$ORIGIN = 0$ The Normal Distribution

The Normal Distribution, also known as the "Gaussian Distribution" or "bell-curve", is the most widely employed function relating observations X with probabilty $P(X)$ in statistics. Many natural populations are approximately normally distributed, as are several important derived quantitities even when the original population is not normally distributed.

Properly speaking, the Normal Distribution is a continuous "probability density function" meaning that values of a random variable X may take on any numerical value, not just discrete values. In addition, because the values of X are infinite the "exact" probabiliy $P(X)$ for any X is zero. Thus, in order to determine probabilities one typically looks at invervals of X such as $X > 2.3$ or $1 < X < 2$ and so forth. It is interesting to note that because the probability $P(X) = 0$, we don't have to worry about correctly interpreting pesky boundaries, as seen in discrete distributions, since $X > 2$ means the same thing as $X \ge 2$ and $X < 2$ is the same as $X \le 2$.

As described previously, the Normal distribution $N(\mu,\sigma^2)$ consists of a family of curves that are specified by supplying values for two parameters: μ = the mean of the Normal population, and σ^2 = the variance of the same population.

Prototyping the Normal Function using the Gaussian formula:

Making the plot of N(50,100):

alues for two parameters: $\mu =$ the mean of the Normal population, and $\sigma^2 =$ the varian

pulation.

the Normal Function using the Gaussian formula:

g the plot of N(50,100):
 $\sqrt{100}$ $\sigma^2 = 100$ \leq specifying varia y place the probability $P(X) = 0$, we don't have to worry about correctly
see the probability $P(X) = 0$, we don't have to worry about correctly
s, as seen in discrete distributions, since $X > 2$ means the same thing as $X \ge$ $X_i := i$ \leq Defining a bunch of X's ranging in value from 0 to 100. Remember that the range of X is infinite, but we'll plot 101 point here. That should give us enough points to give us an idea of the Gaussian function shape! $i := 0..100$ \leq specifying variance (σ^{2}) $\sigma^2 = 100$ $\sigma := \sqrt{100}$ $\mu = 50$ < specifying mean (μ)

$$
\text{Y1}_{i} := \frac{1}{\sigma \cdot \sqrt{2 \cdot \pi}} \cdot \mathbf{e}^{\frac{1}{2} - \frac{1}{2\sigma^{2}} \left(X_{i} - \mu\right)^{2}}
$$

< Formula for Normal distribution. Here we have computed $P(X)$ for each of our X's. Zar 2010 Eq. 6.1, p. 66.

Now, let's compare with Mathcad's built-in function:

$$
Y2_i := \text{dnorm}\Big(X_i, \mu, \sigma\Big) \qquad \sigma^2 = 100
$$

< MathCad's function asks us provide standard deviation rather than variance...

Plotting the two sets of Y's:

The two approaches give the \mathbf{r} same probability function P for X, so this prototype confirms the built-in function.

Prototype in R:

dnorm(x,mu,sigma)

 \wedge R has a nearly identical function, see Biostatistics 070

What happens when μ or σ^2 is changed:

stics 080
 It happens when μ **or** σ^2 **is changed:**

Location of mode changes (translation of μ) and width of hump changes showing

greater or lesser variance - see *Biostatistics* 070.
 Ilation of Normally Distri Location of mode changes (translation of μ) and width of hump changes showing greater or lesser variance - see Biostatistics 070.

Simulation of Normally Distributed Data:

 $\mu = 65$ $\sigma = 25$ $\sigma^2 = 625$

Descriptive Statistics for X:

 $mean(X) = 63.5061$ $n := length(X)$ $n = 1000$

 $Var(X) = 606.3107$ \leq Note: mathcad has two func $var(X)$ = population variance $Var(X) = sample variance$ n $n - 1$ $var(X) = 606.3107$

 \land Mean and variance of this sample are close, but not exactly equal to N(65,625).

This is to be expected of a sample as opposed to the entire population

Histogram of X:

plot := histogram $(50, X)$

Prototype in R:

#CREATING A PSEUDORANDOM NORMAL DISTRIBUTION: X=rnorm(1000,65,25) hist(X,nclass=50,col="gray",border="red")

< R has a nearly identical function $rnorm(n,mu,sigma)$ where $n = number$ of points desired

Standardizing the Normal Distribution:

In many instances, we have a sample that we may wish to compare with a Normal Distribution. Using computer-based functions, as above, one has little difficulty calculating probabilities $P(X)$ and simulating additional samples from a Normally Distributed population $N(\mu,\sigma^2)$. When using published tables, however, it is often useful to compare probabilities with the Standard Normal Distribution $\sim N(0,1)$. This is done by *Standardizing* the Data: Normal Distribution

ing the Normal Distribution:

y instances, we have a sample that we may wish to compare with a Normal Distributer-based functions, as above, one has little difficulty calculating probabilities

inal s

Given your X's $\sim N(\mu,\sigma^2)$ you create a new variable Z $\sim N(0,1)$ by means of a Linear Transformation:

i := 0..999
\n
$$
Z_{i} := \frac{(X_{i} - \mu)}{\sigma}
$$
\n
$$
= -0.0598
$$
\n
$$
Var(Z) = -0.9701
$$
\nSample estimates are

ndardized $\sim N(0,1)$

 $Var(Z) = 0.9701$
Sample estimates are close, but not exactly equal to $N(0,1)$

Histogram of Z:

 $plot := histogram(50, Z)$

Prototype in R:

#STANDARDIZING DATA: mu=mean(X) sigma=sd(X) Z=(X-mu)/sigma Z[1:10] hist(Z,nclass=50,col="gray",border="red")

Z2=scale(X,center=TRUE,scale=TRUE) Z2[1:10]

knowledge of μ and σ^2 .

With real-world data, we will have to estimate these values, usually with X_{bar} & s².

Calculating Probabilities & Quantiles:

The above graphs display the relationship between X values, or observations (also called quantiles), and the probability that a range (or bin) of X is expected to have given the assumption of Normal probability for X, indicated as P(X). Most statistical software packages have standard "p" and "q" functions allowing conversion from X to $P(X)$ and vice versa. In the most useful form, the probability function is given as a *Cumulative* Probability $\Phi(X)$ starting from X values of minus infinity up to X. In each case a specific cumulative probability function reqires that one provides specific parameter values for the curve (μ , σ ,), along with X or $\Phi(X)$.

Probabilities of the Normal Distribution and Cumulative Normal Distribution N(0,1):

Normal Distribution
\nusing Probabilities & Quantiles:
\ne graphs display the relationship between X values, or observations (also called quantiles), an
\nty that a range (or bin) of X is expected to have given the assumption of Normal probability
\nas P(X). Most statistical software packages have standard "p" and "q" functions allowing
\nby
$$
\Phi(X)
$$
 and vice versa. In the most useful form, the probability function is given as a *Cumulative*
\n $y \Phi(X)$ satisfying from X values of minus infinity up to X. In each case a specific cumulative
\nrequires that one provides specific parameter values for the curve (μ, σ) , along with X or $\Phi(X)$
\nlilities of the Normal Distribution and Cumulative Normal Distribution N
\nii := 0...100
\n
$$
X_i := \frac{i - 50}{10}
$$
 < scaling 101 X's to a reasonable scale...
\n
$$
\mu := 0 \quad \sigma := 1 \quad \sigma^2 = 1
$$
 < parameters of the Normal N(0,1) distribution...
\n
$$
Y3_i := \text{dnorm}(X_i, \mu, \sigma)
$$
 < *Interval Estimate* of probability P(X) for each X
\n
$$
Y4_i := \text{pnorm}(X_i, \mu, \sigma)
$$
 < *Cumulative probability* $\Phi(X)$ for each X
\n
$$
Y4_i := \text{pnorm}(X_i, \mu, \sigma)
$$
 < *Cumulative probability* $\Phi(X)$ for each X
\n
$$
Y5 = \text{dnorm}(X_i, \mu, \sigma)
$$

Plots of Normal Distribution and Cumulative Normal Distributions

Prototype in R:

Calculating Probability Intervals of the Cumulative Normal Distribution:

 $\mu = 0$ $\sigma = 1$ < Normal distribution parameters (change these if desired)

Probability that X ranges between -1 and 1:

Normal Distribution

5
 of the Cumulative Normal Distribution:

distribution parameters (change these if desired)

-1 and 1:
 $m(1,\mu,\sigma) = 0.242$ < P(X)
 $m(1,\mu,\sigma) = 0.8413$ < $\Phi(X)$

= 0.6827 < Calculating MAX cut-off - M Normal Distribution
 $\alpha = 1$ < Normal distribution parameters (change these if desired)

bility that X ranges between -1 and 1:
 $\alpha = 1$ < Normal distribution parameters (change these if desired)

bility that X ranges bet billity that X ranges between -1 and 1:

norm(-1, μ , σ) = 0.242 dnorm(1, μ , σ) = 0.242 < P(X)

norm(-1, μ , σ) = 0.1587 paom(1, μ , σ) = 0.8413 < Φ (X)

rom(1, μ , σ) = norm(-1, μ , σ) = norm($-1, \mu, \sigma$) = 0.242 dnorm($1, \mu, \sigma$) = 0.242 < **P(X)**

norm($-1, \mu, \sigma$) = 0.1587 pnorm($1, \mu, \sigma$) = 0.8413 < **Φ(X)**

norm($1, \mu, \sigma$) = 0.1587 calculating MAX cut-off - MIN cut-off

^ cumulative value at MAX of interv norm(-1, μ , σ) = 0.1587 pnorm(1, μ , σ) = 0.8413 < Q(X)

comf(1, μ , σ) = pnorm(-1, μ , σ) = 0.6827 < Calculating MAX cut-off - MIN cut-off

^ cumulative value at MAX of interval

^ cumulative value a 80

ling Probability Intervals of the Cumulative Normal Distribution:
 $\sigma = 1$ < Normal distribution parameters (change these if desired)

aability that X ranges between -1 and 1:

dnorm(-1, μ, σ) = 0.242 dnorm(1, μ, σ) 90

ing Probability Intervals of the Cumulative Normal Distribution:
 $= 0$ $σ = 1$ < Normal distribution parameters (change these if desired)

ability that X ranges between -1 and 1:

dnorm(-1, μ, σ) = 0.242
 \leq so

o Normal Distribution

ing Probability Intervals of the Cumulative Normal Distribution:
 $=0$ σ = 1 < Normal distribution parameters (change these if desired)

ability that X ranges between -1 and 1:

dnorm(-1, μ, σ \land cumulative value at MIN of interval Normal Distribution

ong Probability Intervals of the Cumulative Normal Distribution:
 $\sigma = 1$ < Normal distribution parameters (change these if desired)

bility that X ranges between -1 and 1:
 $\text{norm}(-1, \mu, \sigma) = 0.242$ dn Normal Distribution

eq Probability Intervals of the Cumulative Normal Distribution:
 $\sigma = 1$ < Normal distribution parameters (change these if desired)

bility that X ranges between -1 and 1:
 $\text{norm}(1, \mu, \sigma) = 0.242$ doom

 $^{\wedge}$ cumulative value at MAX of interval 68.27%

Probability that X ranges between -2.576 and 2.576:

```
^{\circ} cumulative value at MIN of interval 99\%
```
$^{\wedge}$ cumulative value at MAX of interval

Probability that X ranges between -1.96 and 1.96

$$
pnorm(1.96, \mu, \sigma) - pnorm(-1.96, \mu, \sigma) = 0.95
$$
 Calculating MAX cut-off - MIN cut-off

 $^{\circ}$ cumulative value at MIN of interval 95%

 $^{\wedge}$ cumulative value at MAX of interval

Prototype in R:

```
#EXAMPLE INTERVAL CALCULATIONS:
mu=0sigma=1
MIN=pnorm(-1,mu,sigma)
MAX=pnorm(1,mu,sigma)
MAX-MIN
MIN=pnorm(-2.576,mu,sigma)
MAX=pnorm(2.576,mu,sigma)
MAX-MIN
MIN=pnorm(-1.96,mu,sigma)
MAX=pnorm(1.96,mu,sigma)
MAX-MIN
```
Calculating Quantiles of the Cumulative Normal Distribution:

