
Biostatistics 020 Descriptive Statistics 1

var3 4.514var3 5 3()


var2 4.667var2 6 7
9

^ evaluation^ assignment
Var 78Var 78

Assignment versus Evaluation: < Variables may be named at any time.
 Note, however, that there are two distinct meanings here for
 what we normally term "equals"!
Assignment (using : on the keyboard and shown on the
worksheet as :=) means "put the numerical value 79 into a variable
I now name Var".
Evaluation (using = on the keyboard) means "tell me what value
is placed in the already named variable Var".
This distinction is important and common to most programming
languages... including Statistical Programming languague 'R'.

< Some common mathematical values are built into the program... 3.142
6 5 30

35
5 7

< Calculations are done in the normal way using familiar symbols.2 2 4
Calculations:

^ OK, so now you see how I label things...

ORIGIN 1 < I normally put this in all my worksheets to standardize use of index variables across all
 my worksheets. It is an example of "global assignment" (keyed by using the symbol
 ~ on the keyboard). Global assignment means that the value of 1 in this case is assigned
 to the variable ORIGIN (a special variable available in MathCad for indexing variables).

For classes such as this, where it is useful to make documents with math symbols, graphs, etc, I find the
software MathCad to be quite useful. This program makes available an extensive library of mathematics
functions allowing import, export, and manipulation of data in real-time. It also allows me to document what I
have done using familiar mathematics symbols directly comparable to that seen in the text, and lots of words in
the worksheet itself. For the purpose of prototyping statistical procedures, and keeping track of what I have
done, I find the combination ideal.
Although I recommend MathCad, or somewhat similar Matlab or R, as a way to take the next mathematical
step beyond a spreadsheet such as Microsoft Excel, I do not require that you buy MathCad for this course.
Instead, I will make all worksheets available to you in both MathCad (*.mcd) and in Adobe Acrobat (*.pdf)
formats. Using the examples presented in class, difference between them will appear slight. However,
MathCad documents are "dynamic" in the sense that all calculations are dependent on assigning specific values
for variables and performing calculations on them. As a result, MathCad documents often depend on an
associated datafile called by a read statement somewhere in the document - usually near the top. You will need
to download both. By contrast, Acrobat documents are written by MathCad as "static"printed document based
on the appearance of the "dynamic" document. These need no associated datafiles.
To get started, this worksheet is designed to provide an overview of what you might expect to see in lecture
worksheets from now on.

Interpreting MathCad Worksheets:
Descriptive Statistics

Biostatistics 020 Descriptive Statistics 2
Data Input:
iris READPRN "c:/DATA/Biostatistics/iris.txt"()
^ Importing data is easy using MathCad's built-in READPRN() function for simple text format data. When
prototyping, using an existing dynamic worksheet, I can read in different data files and calculate things in
exactly the same way. A worksheet showing how to do a specific statistical test, for instance, is critical for
evaluating output from canned programs that might otherwise appear to be a "BLACK BOX".

< Evaluation of variable iris.
Note that the display is often a partial list that may be scrolled in the
normal manner, like a spreadsheet, in a MathCad "dynamic" document.
However, it will only appear as the partial list in an Adobe "static"
document The variable might also be displayed in matrix form...
When working with a datachart, the shaded row and column numbers in
MathCad provide the index for each datum. Note that columns start
their numbering with '1'. This is the result of my ORIGIN assignment
above. The first column of numbers is merely the row number, so I
usually find it convenient to index variables starting at zero.
Species names in column 6 didn't import here as MathCad interpreted
the data to be numeric... Statistics programs such as R will do a better
job than this. However, we won't worry about it for our purposes here.
Scrolling down one can see that there are 150 rows.

iris

1 2 3 4 5
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

1 5.1 3.5 1.4 0.2
2 4.9 3 1.4 0.2
3 4.7 3.2 1.3 0.2
4 4.6 3.1 1.5 0.2
5 5 3.6 1.4 0.2
6 5.4 3.9 1.7 0.4
7 4.6 3.4 1.4 0.3
8 5 3.4 1.5 0.2
9 4.4 2.9 1.4 0.2

10 4.9 3.1 1.5 0.1
11 5.4 3.7 1.5 0.2
12 4.8 3.4 1.6 0.2
13 4.8 3 1.4 0.1
14 4.3 3 1.1 0.1
15 5.8 4 1.2 0.2
16 5.7 4.4 1.5 0.4



ORIGIN 0 < a new global assignment for built-in variable ORIGIN

< Evaluation of variable iris.
Note that MathCad's dynamic logic is linear -
moving from top to bottom of the page, and also
from left to right. Most procedural
programming languagues work in a similar way.
Scripts written in the statistical language R
works this way also.

iris

0 1 2 3 4
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

1 5.1 3.5 1.4 0.2
2 4.9 3 1.4 0.2
3 4.7 3.2 1.3 0.2
4 4.6 3.1 1.5 0.2
5 5 3.6 1.4 0.2
6 5.4 3.9 1.7 0.4
7 4.6 3.4 1.4 0.3
8 5 3.4 1.5 0.2
9 4.4 2.9 1.4 0.2

10 4.9 3.1 1.5 0.1
11 5.4 3.7 1.5 0.2
12 4.8 3.4 1.6 0.2
13 4.8 3 1.4 0.1
14 4.3 3 1.1 0.1
15 5.8 4 1.2 0.2
16 5.7 4.4 1.5 0.4


SL iris 1  < New variables are now named

 and assigned to the values in
 different columns of the
 dataset iris using the built-in
 column function <x>.

SL

0
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

5.1
4.9
4.7
4.6

5
5.4
4.6

5
4.4
4.9
5.4
4.8
4.8
4.3
5.8
5.7


SW iris 2 
PL iris 3 
PW iris 4 

Evaluation of variable SL >

Biostatistics 020 Descriptive Statistics 3

prototype for mean:
Xbar 5.843 < Evaluation of Xbar

< compared with MathCad's built-in function mean().
 Thus, our explicit calcuation of mean matches the
 output of MathCad's built-in function mean().
 This strategy of prototyping methods is critically important.

mean SL() 5.843

median:
< using MathCad's sort() function to
 rearrange the values of SL in order.SLsort sort SL()

SLsort

0
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

4.3
4.4
4.4
4.4
4.5
4.6
4.6
4.6
4.6
4.7
4.7
4.8
4.8
4.8
4.8
4.8


midpoint n

2 midpoint 75 < figuring the midpoint (i.e., halfway) index
medianSL 1

2 SLsortmidpoint SLsortmidpoint 1  < variable SL.sort indexed by midpoints

^ When the number of values in a variable are even, the definition of
median requires that we average the two closest points.

prototype for median:
medianSL 5.8 < Our explicit calculation matches MathCad's

 built-in function median(). We now have confidence that
 we know what MathCad's function median() in fact does!median SL() 5.8

Descriptive Statistics:
Vector lengths:

length SL() 150 <- using built-in function length() to evaluate the number of rows (i.e., objects
 = flowers) inside our assigned variable SL.
 This is a useful general technique in programming languages including 'R'.

length SW() 150 <- Evaluating the other variables. The result is hardly a
 surprise, but a useful check anyway in case something went
 wrong in using function READPRN() above.

length PL() 150
length PW() 150

mean:
n length SL() n 150
i 0 n 1 < sets up a list of 150 numbers indexed from 0 to 149.

< indexed value - scroll on the evaluation of vecgtor SL
 above to verify!

i
0
1
2
3
4
5
6
7
8
9

10
11


SL2 4.7

^ Note: this is the value in the row corresponding to index 2 of variable SL, called by
 specifying the index (using '[' left bracket on the keyboard in MathCad).

Xbar 1
n i

SLi  < X.bar is the name of the variable as typed on the keyboard.
 The bar part is shown as a subscript in MathCad...

^ Sum values of SL over all rows and divided by n.
 Note that is a built in function in MathCad that sums all elements in
 variable SL (indexed one at a time by values of index variable i).

Biostatistics 020 Descriptive Statistics 4

harmonic mean:
HmeanSL n

i
1
SLi HmeanSL 5.729

^ calculated directly
 Zar Eq. 3.8

^ Evaluation

prototype for harmonic mean:
hmean SL() 5.729 < MathCad's function hmean() confirmed.

Descriptive Statistics: Variability/Dispersion
sample variance and sample standard deviation:

< applying standard formula for sample variance. Variable SL is
 indexed by previously defined index i with mean(SL) as
 prototyped above for MathCad's funtion mean().

varSL 1
n 1 i

SLi mean SL() 2  


standdevSL varSL < Standard deviation is the square root of variance
prototype:
varSL 0.686 var SL() 0.681 < Note the difference! MathCad's built-in function var() must be

 calculating population, not sample, variance!
 However, we need to verify this to be certain...

n
n 1 var SL() 0.686 < This converts population variance into sample variance.

 Matches our calculation and confirms what MathCad is doing.
 Note how this prototype allows us to avoid making silly but devastating
 calculation errors using automated statistical software... Statistical programs
 often utilize different assumptions, making prototyping critically important.

mean SL() 5.843 median SL() 5.8 <- Having prototyped one use each of mean() and
 median(), we now have confidence that we know how to
 calculate ALL of these!

mean SW() 3.057 median SW() 3
mean PL() 3.758 median PL() 4.35
mean PW() 1.199 median PW() 1.3

geometric mean:
GmeanSL n

i
SLi GmeanSL 5.786 e i

ln SLi  
n  5.786 e

ln i
SLi
n





 5.843

^ calculated directly
 Zar Eq. 3.6

^ Evaluation ^ calculated using logs/antilogs
 Zar Eq. 3.7. Note: sum of logs

^ wrong way!
 log of sums...

prototype for geometric mean:
gmean SL() 5.786 < MathCad's function gmean() confirmed.

Biostatistics 020 Descriptive Statistics 5

^ translation does nothing to variance. Since standard deviation is the square root of
 variance, translation does nothing to standard deviation as well.

varSLtranslated 0.686

< sample variancevarSLtranslated n
n 1() var translatedSL 

< evaluation of sample variance
 calculated above varSL 0.686

^ translation shifts the
 mean value by b

mean SL() b 10.843
mean translatedSL  10.843

translatedSL

0
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

10.1
9.9
9.7
9.6
10

10.4
9.6
10

9.4
9.9

10.4
9.8
9.8
9.3

10.8
10.7

SL

0
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

5.1
4.9
4.7
4.6

5
5.4
4.6

5
4.4
4.9
5.4
4.8
4.8
4.3
5.8
5.7

mean SL() 5.843

^ translated.SL is a new variable "coded" by
 translation y = x + 5 >

translatedSL SL b
< now assigning a value to bb 5

translation:

where c is the multiplication constant in scaling, and b is the translation constant.
(Don't worry about the color of b above. This is MathCad's way of telling me that variable b hasn't been
assigned a value yet...)
You might recognize the above formula as the equation for a line. As a result, transformations of this kind
are often called linear transformations. Zar also refers to this as data "coding".
In statistics, we are interested in what happens to means and variance when original measurements are
modified in this way.

y c x b b

Often, one has a choice in the units employed in measuring or counting a property. For instance, one might
decide to measure temperature in either degrees Celsius or Fahrenheit. Conversion from one measurement
to the other typically involves translation (adding or subtracting a constant) and scaling (multiplying a
measurement by a constant). Translation and scaling together may be summarized by the following fomula,
where x is the original measurment and y is a measurement "transformed" by translation and scaling.

Linear Transformations of Mean and Variance:

This section displays the value and power of making prototypes! In statistical analysis, it is very
important to understand exactly what you are doing using a computer-based statistical program. For
minor reasons like here, a program may be doing something subtly different different than you
expect. Without making a prototype the first time you use a procedure, you might end up
reporting, and perhaps trying to publish, an ERROR... THIS CAN BE VERY EMBARRASSING!

<- Converting to sample standard deviation and verifying.n
n 1 var SL() 0.828

<- Again, doesn't match for same reason.stdev SL() 0.825standdevSL 0.828

Biostatistics 020 Descriptive Statistics 6

c 1.8 b 32 <- note that these values convert a degree measurement
 in Celsius in to the equivalent value on the Fahrenheit scale.

transformedSL c SL b
^ transformed.SL is a new variable "coded"
by linear tranformation y = 1.8x + 32 >

mean SL() 5.843
mean transformedSL  42.518
c mean SL() b 42.518

^ scaling multiplies the mean by
 the same factor c as each of
 the values in SL and adds factor b SL

0
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

5.1
4.9
4.7
4.6

5
5.4
4.6

5
4.4
4.9
5.4
4.8
4.8
4.3
5.8
5.7

 transformedSL

0
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

41.18
40.82
40.46
40.28

41
41.72
40.28

41
39.92
40.82
41.72
40.64
40.64
39.74
42.44
42.26


varSL 0.686 < sample variance
varSLtransformed n

n 1() var transformedSL  < scaled variance

varSLtransformed 2.222 c2 varSL 2.222
^ scaling multiplies variance by factor c2 and
 translation in b has no effect.

standdevSLtransformed varSLtransformed
<- scaling multiplies observed standard deviation
 by factor c and translation in b has no effect.standdevSLtransformed 1.491 c standdevSL 1.491

scaling:
c 3
scaledSL c SL

^ scaledSL is a new variable "coded" by scaling
 factor y = 3x

mean SL() 5.843
mean scaledSL  17.53 SL

0
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

5.1
4.9
4.7
4.6

5
5.4
4.6

5
4.4
4.9
5.4
4.8
4.8
4.3
5.8
5.7

 scaledSL

0
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

15.3
14.7
14.1
13.8

15
16.2
13.8

15
13.2
14.7
16.2
14.4
14.4
12.9
17.4
17.1


mean SL() c 17.53

^ scaling multiplies the mean by the same factor
 c as each of the values in SL

varSL 0.686 < sample variance
varSLscaled n

n 1() var scaledSL  < scaled variance

varSLscaled 6.171 c2 varSL 6.171 <- scaling multiplies sample
 variance by factor c2.

standdevSLscaled varSLscaled standdevSLscaled 2.484 <- scaling multiplies sample standard
 deviation by factor c.

c standdevSL 2.484linear transformation:

Biostatistics 020 Descriptive Statistics 7
Prototype in R:

#BIOSTATISTICS 020#DESCRIPTIVE STATISTICS:
#CALCULATIONS:2+235/56*5pi
#ASSIGNMENT:var=78var2=6*(7/9)var3=(5+3)/(sqrt(pi))
#EVALUATIO N:varvar2var3
#INPUT DATA:I1=read.table(file.choose())
I1 #EVALUATION O F I1
I2=read.table("c:/DATA/BiostaƟsƟcs/iris.txt")I2 #EVALUATION O F I2
#VARIABLE ASSIGNMENTS:Iris=I2 SL=Iris[,1]SL=Iris$Sepal.Length
SW=Iris$Sepal.WidthPL=Iris$Petal.LengthPW=Iris$Petal.WidthSpecies=Iris[,5]
#EVALUATIO N:Out=cbind(SL,SW,PL,PW,Species)Out
#DESCRIPTIVE STATISTICS:
length(SL)length(Iris$Sepal.Width)length(Iris[,3])length(PW)
n=length(SL)nSL[2]SL[3] #NOTE INDEX RANGE HERE!Iris[3,1]

Xbar= (1/n)*sum(SL)Xbarmean(SL)
median(SL)
geom_meanSL = prod(SL)^(1/length(SL))geom_meanSL
harm_meanSL = n/(sum(1/SL))harm_meanSL
#VARIANCE:var(SL) #SAMPLE VARIANCESample_VarSL=((n-1)/n)*var(SL)Sample_VarSL #POPULATION VARIANCE
#LINEAR TRANSFORMATION OF MEAN AND VARIANCEb=32c=1.8
SLt=c*SL+bmean(SLt)var(SLt)

Biostatistics 020 Descriptive Statistics 8

