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Probability Distributions
ORIGIN 1
Statistics is based upon comparisons of measurements collected from one or more limited samples, with  
expected values characterizing the underlying population from which the samples have been drawn.  In fact, 
these expected values are sometimes/always not easily determined.  Important assumptions are always 
involved linking samples with populations and these assumptions underlie the usefulness of descriptive 
statistics, such as mean and variance.   
The logic of statistics is typically based on a pair of quantities:
           X       <  observed sample values
          P(X)   <   probability of the sampled values given a specified model of probability.
Models of probability differ depending on what's being analyzed, and are generally of two types:
Continuous < Here an infinite (or nearly so) number of observations are possible as in measuring
                             temperature, length, weight, etc. of some animal.
Discrete < Here only a limited number of values are expected such as "heads"  versus "tails" in a
                             coin toss, or "1", "2", "3", "4", "5", or "6" in a roll of a single die.
In either case, specific observations (X) are associated with probability P(X) using Probability functions 
where the area under the curve gives the probabilty for each value of x.  In working with statistical tests, the 
classical way to estimate P(X) from X or the inverse was to consult obligatory tables.  With the advent of the 
microcomputers, this is now much more efficiently handled by standard functions of four different types: d, 
p, q, and r.

Prototype in R:
? dnorm()? dt()? dchisq()? df()
? dbinom() 

Returns information about how to call standard d,p,q,r functions, e.g. for 
Normal Distribution:

The Normal DistribuƟonDescripƟonDensity, distribuƟon funcƟon, quanƟle funcƟon and random generaƟon for the normal distribuƟon with mean equal to mean and standard deviaƟon equal to sd. Usagednorm(x, mean=0, sd=1, log = FALSE)pnorm(q, mean=0, sd=1, lower.tail = TRUE, log.p = FALSE)qnorm(p, mean=0, sd=1, lower.tail = TRUE, log.p = FALSE)rnorm(n, mean=0, sd=1)
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<- Six classes in x with equal
      values that need not be
      whole numbers

^ expected number

2 4 616.64

16.66

16.68
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Expected probabilities:
E
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



Ei P 100
For 100 die tosses, expected number for each: 

P 0.167P 1
6

For a fair die, all probabilities are 1/6 for 
obtaining one of the numbers on any throw:
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



xi i
i 1 6

There are six possible observations:   "1"  = 1
                                                          "2" = 2
                                                          "3" = 3
                                                          "4" = 4
                                                          "5" = 5
                                                          "6" = 6 

single die:

<- Two classes in x have
       equal numbers

1 1.5 249.9
49.95

50
E

x

Expected for each class for  ^
     n = 100 coin tosses

Expected probabilities:

E 50
50


E 100 0.5
0.5


For 100 coin tosses, expected number of H = 100(1/2) = 50
                               expected number of T = 100(1/2) = 50 

P 0.5
0.5


For a fair coin:           P(H) = 1/2
                                  P(T) = 1/2

x 1
2

 < here each class is given

    an arbitrary number
There are two possible observations:  H < "heads" = 1
                                                          T < "tails"  = 2

coin toss:
Example Discrete Probability functions:
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# BINOMIAL DISTRIBUTION:# SETS UP VARIABLE X AS A RANGE x=seq(0,20,1)#NUMBER OF TRIALS:n=20#PROBABILITYp=0.5dist=dbinom(x,n,p)plot(dist,type=”s”)
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Prototype in R:

<   It is unlikely to find 0 or
     20 heads as outcome of
     20 coin tosses. An
     intermediate number is
     much more likely.
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EB dbinom k n p( )Expected probability for each k: (Ek):

ki i
i 0 n 1number of times one obtains a "heads"

Note that this is a range of discrete
possibilities (ranging from 0 to n)

p 1
2

probability of obtaining a heads (p)
(more genererally termed "success")

n 20total number of trials (n): 

If one conducts multiple trials with two possible outcomes, such as tossing a coin resulting in 
either a "heads" or "tails", the expected number of "heads" in a set of trials follows the 
binomial distribution.

Binomial distribution:
ORIGIN 0
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# NORMAL DISTRIBUTION:# SETS UP VARIABLE X AS A RANGEx=seq(-4,4,0.1)# SPECIFY MEAN (mu) & # STANDARD DEVIATION (sigma)mu=0sigma=1dist=dnorm(x,mu,sigma)plot(dist, type="p")

Prototype in R:
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ENE dnorm x  1  0.5   ENC dnorm x  0.5  
<  The Normal distribution defines a family of
      curves with different values of  and .

END dnorm x  1   ENB dnorm x  2  
ENA dnorm x   

< parameters of the standard normal curve where  is the
     mean of the distribution and  is the standard deviation  1 0
< Individual transformed values we plot on our x axis below.xi c i b( )
< Arbitrary linear transformation so we can see things in the plot.c 0.1b 1

2 n 
< Out of all possible values, we will arbitrarily look at a set of n points.
     At the scale we plot things here, this might as well be continuous... i 0 nn 50

Many forms of data are continuous, so the probability function is continuous and the area under the curve 
represents probability (often called "probability density"). Normal distributions are common, and underlie many 
statistical methods.

Normal Distribution:
Example Continuous Probability Density functions:
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#STUDENT'S t DISTRIBUTION:# SETS UP VARIABLE X AS A RANGE x=seq(-4,4,0.1)# SPECIFY DEGREES OF FREEDOMdŌ=1#PLOTTING WITH LINE TYPE “1” (the leƩer l)dist=dt(x,dŌ)plot(dist,type=”l”)

Prototype in R:
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ENE dt x 100 dft ENC dt x 10 dft 
END dt x 50 dft ENB dt x 2 dft 

ENA dt x dft 
< "degrees of freedom" for the t distribution dft 1
< Individual transformed values we plot on our x axis below.xi c i b( )
< Arbitrary linear transformation so we can see things in the plot.c 0.1b 1

2 n 
< Out of all possible values, we will arbitrarily look at a set of n points.
     At the scale we plot things here, this might as well be continuous... i 0 nn 50

Student's t distribution is similar to the Normal Distribution, but leptokurtic - with greater concentrations of 
point in the tails and around the mean.

Student's t Distribution:
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# CHI-SQUARE DISTRIBUTION:# SETS UP VARIABLE X AS A RANGE x=seq(0,8,0.1)# SPECIFY DEGREES OF FREEDOMdfchisq=5#PLOTTING dist=dchisq(x,dfchisq)plot(dist)

Prototype in R:
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ECE dchisq x dfchisq 10  ECC dchisq x dfchisq 3  
ECD dchisq x dfchisq 5  ECB dchisq x dfchisq 1   2 family plotted below.  As above, 

probability density is the area under 
each curve.

ECA dchisq x dfchisq 
< df.chisq is a parameter for the 2 distribution called
      "degrees of freedom".  Thus 2 defines a family of curves.

dfchisq 1
< Individual transformed values we plot on our x axis below.xi c i b( )
< Arbitrary linear transformation so we can see things in the plot.c 0.3b 1.4

< Out of all possible values, we will arbitrarily look at a set of n point.
     At the scale we plot things here, this might as well be continuous... i 0 nn 50

This distribution is commonly encountered in statistics, especially in what is known as "Goodness of Fit" tests.  
Chi-Square (2) Distribution:
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# F DISTRIBUTION:# SETS UP VARIABLE X AS A RANGE x=seq(0,8,0.1)# SPECIFY DEGREES OF FREEDOMdfF1=2dfF2=7#PLOTTING dist=df(x,dfF1,dfF2)plot(dist)

Prototype in R:
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ECE dF x dfF1 dfF2 10  ECC dF x dfF1 10  dfF2 
F family plotted below. Probability is 
density the area under each curve.ECD dF x dfF1 dfF2 1  ECB dF x dfF1 1  dfF2 

ECA dF x dfF1 dfF2 
< df.F1 & df.F2 are numerator and denominator "degrees of freedom" 
respectively.  Thus the F distribution defines a family of curves.

dfF2 1dfF1 1
< Individual transformed values we plot on our x axis below.xi c i b( )
< Arbitrary linear transformation so we can see things in the plot.c 0.3b 1.4

< Out of all possible values, we will arbitrarily look at a set of n point.
     At the scale we plot things here, this might as well be continuous... i 0 nn 50

Typical distributions an a wide variety ANOVA and Regression tests.
F Distribution:


