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^ R has a nearly 
identical function, see 
Biostatistics 070

dnorm(x,mu,sigma)
Prototype in R:

The two approaches give the  > 
same probability function P(X) 
for X, so this prototype 
confirms the built-in function.

Plotting the two sets of Y's:
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< MathCad's function asks us provide
    standard deviation rather than variance...2 100Y2i dnorm Xi   

Now, let's compare with Mathcad's built-in function:
Y1i
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Xi  2
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< Formula for Normal distribution.  Here we
     have computed P(X) for each of our X's.
     Zar 2010 Eq. 6.1, p. 66.

Xi i
< Defining a bunch of X's ranging in value from 0 to 100.  Remember that the 
range of X is infinite, but we'll plot 101 point here.  That should give us enough 
points to give us an idea of the Gaussian function shape!

i 0 100
< specifying variance (2)2 100 100
< specifying mean ( 50

Making the plot of N(50,100):
Prototyping the Normal Function using the Gaussian formula:

The Normal Distribution, also known as the "Gaussian Distribution" or "bell-curve", is the most widely 
employed function relating observations X with probabilty P(X) in statistics.  Many natural populations are 
approximately normally distributed, as are several important derived quantitities even when the original 
population is not normally distributed. 
Properly speaking, the Normal Distribution is a continuous "probability density function" meaning that 
values of a random variable X may take on any numerical value, not just discrete values.  In addition, 
because the values of X are infinite the "exact" probabiliy P(X) for any X is zero.  Thus, in order to 
determine probabilities one typically looks at invervals of X such as X >2.3 or 1< X < 2 and so forth.  It is 
interesting to note that because the probability P(X) = 0, we don't have to worry about correctly 
interpreting pesky boundaries, as seen in discrete distributions, since X > 2 means the same thing as X 2  
and X < 2 is the same as X 2 . 
As described previously, the Normal distribution N(,2) consists of a family of curves that are specified by 
supplying values for two parameters:   = the mean of the Normal population, and 2 = the variance of 
the same population.  

The Normal DistributionORIGIN 0
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< R has a nearly identical function 
rnorm(n,mu,sigma) where n = number 
of points desired

Histogram of X

X

Fre
que

ncy

0 50 100

0
20

40
60

80

#CREATING A PSEUDORANDOM NORMAL DISTRIBUTION:X=rnorm(1000,65,25)hist(X,nclass=50,col="gray",border="red")

Prototype in R:
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plot histogram 50 X( )
Histogram of X:

^ Mean and variance of this sample are close, but not exactly equal to N(65,625).  
This is to be expected of a sample as opposed to the entire population

Var X( ) 606.3107 < Note: mathcad has two functions:
 var(X) = population variance
 Var(X) = sample variance

n
n 1 var X( ) 606.3107
mean X( ) 63.5061

n 1000n length X( )
Descriptive Statistics for X:
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X rnorm 1000   
2 625 25 65

Simulation of Normally Distributed Data:
Location of mode changes (translation of ) and width of hump changes showing 
greater or lesser variance - see Biostatistics 070. 

What happens when  or 2 is changed:
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Standardizing the Normal Distribution:
In many instances, we have a sample that we may wish to compare with a Normal Distribution.  Using 
computer-based functions, as above, one has lit tle difficulty calculating probabilities P(X) and simulating 
additional samples from a Normally Distributed population N(,2).  When using published tables, 
however, it is often useful to compare probabilities with the Standard Normal Distribution ~N(0,1).  
This is done by Standardizing the Data:
Given your X's ~N(,2) you create a new variable Z ~N(0,1) by means of a Linear Transformation: 
i 0 999
Zi

Xi  
 < Z's are now Standardized ~N(0,1)

mean Z( ) 0.0598 < sample estimates are close, but not exactly equal to N(0,1)Var Z( ) 0.9701

Histogram of Z:
plot histogram 50 Z( )
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Prototype in R:
#STANDARDIZING DATA:mu=mean(X)sigma=sd(X)Z=(X-mu)/sigmaZ[1:10]hist(Z,nclass=50,col="gray",border="red")
Z2=scale(X,center=TRUE,scale=TRUE)Z2[1:10]
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Note: in both cases here, we had prior 
knowledge of  and 2.  
With real-world data, we will have to estimate 
these values, usually with Xbar & s2.
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#PQ FUNCTIONS FOR NORMAL DISTRIBUTION:mu=0sigma=1X=1.6449PHI=0.90dnorm(x,mu,sigma)       # interval esƟmate P(X) given Xpnorm(x,mu,sigma)       # cumulaƟve phi(X) given Xqnorm(PHI,mu,sigma)   # X given cumulaƟve phi(X)

Prototype in R:

N(0,1)
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Plots of Normal Distribution and Cumulative Normal Distributions
< Cumulative probability (X) for each XY4i pnorm Xi   
< Interval Estimate of probability P(X) for each XY3i dnorm Xi   

< parameters of the Normal N(0,1) distribution...2 1 1 0

< scaling 101 X's to a reasonable scale...Xi
i 50
10

i 0 100
Probabilities of the Normal Distribution and Cumulative Normal Distribution N(0,1):

The above graphs display the relationship between X values, or observations (also called quantiles), and the 
probability that a range (or bin) of X is expected to have given the assumption of Normal probability for X, 
indicated as P(X).  Most statistical software packages have standard "p" and "q" functions allowing conversion 
from X to P(X) and vice versa.  In the most useful form, the probability function is given as a Cumulative 
Probability (X) starting from X values of minus infinity up to X.  In each case a specific cumulative probability 
function reqires that one provides specific parameter values for the curve (,,), along with X or (X).   

Calculating Probabilities & Quantiles:
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pnorm 2.576    0.995 < (X)
pnorm 2.576    pnorm 2.576    0.99 < Calculating MAX cut-off - MIN cut-off

^ cumulative value at MIN of interval 99%
^ cumulative value at MAX of interval

Probability that X ranges between -1.96 and 1.96
dnorm 1.96    0.0584 dnorm 1.96    0.0584 < P(X)
pnorm 1.96    0.025 pnorm 1.96    0.975 < (X)
pnorm 1.96    pnorm 1.96    0.95 < Calculating MAX cut-off - MIN cut-off

^ cumulative value at MIN of interval 95%
^ cumulative value at MAX of interval

Prototype in R:
#EXAMPLE INTERVAL CALCULATIONS:mu=0sigma=1MIN=pnorm(-1,mu,sigma)MAX=pnorm(1,mu,sigma)MAX-MINMIN=pnorm(-2.576,mu,sigma)MAX=pnorm(2.576,mu,sigma)MAX-MINMIN=pnorm(-1.96,mu,sigma)MAX=pnorm(1.96,mu,sigma)MAX-MIN

Calculating Probability Intervals of the Cumulative Normal Distribution:
 0  1 < Normal distribution parameters (change these if desired)

Probability that X ranges between -1 and 1:
dnorm 1    0.242 dnorm 1    0.242 < P(X)
pnorm 1    0.1587 pnorm 1    0.8413 < (X)
pnorm 1    pnorm 1    0.6827 < Calculating MAX cut-off - MIN cut-off

^ cumulative value at MIN of interval
68.27%^ cumulative value at MAX of interval

Probability that X ranges between -2.576 and 2.576:
dnorm 2.576    0.0145 dnorm 2.576    0.0145 < P(X)
pnorm 2.576    0.005
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Calculating Quantiles of the Cumulative Normal Distribution:
Quantile Range for Probability 95%

qnorm 0.975    1.96
^ X values (quantiles) lying outside the 
95% probability range can occur either 
above 1.96 or below value -1.96.  This is the 
"two-tailed" situation where 5% lying 
outside the range is distributed 2.5% above 
1.96 and 2.5% below -1.96.

Quantiles associated with a range of Cumulative Probabilities:
ORIGIN 1
i 1 39 < Creating a range of 

    Cumulative Probabilities i i
40

Qi qnorm  i    < Finding the quantiles Q



0.025
0.050
0.075
0.100
0.125
0.150
0.175
0.200
0.225
0.250
0.275
0.300
0.325
0.350
0.375
0.400
0.425
0.450
0.475
0.500
0.525
0.550
0.575
0.600
0.625
0.650
0.675
0.700
0.725
0.750
0.775
0.800
0.825
0.850
0.875
0.900
0.925
0.950
0.975





 Q

1.95996
1.64485
1.43953
1.28155
1.15035
1.03643
0.93459
0.84162
0.75542
0.67449
0.59776
0.5244
0.45376
0.38532
0.31864
0.25335
0.18912
0.12566
0.06271

0
0.06271
0.12566
0.18912
0.25335
0.31864
0.38532
0.45376
0.5244
0.59776
0.67449
0.75542
0.84162
0.93459
1.03643
1.15035
1.28155
1.43953
1.64485
1.95996







Prototype in R:
#QUANTILESQ=qnorm(0.975,mu,sigma)QPHI=seq(0.025,0.975,0.025)PHIQ=qnorm(PHI,mu,sigma)Q


