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^ number of permutations of n things taken k at at time
For example, let the n things be the letters: A, B, C.  How many pairs of letters can we 
make where the order of letters is important?

AB AC BC 3
3 2( ) 6 < fortunately the number n is relatively small, six!

BA CA CB
What happens if:

n 20 < n things...
k 7 < taken k at a time n 2.433 1018 < Fortunately we have 

this formula, because 
listing all of the possilities
and counting them up 
would take a lot of time...

k 5.04 103nPk n
n k( ) nPk 3.907 108 n k( ) 6.227 109

^ number of Permutations of n things take k at at time

Standard & Conditional Probability
ORIGIN 0
Probability as a Concept:

"The probability of an event is the likelihood of that event expressed either by the relative frequency 
observed from a large number of data or by knowledge of the system under study"  Zar 2010 p 60.
Statistics is typically based on a pair of quantities:
           X       <- observed sample values
          P(X)   <- probability of the sampled values under some model of probability.
In fact, associating these two quantities is not at all straightforward and is often a point of controversy as 
both a theoretical and practical matter.  

Probability by knowledge of a system:
Some systems are simple enough that concrete probabilities can be deduced directly by counting all possible 
outcomes.  For instance, in flipping a "fair" coin there are only two possible outcomes with equal 
probabilities of occurring.  Or, in rolling a single die, there are only six possible outcomes also with equal 
probabilities.  Mendelian inheritance is another example in which probabilities of specific genotypes can be 
calculated using well-known ratios such as 9:3:3:1 for two dominant/recessive alleles on different 
chromosomes.
Counting all possible outcomes is greatly facilitated by considering Permutations and Combinations. 

Permutations:
"A permutation is an arrangement of objects in a specific sequence." Zar 2010 p. 51
"The number of permutations of n things taken k at a time ... represents the number of ways of selecting 
k items out of n where the order of selection is important."  Rosner 2006 Definition 4.8, p. 91. 

n 3 < n things... meaning of factorials (!)
k 2 < taken k at a time n 6 3 2 1 6

k 2 2 1 2
nPk n

n k( ) nPk 6 < Zar Eq. 5.6 n k( ) 1
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n 3 < n things...
k 2 < taken k at a time n 6 <  Note that this is 

half the number of 
Permutations with 
n=3, k=2.

k 2nCk n
k n k( ) nCk 3 n k( ) 1

^ number of Combination of n things take k at at time
What about the larger example above?

n 20 < n things...
k 7 < taken k at a time

nCk n
k n k( ) nCk 7.752 104

^ number of Combination of n things take k at at time
nPk
nCk 5040 < a somewhat larger difference between 

Permutations and Combinations here!

Degenerate Permutations:
Zar 2010 gives additional formulas for permutations in which not all sequences are considered unique.  
These formulas are not of general importance, although for particular problems you may find them useful.

Circular Arrangements:
CnPk n

n k( ) k CnPk 5.581 107 n k( ) k 3.138 1013

Indistinguishable objects:
i 0 2 < 15 indistinguishable in class 1
N 20 < number of objects in three classes: n

15
3
2




 < 3 indistinguishable in class 2
< 2 indistinguishtable in class 3

DnPk N

i
ni DnPk 1.55 105

i
ni 1.569 1013 n0 n1 n2 1.569 1013

^ Note in all degenerate cases, the denominator is larger than the non-degenerate case. 
 Thus the number of permutations will always be smaller.

Combinations: 
"If groups... are important to us, but not the sequence of objects within groups, then we are speaking of 
combinations"  Zar 2010 p. 55
 
"The number of combinations of n things taken k at a time ... represents the number of ways of selecting 
k objects out of n where the order of selection does not matter." Rosner 2006 Definition 4.11, p. 93.
Combinations are degenerate permutations in the same sense as above when membership is important 
but order is not.  
For example with same n & k as the first one above:
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Sometimes, for theoretical reasons, aspects of the probablity distributions are known or are assumed.  
More commonly in practice, however, one takes a reasonably large empirical sample and compares it 
with known theoretical distributions, such as the Normal Distribution.

"The probability of an event is the relative frequency of a set of outcomes over an indefinitely (or infinite) 
large number of trials."  Rosner 206 p. 44 Definition 3.1

Frequentist Method:

There are two important perspectives:
- Frequentist (or Standard) Statistical Methods - mostly what we will do in this course.
- Bayesian Inference - increasingly prominent in several biological & biomedical fields.

Probability by reference to large samples:

permut n n k( )[ ] 4.827 1014permut n k( ) 3.907 108

< k or (n-k) give
    the same result for combination
    but NOT permutation.

combin n n k( )[ ] 7.752 104combin n k( ) 7.752 104
Important symmetry in calculation of Combinations:

# PERMUTATIONS AND COMBINATIONSn=20k=7#PERMUTATIONS# No built-in funcƟon found, so I'll calculate it directlyPermutaƟons=factorial(n)/(factorial(n-k))PermutaƟons
# COMBINATIONS - calculated directlyCombinaƟons=factorial(n)/(factorial(k)*factorial(n-k))CombinaƟons
# BUILT-IN FUNCTION FOR COMBINATIONSchoose(n,k)

Prototype in R:
nCk  7.752 104combin n k( ) 7.752 104

< and match our calculations above 
so serve as MathCad prototype...nPk 3.907 108permut n k( ) 3.907 108

k 7
n 20

Most software packages contain built-in functions for Permutations and Combinations:
Built-in Functions:
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x rnorm 100 0 1( ) <  For example data points drawn by this function gives following histogram...
plot histogram 30 x( )

3 2 1 0 1 2 3 40

5

10

15

plot 1 

plot 0 
^ From this limited sample, one might conclude that the population from 
which it was drawn has a Normal distribution... 

x rnorm 5000 0 1( ) <  But what if we draw a bigger sample, say 5000 values, 
     and plot it with 100 bins instead of 30? plot histogram 100 x( )

4 3 2 1 0 1 2 3 40

50

100

150

200

plot 1 

plot 0 

Conclusion: a bigger sample is usually better in guessing an underlying probability distribution... 
But other factors usually come into play including cost/time in conducting the study, and other 
biases of one sort or another.



Biostatistics 050 Standard & Conditional Probability 5

Therefore: P 2 6( ) =    & P 2 6( ) P 2( ) P 6( )=  = 1/6 + 1/6 = 1/3
Rolling a die: Here there are 6 mutally exclusive events: 1, 2, 3, 4, 5, 6
                    For a 'fair' die, P(i) = 1/6 for all 6 events

For a 'fair' coin, P(H) = 0.5 & P(T) = 0.5  
Therefore: P H T( ) =    & P H T( ) P H( ) P T( )=  = 0.5 + 0.5 = 1.0

Flipping a coin:  H=event 'heads', T=event 'tails'
Examples: ^ for multiple exclusive events, add them all.

P A1 A2 A3 ....Ai  P A1  P A2  P A3  .... P Ai  =

<  Probability of either A or B happening are their
     separate probabilities added together...P A B( ) P A( ) P B( )=

Union of events - The Law of Addition of probabilities applies:

< for two or more events iP A1 A2 ....Ai  =
< for two events (the smallest number where intersection
                                                 has a meaning)P A B( ) =

Intersection of events is the empty set:

Two or more events (A,B,C...) are mutually exclusive if they can not both happen simultaneously.
Mutually exclusive events:

sample space = the set of all possible outcomesan event = any specific outcome
P(X) = probability of event X, where 0 P X( ) 1
complement of X = (1-P(X)) = P(~X).  Complement is the probability of X
                                                                              not happening.

Terminology:

Under either of the above views, probability (both as a concept and a property) obeys fundamental logical 
(or mathematical) rules.  These rules are very important to all aspects of statistical inference and in 
direct prediciton of outcomes.

The general logic of probability:
We'll look at aspects of Bayesian Inference shortly...

"The posterior probability of an event is the probability of an event after collecting some 
empirical data.  It is obtained by integrating information from the prior probability with additional 
data related to the event in question."  Rosner 2006 p. 64, Definition 3.17.

"The prior probability of an event is the best guess by the observer of an event's probability in 
the absence of data.  This prior probability may be a single number, or it may be a range of likely 
values for the probability, perhaps with weights attached to each possible value." Rosner 2006 p. 63, 
Definition 3.16.

Here two kinds of probability are distinguished:
 Bayesian Inference:
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201330

In a sample 50 birds, by chance 20 are male and 30 are female. Out of these, 7 males and 13 
females test positive for a potentially dangerous virus. If a bird is chosen at random from this 
sample, what is the probability of obtaining a female or a bird testing positive for the virus - 
but not both occurring together?
P(female or pos) =  P(female) + P(pos) - P(female and pos) = 30/50 + 20/50 - 13/50 = 37/50

Example:
Note that Union for multiple independent events greater than two is not given...

Check Venn diagrams in the text to puzzle this out!
Note: the complement here 
^ = P(~A) or P(~B)

P A B( ) P B( ) P A( ) 1 P B( )( )=
<  The probability of A or B happening is the probability
     of one plus the simultaneous occurrence of the other
     but not the first!

P A B( ) P A( ) P B( ) 1 P A( )( )=

Alternate equivalent forms
for Independent events only:

< The probability of A or B happening is the separate
    probabilities added together minus the probability
    that both A & B occur together 

P A B( ) P A( ) P B( ) P A B( )=
Union of events - Expanded Law of Addition applies: 

^ multiply all of them for multiple events
P A1 A2 A3 ....Ai  P A1  P A2  P A3  .... P Ai =

<  multiply the separate probabilities to find the
     probability of both events occuring simultaneously.P A B( ) P A( ) P B( )=

Intersection of events - the Law of Multiplied probabilities applies:
The probilities of events  P(A), P(B), P(C) etc. have no bearing on each other.

1. Independent events:
Two or more events (A,B,C...) may occur simultaneously.  There are two kinds:

Potentially co-ocurring events:
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Covariance:
covPLSL 1

n 1
  i

PLi PLbar  SLi SLbar  
 covPLSL 1.274

Intersection of events - the Law of Multiplied probabilities fails:
P A B( ) P A( ) P B( )
This is a more formal statement of what dependence actually means.  In practical terms, one 
often assesses the separate probabilities for A and B, and then compares their product with a 
separately estimated probability of both events occuring simultaneously to see if they match. 
To proceed at this point, one needs a concept of conditional probability...
P A B( ) "P(B|A)" P A( )= <  intersection in terms of conditional probability.

     Note that you can switch the roles of A & B depending on
     which is prior probability P(X) = known prior to collecting data
     for the study versus conditional probability "P(X|Y)" knowledge
     of Y influencing the probability of X

P B A( ) "P(A|B)" P B( )=

* See below for more than two events!
Conditional Probability:

The concept of conditional probability can be applied to both the independent and dependent cases of 
potentially simultaneous events above, so I'll give both here..

Definition of Conditional Probability:
Rearranging the Law of Multipied Probabilities for two dependent events to solve for one of 
the individual probabilities (i.e., P(B)), gives the definition for conditional probability:

P B
A

 
P A B( )
P A( )= <  P(B) is also written as P(B|A) with no difference in meaning.

^ This is the conditional probability for B 
      given prior knowledge of A...

2. Dependent events:
The probabilities of two events are related such that knowing the outcome of one 
event influences the probability of the other.

iris READPRN "c:/DATA/Biostatistics/iris.txt"( ) <  Reading the Famous Iris 
data again...SL iris 1  SW iris 2  PL iris 3  PW iris 4 

4 5 6 7 80

2

4

6

8

PL

SL

< A plot of Sepal Length (SL) and Petal
    Length (PL) shows dependence. 
    Measuring one variable gives important
    information about more probable
    values of the other.

n length PL( ) n 150
i 0 n 1
PLbar mean PL( ) PLbar 3.758
SLbar mean SL( ) SLbar 5.843
n

n 1 cvar PL SL( ) 1.274315
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P Bi
A




P A
Bi


 P Bi 

i
P A

Bi


 P Bi =
<  General form of Bayes' Rule giving multiple conditional 
probabilities for the B's given knowledge of multiple 
conditional probabilites P(A|Bi) and multiple total 
probabilites P(Bi).

P B
A

 
P A

B
  P B( )

P A
B

  P B( ) P A
notB

  P notB( )
=

<  Of course, as above, the defined
     roles of A & B here can be reversed.

The point of this procedure for two events A & B is to estimate one conditional probability 
P(B|A) from the other conditional probability P(A|B) and one total probablity P(B). 

Bayes' Rule:
The formula doesn't reduce and conditional probabilties must be used as 
stated above.

2. Dependent case:
The formulas simply reduces to multiplying P(B) or P(Bi) depending on 
number of Bi's

1. Independent case:
<  For A given multiple prior probabilities BiP(A) =  P(A|Bi).P(Bi)

P(B) = P(B|A).P(A) + P(B|~A).P(~A)
 < For two possibilities A & B...
      Note that the roles of A & B 
      are interchangeable

P(A) = P(A|B).P(B) + P(A|~B).P(~B)

This formulation is common to both the Independent and Dependent cases:
Calculating Total Probability from Conditional Probability:

^ For more than three events...

P A1 A2 A3 ....Ai  P A1  P A2
A1 

 P A3
A2 A1 

 .. P Ai
A i 1( ) A3 A2 A1


=

<  For three events...P A1 A2 A3  P A1  P A2
A1 

 P A3
A2 A1 

=

<  For two events....P A B( ) P B
A

  P A( )=

2. More important Dependent case:
P A B( ) P A( ) P B( )=

< Equalities here makes the Law of Multiplied 
probabilities a special case of the more general one 
below...

P(B|A) = P(B) = P(~A)
1. Independent case:

Calculating Intersection with Conditional Probability:


