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P (B|A) = (Joint Probability . Prior Probability) / Total Row Probability

<  Of course, as above, the defined
     roles of A & B here can be reversed.P B

A
 

P A
B

  P B( )
P A

B
  P B( ) P A

notB
  P notB( )

=

The point of this procedure for two events A & B is to estimate one conditional probability 
P(B|A) from the other conditional probability P(A|B) and one total probablity P(B). 

 Bayes' Rule:

Associated Truth Table: + -
+ Sensitivity false + test +

- false - Specificity test -

true + true -
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True state (Prior)

false positive for the symptoms or test(A|notBi)
false negative for the symptoms or test(notA|Bi)
Specificity of the symptoms or testP(notA|notBi)
Sensitivity of the symptoms or testP(A|Bi)
Predictive value negative of the test (PV-)P(~Bi|notA)

Bayesian Result (Posterior)Predictive value positive of the test (PV+)P(Bi|A)
Relative RiskP(B|A) / P(B|notA)

(see also: http://en.wikipedia.org/wiki/Sensitivity_and_specificity):
Clinical Terminology often used with Bayes' Rule - following Rosner 2006: 

In medicine, the predictive value of patient symptoms or of a clinical test is often analyzed using Bayesian 
analysis. Let A represent symptoms presented by a patient or results of a clinical test.  Let one or more B's 
represent patient condition(s) such as a disease.  Using Bayes rule, the conditional probability P(A|Bi) can be 
estimated from the portion of patients with known condition(s) Bi showing positive test results P(Bi|A).  Total 
probablility P(Bi) for the condition(s) can be estimated from the population at large.  Bayes' Rule allows the 
researcher to modify prior probilities from the population at large with specific information about the 
sensitivity and specificity of each test.  This is powerful stuff!

ORIGIN 0
Bayesian Analysis
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What's important is finding from some outside source for the conditional probabilities P(A|B), also 
known as likelihoods. 

P B
A

  k P A
B

  P B( )=

The denominator in Bayes rule (TotalPos in the example above) is often a constant estimated from the 
literature directly without explicitly calculating false positives.  In this event, Bayes Rule can be restated 
as follows using proportionality constant k:   

Bayes Rule as Proportional probabilities:

So, what to tell the patient?  The test in itself is not conclusive.  It is only slightly more likely that the 
patient has cancer than not.  Of course, the patient will not want to hear this!  Other factors and perhaps 
other disgnostic procedures will need to be considered... 

TotalPos 0.1064TotalPos Sensitivity PriorProb FalsePos( ) 1 PriorProb( )
Note: the denominator records the total frequency of expected positive results either true or false.

Sensitivity PriorProb 0.059Expected frequency of true positives = 
FalsePos( ) 1 PriorProb( ) 0.047Expected frequency of false positives = 

As you can see, even though the test is very good, because the incidence of this cancer in the general 
population is quite low, the frequency of false positives nearly equal the frequency of true positives for 
this test.

0.99 0.06
0.99 0.06( ) 0.05 0.94( ) 0.55827PredValue 0.55827PredValue Sensitivity PriorProb

TotalPos

TotalPos 0.1064TotalPos 0.99 0.06( ) 0.05 0.94( )
PriorProb 0.06

FalsePos 0.05FalsePos 1 Specificity
Specificity 0.95
Sensitivity 0.99

+ -
+ 0.99 0.05 0.1064

- 0.01 0.95 0.8936

0.06 0.94

Cancer
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Suppose your patient apprehensively awaits the results of a test for a specific type of cancer.  The test is a 
very good one with a sensitivity of 99% and specificity of 95%.  The incidence of this cancer in the general 
population is 6%.  Given that the patient tests positive for the test, do you advise immediate surgery?

Test for Cancer:
Example:
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sensitivityN 0.1 = P(smoker- | death+)
priorProb 0.000513 = P(deaths)
totalPosN 1 0.188 = P(smoker-) totalPosN 0.812
PredValueN = P(death+ | smoker-)

PredValueN sensitivityN priorProb
totalPosN PredValueN 0.00006318 < risk to non-smokers

Relative Risk:
PredValueS
PredValueN 38.872 < Smokers have almost 39 times the risk of dying of lung 

    cancer than non-smokers.  

Solving Bayes rule using a Tree Diagram:
Bayes Rule can also be stated in terms of intersection of probabilities as follows:

P B
A

 
P A B( )
P A( )=

As a result, it is easy to visualize the problem in terms of a tree diagram.  

Example:
Lung Cancer Death due to Smoking:

To estimate death rates associated with smoking, one can either conduct an expensive survey to measure 
this directly or use available data in the literature and Bayes rule.  According to the CDC, there were 
158,248 deaths in the USA due to lung cancer in 2010,  The US census counted population size in 2010 was 
308,745,538.  According to the American Lung Association website, smoking is responsible for 90% of 
lung cancer related deaths.  The CDC estimates that 18.8% of adults in the US are smokers.  What's the 
relative risk of smokers to non-smokers of dying from lung cancer?

Frequency of Lung Cancer Deaths:

+ -
+ 0.9 0.188

- 0.1 0.812
0.000513 0.999487

Lung Cancer Death

Sm
oke

rs

158248
308745538 0.000513

Smokers Risk:
sensitivityS 0.9 = P(smoker+ | LC death+)
priorProb 0.000513 = P(LC death)
totalPosS 0.188 = P(smoker+)
PredValueS = P(death+ |smoker+)

PredValueS sensitivityS priorProb
totalPosS PredValueS 0.00246 < risk to smokers

Non-smokers Risk:
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= fraction non lung cancer patients are smokers P(S|nL) = falsePosS
nSnL 1 SnL nSnL 0.79 = fraction non lung cancer patients are non smokers P(nS|nL) = falsePosN

Risk to Smokers: P(L|S):
LS SL L

SL L SnL nL LS 0.004272

+ -
+ 0.9 0.21 0.21069

- 0.1 0.79 0.78931
0.001 0.999

Lung Cancer

Sm
oke

rs

LS 0.9 0.001
0.21069 LS 0.004272

Risk to Non-smokers: P(L|nS):

LnS nSL L
nSL L nSnL nL LnS 0.0001267

LnS 0.1 0.001
0.78931 LnS 0.0001267

Relative Risk:
LS
LnS 33.717

Example:
This example and associated diagram comes from www.milefoot.com/math/stat/prob-bayes.htm analyzing a 
similar problem to above, but in an enlightening way using a tree diagram.  I'll work the problem using 
Bayes rule and as intersection of probabilities using a tree diagram.  Setup from Milefoot.com:
"Suppose 0.1% of the American population currently has lung cancer, that 90% of all lung cancer cases are 
smokers, and that 21% of those without lung cancer also smoke."

Using Bayes Rule:
L 0.001 L 0.001 = fraction with lung cancer in population P(L)  = priorProb
nL 1 L nL 0.999 = fraction with no lung cancer P(nL)
SL 0.9 SL 0.9 = fraction lung cancer patients are smokers P(S|L) = sensitivityS
nSL 1 SL nSL 0.1 = fraction lung cancer patients are non Smokers P(nS|L) = sensitivityN
SnL 0.21 SnL 0.21
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Using a Tree Diagram:
Lung cancer? Smoker? Intersection

yes
no

yes

no

START
yes

no0.001

0.999

0.9

0.1

0.21
0.79

0.0009

0.0001

0.20979

0.78921

Totals

+
+

Risk to Smokers: P(L|S):
< intersection determined by following a single pathP L

S
 

P L S( )
P S( )= < All smokers

LS 0.001 0.9
0.0009 0.20979 LS 0.004272

Risk to Non-smokers:
< intersection determined by following a single pathP L

nS
 

P L nS( )
P nS( )= < All non-smokers

LnS 0.001 0.1
0.0001 0.78921 LnS 0.0001267

Relative Risk:
LS
LnS 33.717
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The Monty Hall Problem

This classic problem is a lot of fun because it stirs up a lot of controversy!  Monty Hall was the original 
host of the perennial game show Let's make a Deal.  Although not exactly following the show's rules, the 
problem goes like this:
A contestant is shown 3 doors.  One door hides a shiny new car, whereas the other two doors only goats. 
The contestant initially chooses a door.  Monty then reveals what's behind one of the other doors - goats! 
He then invites the contestant to stay with his first choice or switch to the remaining door.What should the contestant do?
In this problem, the initial choice involves choosing one door out of three with equal probabilities.  Thus 
P(B) = 1/3.
To calculate P(A|B) involves considering all possibilities where the car might be and given knowledge of 
this what door Monty chooses to open.  If he has a choice of doors, he opens one with equal probability to 
the other.

 
from Wikipedia at: http://en.wikipedia.org/wiki/Monty_Hall_problem

Assuming the contestant initially chose door 1 and Monty opens door 3, there are only two viable options:
If the car is behind door 1, Monty had choice of doors 2 or 3 each with liklihood 1/2. 
If the car is behind door 2, Monty can only open door 3, with likelihood 1.
So:
 P(B|A) = K.(1/2).(1/3) = K.(1/6) if the contestant stays with door 1, but
 P(B|A) = K.(1).(1/3) = K.(1/3) if the contestant switches to door 2.
Allowing the contestant to choose a different door at the start, yields different paths but the same results.
Thus switching yields twice the probability of winning the car because Monty gave us additional 
information by opening that door!  That's Bayesian...
Check out the simulation in section 4.6 to see if this works!  If you remain unconvinced, I particularly 
like the argument about using a full deck of 52 cards as opposed to the simulation with only three.  


