$ORIGIN \equiv 0$

Estimating Power and Sample Size for a One Sample t-Test

0

2 -0.5

3 -1.3

4 -1.6

0

1

2

3

1

0.2

Pilot studies are often run in advance of collecting data for major statistical analyses. These studies are used to determine the POWER of an analysis - i.e., the ability of the analysis to satisfactorily lead to rejection of the Null Hypothesis and determining sufficient Sample Size to support sufficient power.

Assumptions:

- Observed values $X_1, X_2, X_3, ... X_n$ are a random sample from $\sim N(\mu, \sigma^2)$.
- Variance σ^2 of the population is *unknown*.

Estimating Sample Size for Desired Confidence Interval Width:

4 5 -0.7 ZAR := READPRN("c:/DATA/Biostatistics/ZarEX7.3.txt") < Zar Example 7.3 ZAR =5 0.4 7 -0.1 $X := ZAR^{\langle 1 \rangle}$ 7 0 n := length(X) n = 128 9 -0.6 9 10 -1.1 $X_{bar} := mean(X)$ $X_{bar} = -0.6083$ $s := \sqrt{Var(X)}$ s = 0.6331 $s^2 = 0.400833$ 10 11 -1.2 12 -0.8

Confidence Intervals (CI) are the primary means to estimate a population mean μ from sample data. The width of a CI can be controlled by sample size N for a given population variance σ^2 . Zar 2010 offers an interative procedure for estimating a minimum suitable sample size N. Note that N is the sample size we wish to estimate, not the sample size n of our pilot sample.

Desired CI half width:

d := 0.25 < This is set as desired. Note that 2d is the CI width.

Desired Type 1 Error level:

$$\alpha := 0.05$$
 < Type 1 error α

Initial Guess of Sample Size:

 $N_0 := 40$ < Initial guess of sample sample size N needed.

Iterative Calculation:

$$N_1 := \frac{s^2 \cdot qt \left(\frac{\alpha}{2}, N_0 - 1\right)^2}{d^2}$$

$$N_1 = 26.23873$$

$$N_1 = 26.23873$$
This process is continued until the value of N_i stabilizes. Then use the next largest interger value as an estimate of minimum sample size needed.
$$N_2 := \frac{s^2 \cdot qt \left(\frac{\alpha}{2}, N_1 - 1\right)^2}{d^2}$$

$$N_2 = 27.17735$$

^ Note: input into the qt() function depends on whether the alternative hypotheses involve a one-sided or two-sided test. This example is a two-sided test. For a one-sided test, use α instead of $\alpha/2$.

Prototype in R:

#POWER & SAMPLE SIZE CALCULATIONS #ITERATE THE FOLLOWING UNTIL N IS STABILIZED: N1=(s^2*(qt(alpha/2,N0-1))^2)/d^2 **#ESTIMATING SAMPLE SIZE FOR CI** N2=(s^2*(qt(alpha/2,N1-1))^2)/d^2 **#ZAR EXAMPLE 7.3** ZAR=read.table("c:/DATA/Biostatistics/ZarEX7.3.txt") N2 **ZAR** N3=(s^2*(qt(alpha/2,N2-1))^2)/d^2 attach(ZAR) X=wtchg N4=(s^2*(qt(alpha/2,N3-1))^2)/d^2 s=sqrt(var(X)) #sample variance **#SET THE FOLLOWING VALUES AS DESIRED:** N5=(s^2*(qt(alpha/2,N4-1))^2)/d^2 d=0.25 **N5** N0 = 40alpha=0.05

Estimating Sample Size for a One Sample t-Test:

This estimation differs from the one above in being specifically tied to a distance δ defined by the alternative H_0 and H_1 hypotheses of a one-sample t-test.

Desired Precision δ:

 $\delta := 1.0$ < Set as desired for precision in estimating μ - μ_0 . We want to reject H_0 if $|\mu$ - $\mu_0| > \delta$

Desired Type 1 & 2 Error levels:

 $\alpha := 0.05$ < Type 1 error α $\beta := 0.10$ < Type 2 error β

Initial Guess of Sample Size:

 $N_0 := 20$ < Initial guess of sample sample size N needed.

Iterative Calculation:

$$\begin{split} N_1 &\coloneqq \frac{s^2}{\delta^2} \cdot \left(qt \bigg(\frac{\alpha}{2} \,, N_0 - 1 \bigg) + \, qt \big(\beta \,, N_0 - 1 \big) \right)^2 \\ N_1 &\coloneqq 18.35015 \end{split} \qquad \text{This process is continued until the value of N_i stabilizes. Then use} \\ N_2 &\coloneqq \frac{s^2}{\delta^2} \cdot \left(qt \bigg(\frac{\alpha}{2} \,, N_1 - 1 \bigg) + \, qt \big(\beta \,, N_1 - 1 \big) \right)^2 \end{split} \qquad N_2 &= 18.54504 \end{aligned} \qquad \text{This process is continued until the value of N_i stabilizes. Then use an estimate of minimum sample size needed.} \end{split}$$

^ Note: input into the qt() function depends on whether the alternative hypotheses involve a one-sided or two-sided test. This example is a two-sided test. For a one-sided test, use α instead of $\alpha/2$.

Prototype in R:

#ESTIMATING SAMPLE SIZE FOR ONE SAMPLE T-TEST #ITERATE THE FOLLOWING UNTIL N IS STABILIZED: #ZAR EXAMPLE 7.2 N1=(s^2/delta^2)*(qt(alpha/2,N0-1)+qt(beta,N0-1))^2 ZAR=read.table("c:/DATA/Biostatistics/ZarEX7.2.txt") ZAR N1 N2=(s^2/delta^2)*(qt(alpha/2,N1-1)+qt(beta,N1-1))^2 attach(ZAR) N2 X=RATwtchg N3=(s^2/delta^2)*(qt(alpha/2,N2-1)+qt(beta,N2-1))^2 s=sqrt(var(X)) **#SET THE FOLLOWING VALUES AS DESIRED:** N4=(s^2/delta^2)*(qt(alpha/2,N3-1)+qt(beta,N3-1))^2 delta=1.0 **N4** alpha=0.05 N5=(s^2/delta^2)*(qt(alpha/2,N4-1)+qt(beta,N4-1))^2 beta=0.10 N0=20 **N5**

Estimating Detectable Difference of a given Sample Size for a One Sample t-Test:

For a given sample with size n, one can estimate $\delta = \mu - \mu_0$ directly.

Desired Sample Size:

N := 25 < set for desired sample size N

Desired Type 1 & 2 Error levels:

$$\alpha := 0.05$$
 < Type 1 error α
 $\beta := 0.10$ < Type 2 error β

Calculation:

$$\delta := \sqrt{\frac{s^2}{N}} \cdot \left(qt \left(\frac{\alpha}{2}, N-1 \right) + qt (\beta, N-1) \right)$$
 $\delta = -0.8469694$ < Note: sign of δ doesn't matter

^ Note: input into the qt() function depends on whether the alternative hypotheses involve a one-sided or two-sided test. This example is a two-sided test. For a one-sided test, use α instead of $\alpha/2$.

Prototype in R:

#ESTIMATING DETECTABLE DIFFERENCE GIVEN N
#FOR ONE SAMPLE t-TEST
#SET THE FOLLOWING VALUES AS DESIRED:
N=25
alpha=0.05
beta=0.10
delta=sqrt(s^2/N)*(qt(alpha/2,N-1)+qt(beta,N-1))
delta

Estimating POWER of a One Sample t-test:

POWER (1- β) of a test is the probability of properly rejecting H₀ when it is false. It is the converse of Type 2 error β . We would like POWER to be as high as possible.

Desired Sample Size:

N := 12 < set for desired sample size N

Desired Precision δ:

 $\delta := 1.0$ < Set as desired for precision in estimating μ - μ_0 . We want to reject H_0 if $|\mu$ - $\mu_0| > \delta$

Desired Type 1 Error level:

 $\alpha := 0.05$ < Set Type 1 error α

Calculation:

$$B := \frac{\delta}{\sqrt{\frac{s^2}{N}}} - \left| qt \left(\frac{\alpha}{2}, N - 1 \right) \right| \qquad B = 0.565271$$

^ Note: absolute value used here to allow use of standared qt() function whereas Zar uses a *partial* table that only has positive values.

POWER := pt(B, N - 1)

POWER = 0.7083827

< Exact calculation using pt() function

 $POWER_N := pnorm(B, 0, 1)$

 $POWER_N = 0.7140553$

<Approximate calculation using pnorm() function assuming s=σ.</p>

^ POWER = $(1-\beta)$

Note use of the probability functions.

Prototype in R:

#ESTIMATING POWER OF ONE SAMPLE t-TEST
#SET THE FOLLOWING VALUES AS DESIRED:
N=12
delta=1.0
alpha=0.05

B=(delta/sqrt(s^2/N))-abs(qt(alpha/2,N-1))
B
POWER=pt(B,N-1)
POWER
POWERN=pnorm(B,0,1)
POWERN