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The Formal Logic of Statistical TestsORIGIN 0
The biological literature is full of scientific research papers in which the data are presumably random 
samples of larger populations.  From these, sample descriptive statistics are calculated and summarized.  
The authors then proceed to advance one or more hypotheses concerning the problem under study.  From 
this, usually in the Results section or associated tables, these hypotheses or related derived statistics are 
judged either to be statitically significant or insignificant, and often Probability values and/or confidence 
intervals are reported.  All of this, regarding hypotheses, significance and confidence intervals, falls under 
the rubric of Inferential Statistics.
As an associate editor of a major journal and frequent reviewer, I very often receive papers to evaluate 
that include inferential statistics.  It is depressingly common to see results summarized in an incoherent 
fashion.  Usually, incompletely labeled tables are presented that are strikingly similar to the output of one 
or another statistical "black box" with significance levels indicated by ** etc.   However, it remains unclear 
just what the author(s) had in mind, or just what conclusions they or the reader are supposed to draw from 
the output.  In reading the Material & Methods section of the paper, these authors are often very precise 
about the software utilized (e.g., SPSS vers. xxx, such-and-such a procedure with whatever options chosen) 
but frustratingly vague about WHY a particular technique was chosen given their data, or WHAT their 
statistical hypotheses might have been, or even HOW the results derived from the "black box" relate to 
the conclusions they are trying to draw.  Sometimes I come the the conclusion that the authors know what 
they are doing but are simply unclear in their presentation.  In other instances, however, the authors are 
definitely relying too much on the "black box" to do the thinking for them.  (As an aside, I tend to have 
fewer problems of this type with authors who use R.  My guess is that in order to use R, one usually has to 
spend a little more time learning proper statistical technique...)
In conducting inferential statistics in biological research, therefore, it is very important to be consider 
carefully and be explicit about the logic of what one is doing, and to provide readers of your papers with 
sufficient information that they can fill in the gaps where necessary.  Most textbooks in statistics present 
this logic reasonably well at least the first time encountered in the book.  Many, including Zar, become a 
little sloppy thereafter because they assume that they have already told you how the logic works (which 
they have) and are subsequently trying to add new issues into the mix along with, perhaps, an intuitive 
rationale.  Also, in the case of Zar, the author is attempting to be comprehensive, necessitating brevity 
within the extended narrative of the book. 
In my opinion, biologists conducing statistical analysis have the following multi-part problem:
1).  First, one must state clearly just what biological hypothesis, or hypotheses (one at a time), constitute
      the subject of study.  Such hypotheses must be independent, preferably stated prior to, data collection.
2).  Given the biological hypothesis, one must find an appropriate statistical procedure, or perhaps several,
       with underlying assumptions that qualify them as most readily applicable.
3).  Data must be collected and analyzed in a way that is consistent with all of the assumptions of the
       chosen statistical procedure(s).  The procedures typically follow a specific logic that must be
       understood and strictly followed.  
4).  Results then need to be presented in a way that repects the logic of each statistical test and allows for
       reconstruction of missing steps, when necessary, by potential readers.  
5).  Finally, and most importantly, there must be an explicit consideration of whether any of the statistical
      results actually mean anything as far as the original biological hypotheses were concerned.     
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Logic of Statistical Tests:
Here's an excellent framework to follow in conducting a statistical test (Example comes from a One-Sample 
t-test of the mean.  We'll see this shortly):
Assumptions:

- Observed values X1, X2, X3, ... Xn are a random sample from ~N(,2).
- Variance 2 of the population is unknown.

^ Each statistical test is only applicable to specific kinds of samples drawn from a 
population with specific properties.  In this case, data values X are a properly drawn 
random sample from a population that has a Normal Distribution with population 
parameters mean= and variance=2 that are unknown.  The researcher needs to 
verify whether the data at hand might be drawn from a Normal Distribution. If so, then 
one can proceed.  If not, the test is formally inapplicable.  In many instances, however, 
tests may be robust to violations of one or more assumptions.  For example, the t-test 
is reasonably robust to the assumption of population normal distribution, so usually one 
can proceed as long as the sample isn't wildly non-Normal.

Hypotheses:
H0:  = 0H1:  0   

< 0 is a specified value for  
< Two sided test

or 
H0:  = 0
H1:  < 0  

< 0 is a specified value for  
< One sided test

^ Biological hypotheses are restated formally in a statistical test as statistical hypotheses.  Statistical 
hypotheses consist of a matched pair of hypotheses that together comprise all possible events (i.e., 
outcomes) in the sample space (i.e., set of all possible outcomes - See Biostatistics Worksheet 050).  
In other words, the probability of the Union of hypotheses is exactly 1.0.  The pair of hypotheses 
consist of:
the null hypothesis H0                - a biologically "uninteresting" hypothesis often indicating no
                                                         effect for treatments,  random behavior, or otherwise
                                                         non-biological results 
the alternative hypothesis H1.    - a biologically "interesting" hypothesis perhaps indicating a    
                                                         value or difference for a biological treatment, etc.
The general strategy of a statistical test is to use a probability distribution to determine whether 
H0 is likely or unlikely.  If unlikely, we can reject H0 and in turn accept H1.  Acceptance of H1 would then be a statistical decision based on the fact that H1 is the only alternative hypothesis 
presented in the test.  Consideration of the biological interpretion of the test, and multiple possible 
alternative explanations, comes later.
In some instances, statistical hypotheses are termed "two-sided" if two distinct possibilities are 
implicit in H1.   For instance, in the two-sided statement of hypotheses above, H1 says that  < 0  or  > 0 .  By contrast, the one-sided statement of  hypotheses above allows for only one 
possibility  < 0 .   
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^ The decision rule compares the calculated test statistic of the sample with the 
critical value C.  If the rule is determined to be true, then H0 is rejected, and the 
alternative H1 accepted for statistical purposes.  Of course, upon rejecting H0, 
deciding whether H1 is the only viable biological hypothesis comes later.

< Two-way caseIF |t | > C THEN REJECT H0, OTHERWISE  ACCEPT H0

< One-way caseIF t > C THEN REJECT H0, OTHERWISE  ACCEPT H0

Decision Rule:

^ A probability P(X) is set above by .  From this, one needs to find the quantile, that is, an 
X value for which one has P(X)=under some probability distribution.  Standard statistical 
tables provide a way to find X from P(X) as do explicit functions built into modern statistical 
software.  In both cases one typically works with the cumulative probability function (X).   
In the example above, since t ~t(n-1) we use the inverse cumulative t function qt() to find 
the Critical Value C.  Note: C is a quantile - a cut off value of the test statistic t.    

C qt  n 1  n

^ See below for the definition of "Type 1" or "" error.  This is a criterion for how 
stringent the test will be.  Stringency, however, is a tradeoff with "Type 2" or "" error as 
described below.  Both types of error are dependent on the number of observations n.

< Probability of Type I error must be explicitly set 0.05
Critical Value of the Test:

^ Test statistics X are carefully chosen to have probabilities P(X) and cumulative probabilities (X) that 
are understood.  In this case if H0 is true, then the t statistic is distributed according to Student's 
t-distribution t(t) with (n-1) degrees of freedom.

If Assumptions hold and H0 is true, then t ~t(n-1)

Sampling Distribution:

^ A test statistic is a number calculated from the sample used in making a statistical decision 
between H0 and H1.  Test statistics are usually calculated so that one may consult a well-known 
statistical distribution.  In this case the value of the test statistic t will be compared with the 
t-distribution to find P(t).  Note that statistic t and the t-distribution are different things.

< t is the normalized distance between means Xbar and 0t Xbar 0
s
n


n

Test Statistic:
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^ Two kinds of error are possible in using a statistical test's Decision Rule.  The probability for 
type 1 error is explicitly set at .  Type 2 errors with probability  are minimized by proper 
choice of a statistical test.  The complement of Type 2 error with probability (1-) is termed the 
POWER of the test.  In general, greater stringency in  (such as choosing  = 0.01 instead of 
 = 0.05) decreases the power of a test.  However, the number of observation in the sample (n) 
influences both  and power of a test.  More data is always better within limits.  As a result, one 
often adjusts initial design of a test by first calculating estimates of potential power for a test with 
different values of n prior to collecting data.           

If H0 is true If H0 is false
If H0 is rejected Type 1 error α No error (1-β) = POWER
If H0 is accepted No error Type 2 error β

Truth Table of Statistical Tests:
^ Although not part of the formal statistical test, Confidence Intervals (CI) are commonly reported.

< CI for the mean XbarXbar C1 s
n Xbar C2 s

n


Confidence Interval

^ note the direction of arrow here!
< Two-way caseIF P <  THEN REJECT H0, OTHERWISE  ACCEPT H0

Alternative Decision Rule based on Probability:
Note that most statistical software reports probability P rather than critical values C.  In order to use this 
information, one must recast the Decision Rule as follows:

IF 0.001 < P then the results are statistically very highly significant. 
IF 0.001 < P < 0.01 then the results are statistically highly significant.
IF 0.01 < P < 0.05 then the results are statistically signifcant.
IF 0.05 < P then the resulst are NOT statistically signifcant.

Common attributions for P:

^ Although not part of the formal statistical test, it is common practice to provide a 
probability value P(X) for the test statistic X calculated in the test assuming H0 to be 
true.  In the case above, since t ~t(n-1) and we have statistic t, we use the cumulative 
probability density function pt(t) to find (t).

< probability of finding test statistic t given the Assumptions and if H0 is true.P = tt
Probability Value:


