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Repeated Sampling: Distribution of Means and Confidence IntervalsORIGIN 0
Given the general setup in statistics between random variable X and the probability P(X) governed by a 
Probability Density Function such as the Normal Distribution, one typically uses a specific random sample to 
estimate the population parameters.  Estimation of this sort also involves considering what happens when a 
population is repeatedly sampled.  One is particularly interested in the sampling distribution of repeated 
estimates, such as the mean, and how these estimates may be related to probability.
For the Normal Distribution, the population parameters are:

 = population mean
2 = population variance

From our sample, we have the analogous calculations termed point estimates:
Xbar = sample mean
s2 = sample variance

Different kinds of statistical theory underlie point estimates generally allowing them to be categorized in 
one of two ways:
  - "minimum variance", also known as "least squares minimum" 
          "unbiased" or "Normal theory" estimators, and
  - "maximum liklihood" estimators.
How to calculate estimators of these two types is beyond the scope of introductory statistics courses.  The 
important thing to remember is that the two methods of estimation often, but not always, yield the same 
point estimators.  The point estimators, then feed into specific statistical techniques.  Thus, it is sometimes 
important to know which estimator is associated with a particular technique so as not mix approaches.  
Maximum liklihood estimators, based on newer theory, are often specifically indicated as such (often using 
'hat' notation).
In the case of estimating parameters for the Normal Distribution, Xbar is the point estimate for  under both 
estimation theories.  However s2 sum of squares with (n-1) as divisor is the point estimate using Normal 
theory whereas 2hat with same sum of sqares but using (n) as divisor is the point estimate using "maximum 
liklihood" theory.  Confusing, yes, but now that you know the difference not all that bad... 

Estimating error on point estimates of the mean:
Although Xbar is our Normal theory estimate of population parameter  based on a single sample, one might 
readily expect Xbar to differ from sample to sample, and it does.  Thus, we need to estimate how much Xbar will vary from sample to sample.  Multiple sampled means differ from each other much less than individual 
sample values of X will.  The relationship is called the standard variance of the mean.  The square 
root of variance for the mean is called the standard error of the mean or simply standard error.  

Standard Variance of the Mean = sample variance/n
                                             or
Standard Error of the Mean (SEM) = sample standard deviation / n
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Central Limit Theorem:

This result is one of the reasons why Normal theory, and the Normal Distribution underlie much of 
"parametric" statistics.   It says that although the populations from which random variable X are drawn 
may not necessarily be normally distributed, the population of means derived by replicate sampling will be 
normally distributed.  This result allows us to use the Normal Distribution with parameters 2 estimated 
respectively by Xbar and s2 (or occasionally 2hat) to estimate probabilities of means P(X) for various values 
of X.

Statistics evaluating location of the mean:
Suppose we collect a sample from a population and calculate the mean Xbar.  How reliable is Xbar as an 
estimate of ?  The usual approach is to estimate a difference (also called a distance) between Xbar and 
scaled to the variability in Xbar encountered from one sample to the next:

Z Xbar 

n


n

<  distance divided by Standard Error of the Mean

If somehow we know the population parameter  then we can resort directly to the standardized Normal 
Distribution ~N(0,1) to calculate probabilities P(Z) or cumulative probabilities (Z) .  However, in real life 
situations,  is not known and we must estimate  by s.  When we do this, the analogous variable t:

t Xbar 
s
n


n

< Same standardizing approach but
       using s instead of 

is no longer Normally distributed.  Instead, we resort to a new probability density function, known as 
"Student's t" to calculate P(t) or (t) given t.  Student's t is a commonly employed statistical function 
ranking high in importance along with the chi-square distribution (2) and the F distribution.  The Student's 
t distribution looks very much like the Normal distribution in shape, but is leptokurtic.  Typically in 
statistical software, both distributions are utilized with analogous functions.  See Biostatistics Worksheet 070 
 and the Prototype in R below for them.  Although Zar in Chapter 6 perfers only to talk about the Normal 
distribution by assuming he/we know  I think it may be clearer to talk about both together here.  The 
arguments are identical with the difference between them related to whether we know  or whether we 
estimate  by s.

Prototype in R:
#ANALOGOUS FUNCTIONS FOR #NORMAL AND T DISTRIBUTIONS
#NORMAL DISTRIBUTIONmu=0        #parameter for meansigma=1    #paramater for standard deviaƟonn=1000     #number of randomly generated data pointsX=1.96      #quanƟle XP=0.95      # cumulaƟve probability phi(X)rnorm(n,mu,sigma)   #to generate random data pointsdnorm(X,mu,sigma)   #P(X) from Xpnorm(X,mu,sigma)   #phi(X) from Xqnorm(P,mu,sigma)   #X from phi(X)

#t DISTRIBUTIONdf=5       #degrees of freedom parametern=1000   #number of randomly generated data pointsX=1.96    #quanƟle XP=0.95   # cumulaƟve probability phi(X) rt(n,df)  #to generate random data pointsdt(X,df)  #P(X) from Xpt(X,df)  #phi(X) from Xqt(P,df)   #X from phi(X)
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< We choose a limit probability allowing sample means to differ from  X 100 percent of the time...
1  0.95

^ since both the Normal Distribution and the t probability distributions are symmetrical, there 
are equal-sized tails above and below hypothesized or known .  Each tail therefore has /2 
probability.  This is commonly known as the Two-Tail case...

If  and  are known - the Normal Distribution Case:
 50  10 n 100
L qnorm 

2 0 1  L 1.96 
2 0.025 < lower limit of N(0,1) for /2

U qnorm 1 
2 0 1  U 1.96 1 

2 0.975 < upper limit of N(0,1) for /2

< calculating Confidence Interval using population  and .  
Note here that I calculated each tail explicitly so I added both L 
and U to determine the CI.  However, since the distribution is 
symmetrical, one might alternatively use:
 C = the absolute value of L or U.  

In that case one subtracts  C 
n  from the mean for the lower 

limit and adds C 
n  to the  mean for the upper limit.

    Note here that Error of the Mean is derived from known
    population parameters.

CI  L 
n  U 

n


CI 48.04 51.96( )

Confidence Interval for the Mean:
A sample Confidence Interval (CI) for a sample mean of X (or equivalently in Z or t) is the estimated 
range over which repeated samples of Xbar (or Zbar or tbar) are expected to fall (1-)x100 % of the time.  If 
a hypothesized value for mean, say 0, falls within a CI, then we say 0 is "enclosed" or "captured" by the 
CI with a confidence of (1-).  Equivalently, for repeated samples, 0 will be enclosed within repeated CI's 
(1- )x100 percent of the time.

Let's calculate CI from a pseudo-random example:
X rnorm 100 50 100  < here in fact we know =50 and 2 = 100
n length X( ) n 100
 50  100  10 < known population standard deviation 
Xbar mean X( ) Xbar 48.4955 < we can also pretend that we don't know the population 

parameters and must use sample mean and variance instead as 
one usually would with real data.s Var X( ) s2 96.4487

Calculation of Confidence Intervals:
 0.05
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#CONFIDENCE INTERVALSmu=50sigma=10n=100
X=rnorm(100,mu,sigma)alpha=0.05   
#NORMAL DISTRIBUTIONL=qnorm((alpha/2),0,1)LU=qnorm((1-alpha/2),0,1)U#confidence interval:mu+L*(sigma/sqrt(n))mu+U*(sigma/sqrt(n))
#t DISTRIBUTIONdf=n-1s=sqrt(var(X))L=qt((alpha/2),df)LU=qt((1-alpha/2),df)U#confidence interval:mu+L*(s/sqrt(n))mu+U*(s/sqrt(n))#NOTE: These values don't match MathCad#because they are based on a different sample!

Prototype in R:
CI 46.5468 50.4441( )
CI Xbar L s

n Xbar U s
n


< calculating Confidence Interval.  Note here that I calculated
    each tail explicitly so I added both L and U to determine the
    CI.  Note also SEM is measured by the sample quantity s

n  

1 
2 0.975U 1.9842U qt 1 

2 df 


2 0.025L 1.9842L qt 

2 df 

df 99df n 1 < single parameter of Student's t distribution 
     called "degrees of freedom"  df = (n-1)
     where n is sample size.

s 9.8208Xbar 48.4955
Parameters  and  must be estimated by sample Xbar and s:

If  and  are unknown - the t Distribution Case:


