Standard & Conditional Probability

 $ORIGIN := 0$

Probability as a Concept:

"The probability of an event is the likelihood of that event expressed either by the relative frequency observed from a large number of data or by knowledge of the system under study" Zar 2010 p 60.

Statistics is typically based on a pair of quantities:

 $X \sim$ observed sample values

 $P(X)$ <- probability of the sampled values under some model of probability.

In fact, associating these two quantities is not at all straightforward and is often a point of controversy as both a theoretical and practical matter.

Probability by knowledge of a system:

Some systems are simple enough that concrete probabilities can be deduced directly by counting all possible outcomes. For instance, in flipping a "fair" coin there are only two possible outcomes with equal probabilities of occurring. Or, in rolling a single die, there are only six possible outcomes also with equal probabilities. Mendelian inheritance is another example in which probabilities of specific genotypes can be calculated using well-known ratios such as 9:3:3:1 for two dominant/recessive alleles on different chromosomes.

Counting all possible outcomes is greatly facilitated by considering *Permutations* and *Combinations*.

Permutations:

"A permutation is an arrangement of objects in a specific sequence." Zar 2010 p. 51

"The number of permutations of n things taken k at a time ... represents the number of ways of selecting k items out of n where the order of selection is important." Rosner 2006 Definition 4.8, p. 91.

 \land number of permutations of n things taken k at at time

For example, let the n things be the letters: A, B, C. How many pairs of letters can we make where the order of letters is important?

AB AC BC
$$
\frac{3!}{(3-2)!}
$$
 = 6 **Fortunately the number n is relatively small, six!**
BA CA CB

 $n! = 2.433 \times 10^{18}$

What happens if:

$$
n := 20 \qquad \text{ < n things...}
$$

 $k = 7$ < taken k at a time

$$
nP_k := \frac{n!}{(n-k)!}
$$

$$
nP_k = 3.907 \times 10^8
$$

$$
k! = 5.04 \times 10^3
$$

$$
(n-k)! = 6.227 \times 10^9
$$

 < Fortunately we have this formula, because listing all of the possilities and counting them up would take *a lot* of time...

 \land number of Permutations of n things take k at at time

Degenerate Permutations:

Zar 2010 gives additional formulas for permutations in which not all sequences are considered unique. These formulas are not of general importance, although for particular problems you may find them useful.

Circular Arrangements:

$$
CnP_k := \frac{n!}{(n-k)! \cdot k}
$$
\n
$$
CnP_k = 5.581 \times 10^7
$$
\n
$$
(n-k)! \cdot k! = 3.138 \times 10^{13}
$$

Indistinguishable objects:

N

i 0 2 < 15 indistinguishable in class 1 15 $N = 20$ < number of objects in three classes: 3 2 ſ \mathbf{L} \mathbf{r} L \setminus $\overline{}$ $\overline{}$ J $\vert z \vert$ 3 \vert < 3 indistinguishable in class 2 < 2 indistinguishtable in class 3

$$
DnP_k := \frac{N!}{\prod_i n_i!}
$$

$$
DnP_k = 1.55 \times 10^5
$$

$$
\prod_i n_i! = 1.569 \times 10^{13}
$$

$$
n_0! \cdot n_1! \cdot n_2! = 1.569 \times 10^{13}
$$

 \triangle Note in all degenerate cases, the denominator is larger than the non-degenerate case. Thus the number of permutations will always be smaller.

Combinations:

"If groups... are important to us, but not the sequence of objects within groups, then we are speaking of combinations" Zar 2010 p. 55

"The number of combinations of n things taken k at a time ... represents the number of ways of selecting k objects out of n where the order of selection does not matter." Rosner 2006 Definition 4.11, p. 93.

Combinations are degenerate permutations in the same sense as above when membership is important but order is not.

For example with same n & k as the first one above:

$n := 3$	$<$ n things...
$k := 2$	$<$ taken k at a time
$nC_k := \frac{n!}{k! \cdot (n-k)!}$	$nC_k = 3$
$n = 6$	$k! = 2$
$k! = 2$	$k! = 2$
$n = 3$	$k! = 2$
$n = 3$	$k! = 2$
$n = 3$	$k = 2$

 \land number of Combination of n things take k at at time

What about the larger example above?

 $n := 20$ < n things...

 $k = 7$ < taken k at a time

nC_k :=
$$
\frac{n!}{k! \cdot (n-k)!}
$$
 nC_k = 7.752 × 10⁴

 \land number of Combination of n things take k at at time

$$
\frac{nP_k}{nC_k} = 5040
$$
 < a somewhat larger difference between
Permutations and Combinations here!

Built-in Functions:

Most software packages contain built-in functions for Permutations and Combinations:

Standard & Conditional Probability\n\n3\n\n3\n\n3\n\nare packages contain built-in functions for Permutations and Combinations:\n
$$
n := 20
$$
\n $k := 7$ \n $permut(n, k) = 3.907 \times 10^8$ \n $n_1 = 3.907 \times 10^8$ \n $n_2 = 3.907 \times 10^8$ \n $n_3 = 3.907 \times 10^8$ \n $n_4 = 3.907 \times 10^8$ \n $n_5 = 3.907 \times 10^8$ \n $n_6 = 7.752 \times 10^4$ \n $n_7 = 7.752 \times 10^4$ \n $n_8 = 7.752 \times 10^4$ \n $n_9 = 7.752 \times 10^4$ \n $n_1 = 7.752 \times 10^4$ \n $n_1 = 7.752 \times 10^4$ \n $n_2 = 7.752 \times 10^4$ \n $n_3 = 7.752 \times 10^4$ \n $n_4 = 7.752 \times 10^4$ \n $n_5 = 7.752 \times 10^4$ \n $n_6 = 7.752 \times 10^4$ \n $n_7 = 7.752 \times 10^4$ \n $n_8 = 7.752 \times 10^4$ \n $n_9 = 7.752 \times 10^4$ \n $n_1 = 7.752 \times 10^4$ \n $n_1 = 7.752 \times 10^4$ \n $n_2 = 7.752 \times 10^4$ \n $n_1 = 7.752 \times 10^4$ \n $n_1 = 7.752 \times 10^4$ \n $n_2 = 7.752 \times 10^4$ \n

Prototype in R:

PERMUTATIONS AND COMBINATIONS n=20 $k=7$ #PERMUTATIONS # No built-in function found, so I'll calculate it directly PermutaƟons=factorial(n)/(factorial(n-k)) **Permutations**

COMBINATIONS - calculated directly CombinaƟons=factorial(n)/(factorial(k)*factorial(n-k)) **Combinations**

BUILT-IN FUNCTION FOR COMBINATIONS choose(n,k)

Important symmetry in calculation of Combinations:

Probability by reference to large samples:

There are two important perspectives:

- Frequentist (or Standard) Statistical Methods mostly what we will do in this course.
- Bavesian Inference increasingly prominent in several biological & biomedical fields.

Frequentist Method:

"The probability of an event is the relative frequency of a set of outcomes over an indefinitely (or infinite) large number of trials." Rosner 206 p. 44 Definition 3.1

Sometimes, for theoretical reasons, aspects of the probablity distributions are known or are assumed. More commonly in practice, however, one takes a reasonably large empirical sample and compares it with known theoretical distributions, such as the Normal Distribution.

$$
x := \text{norm}(100, 0, 1)
$$

< For example data points drawn by this function gives following histogram...

 $plot := histogram(30, x)$

 \wedge From this limited sample, one might conclude that the population from which it was drawn has a Normal distribution...

 $x = \text{norm}(5000, 0, 1)$ < But what if we draw a bigger sample, say 5000 values, plot := histogram(100, x) **and plot it with 100 bins instead of 30?**

Conclusion: a bigger sample is usually better in guessing an underlying probability distribution... But other factors usually come into play including cost/time in conducting the study, and other biases of one sort or another.

Bayesian Inference:

Here two kinds of probability are distinguished:

"The *prior probability* of an event is the best guess by the observer of an event's probability in the absence of data. This prior probability may be a single number, or it may be a range of likely values for the probability, perhaps with weights attached to each possible value." Rosner 2006 p. 63, Definition 3.16.

"The *posterior probability* of an event is the probability of an event after collecting some empirical data. It is obtained by integrating information from the prior probability with additional data related to the event in question." Rosner 2006 p. 64, Definition 3.17.

We'll look at aspects of Bayesian Inference shortly...

The general logic of probability:

Under either of the above views, probability (both as a concept and a property) obeys fundamental logical (or mathematical) rules. These rules are very important to all aspects of statistical inference and in direct prediciton of outcomes.

Terminology:

Mutually exclusive events:

Two or more events (A,B,C...) are mutually exclusive if they can not both happen simultaneously.

Intersection of events is the empty set:

Union of events - The Law of Addition of probabilities applies:

$$
P(A_1 \vee A_2 \vee A_3 \veeA_i) = (P(A_1) + P(A_2) + P(A_3) + + P(A_i))
$$

Examples: \wedge for multiple exclusive events, add them all.

Flipping a coin: H=event 'heads', T=event 'tails'

For a 'fair' coin, $P(H) = 0.5 \& P(T) = 0.5$ Therefore: $P(H \wedge T) = \phi \& P(H \vee T) = P(H) + P(T) = 0.5 + 0.5 = 1.0$

Rolling a die: Here there are 6 mutally exclusive events: 1, 2, 3, 4, 5, 6 For a 'fair' die, $P(i) = 1/6$ for all 6 events

Therefore: $P(2 \wedge 6) = \phi \& P(2 \vee 6) = P(2) + P(6) = 1/6 + 1/6 = 1/3$

Potentially co-ocurring events:

Two or more events (A,B,C...) may occur simultaneously. There are two kinds:

1. Independent events:

The probilities of events $P(A)$, $P(B)$, $P(C)$ etc. have no bearing on each other.

Intersection of events - the Law of Multiplied probabilities applies:

Standard & Conditional Probability
 Standard & Conditional Probability
 Proper events (A,B,C....) may occur simultaneously. There are two kinds:
 Properties of events - the Law of Multiplied probabilities applies:
 Standard & Conditional Probability

nay occur simultaneously. There are two kinds:

A), P(B), P(C) etc. have no bearing on each other.

the Law of Multiplied probabilities to find the

probability of both events occuring < multiply the separate probabilities to find the probability of both events occuring simultaneously. $P(A \wedge B) = P(A) P(B)$

$$
P(A_1 \wedge A_2 \wedge A_3 \wedgeA_i) = P(A_1) \cdot P(A_2) \cdot P(A_3) P(A_i)
$$

 $^{\wedge}$ multiply all of them for multiple events

Union of events - Expanded Law of Addition applies:

Note that Union for multiple independent events greater than two is not given...

Example:

In a sample 50 birds, by chance 20 are male and 30 are female. Out of these, 7 males and 13 females test positive for a potentially dangerous virus. If a bird is chosen at random from this sample, what is the probability of obtaining a female or a bird testing positive for the virus but not both occurring together?

P(female or pos) = P(female) + P(pos) - P(female and pos) = $30/50 + 20/50 - 13/50 = 37/50$

2. Dependent events:

The probabilities of two events are related such that knowing the outcome of one event influences the probability of the other.

Covariance:

 $\text{cov}_{\text{PLSL}} := \left(\frac{1}{1} \right)$ $n - 1$ $\left(\right)$ $\bigg) \cdot \bigg[\sum_i$ L $\overline{}$ \downarrow \rfloor $c = \left| \frac{1}{\cdot} \right| \cdot \left| \sum_{i=1}^{n} \left| PL_i - PL_{bar} \right| \cdot \left(SL_i - SL_{bar} \right) \right|$ $cov_{PLSL} = 1.274$

Intersection of events - the Law of Multiplied probabilities fails:

 $P(A \wedge B) \neq P(A) P(B)$

This is a more formal statement of what dependence actually means. In practical terms, one often assesses the separate probabilities for A and B, and then compares their product with a separately estimated probability of both events occuring simultaneously to see if they match.

To proceed at this point, one needs a concept of conditional probability...

* See below for more than two events!

Conditional Probability:

The concept of conditional probability can be applied to both the independent and dependent cases of potentially simultaneous events above, so I'll give both here..

Definition of Conditional Probability:

Rearranging the Law of Multipied Probabilities for two dependent events to solve for one of the individual probabilities (i.e., $P(B)$), gives the definition for **conditional probability**:

$$
P\left(\frac{B}{A}\right) = \frac{P(A \wedge B)}{P(A)}
$$
 < $P(B)$ is also written as $P(B|A)$ with no difference in meaning.

 \wedge This is the conditional probability for B given prior knowledge of A...

Calculating Intersection with Conditional Probability:

1. Independent case:

 $P(A \wedge B) = P(A) \cdot P(B)$ < Equalities here makes the Law of Multiplied probabilities a special case of the more general one below... $P(B|A) = P(B) = P(\sim\!\!A)$

2. More important Dependent case:

5tandard & Conditional Probability
\n10g Intersection with Conditional Probability:
\ndependent case:
\n
$$
P(B|A) = P(B) = P(-A) \leftarrow
$$
 Equalities here makes the Law of Multipplied
\n $P(A \wedge B) = P(A) \cdot P(B)$ probabilities a special case of the more general one
\nbelow...
\n1000
\n1011
\n1012
\n1013
\n1014
\n1015
\n1016
\n1017
\n1018
\n1019
\n101

$$
P(A_1 \wedge A_2 \wedge A_3 \wedgeA_i) = P(A_1) \cdot P\left[\frac{A_2}{(A_1)}\right] \cdot P\left[\frac{A_3}{(A_2 \wedge A_1)}\right] \cdot ... \cdot P\left(\frac{A_i}{A(i-1) \wedge A_3 \wedge A_2 \wedge A_1}\right)
$$

^ For more than three events...

Calculating Total Probability from Conditional Probability:

This formulation is common to both the Independent and Dependent cases:

 $P(A) = \sum_{i} P(A|B_i) \cdot P(B_i)$
 \leq For A given multiple prior probabilities B_i

1. Independent case:

The formulas simply reduces to multiplying $P(B)$ or $P(B_i)$ depending on number of B_i's

2. Dependent case:

The formula doesn't reduce and conditional probabilties must be used as stated above.

Bayes' Rule:

The point of this procedure for two events $A \& B$ is to estimate one conditional probability $P(B|A)$ from the other conditional probability $P(A|B)$ and one total probablity $P(B)$.

The formulas simply reduces to multiplying P(B) or P(B_i) depending on number of B_i's
\n**pendent case:**
\nThe formula doesn't reduce and conditional probabilities must be used as
\nstated above.
\n**e:**
\nThe point of this procedure for two events A & B is to estimate one conditional probability
\nP(B|A) from the other conditional probability P(A|B) and one total probability P(B).
\n
$$
P\left(\frac{B}{A}\right) = \frac{P\left(\frac{A}{B}\right) \cdot P(B)}{P\left(\frac{A}{B}\right) \cdot P(B) + P\left(\frac{A}{\text{not}B}\right) \cdot P(\text{not}B)}
$$
\n
$$
P\left(\frac{B}{B}\right) = \frac{P\left(\frac{A}{B}\right) \cdot P(B) + P\left(\frac{A}{\text{not}B}\right) \cdot P(\text{not}B)}{P\left(\frac{A}{B}\right) \cdot P(\text{not}B)}
$$
\n
$$
P\left(\frac{B_i}{B}\right) = \frac{P\left(\frac{A}{B_i}\right) \cdot P(B_i)}{P\left(\frac{A}{B_i}\right) \cdot P(B_i)}
$$
\n
$$
P\left(\frac{B_i}{B_i}\right) = \frac{P\left(\frac{A}{B_i}\right) \cdot P(B_i)}{P\left(\frac{A}{B_i}\right) \cdot P(B_i)}
$$
\n
$$
P\left(\frac{B_i}{B_i}\right) = \frac{P\left(\frac{A}{B_i}\right) \cdot P(B_i)}{P\left(\frac{A}{B_i}\right) \cdot P(B_i)}
$$
\n
$$
P\left(\frac{B_i}{B_i}\right) = \frac{P\left(\frac{A}{B_i}\right) \cdot P(B_i)}{P\left(\frac{A}{B_i}\right) \cdot P(B_i)}
$$
\n
$$
P\left(\frac{B_i}{B_i}\right) = \frac{P\left(\frac{A}{B_i}\right) \cdot P(B_i)}{P\left(\frac{A}{B_i}\right) \cdot P(B_i)}
$$
\n
$$
P\left(\frac{B_i}{B_i}\right) = \frac{P\left(\frac{A}{B_i}\right) \cdot P(B_i)}{P\left(\frac{A}{B_i}\right) \cdot P(B_i)}
$$
\n
$$
P\left(\frac{B_i}{B_i}\right) = \frac{P\left(\frac{A}{B_i}\right) \cdot P(B_i)}{P\left(\frac{A}{B_i}\right) \cdot P(B_i)}
$$
\n
$$

$$

< Of course, as above, the defined roles of A & B here can be reversed.

 $P(B_i)$
 $P(B_i)$ are contributional probabilities of the B's given in antiple profile probabilities must be used as

bove.

The mula doesn't reduce and conditional probabilities must be used as

bove.

For example in two ev eneral form of Bayes' Rule giving multiple conditional pabilities for the B's given knowledge of multiple conditional probabilites $P(A|B_i)$ and multiple total probabilites P(B_i).