

Decision Rule:

C 5.9915=C qchisq 1 α− k 1−,( ):=

< Probability of Type I error must be explicitly setα 0.05:=

Critical Value of the Test:
^ Fr and correction 
factor confirmed 
Sheskin p. 457

Fr 11.5652=

correction factor >

< t represent the number of
    observations that are tied
    in groups 1 to g

Fr
Frs

1
1

g

j

t j( )3 t j−



∑

=

n k3 k−( )⋅
−

:=

OTHERWISE:
t1 2:=g 1:=




