$ORIGIN \equiv 0$

One Sample χ^2 Test of Variance for a Normal Distribution

This test is designed to test hypotheses about whether the variance of a population σ^2 is statistically equivalent to a specified value σ_0^2 .

ZAR := READPRN("c:/D	ATA/Biostatistics	/ZarEX7.4.txt")	< Zar Example 7.4
$X \coloneqq ZAR^{\langle 1 \rangle}$			
n := length(X)	n = 8		
$X_{\text{bar}} := \text{mean}(X)$	$X_{bar} = 45.2125$		
$s := \sqrt{Var(X)}$	s = 1.6401	$s^2 = 2.68982143$	

		0	1
	0	1	42.7
	1	2	43.4
	2	3	44.6
ZAR =	3	4	45.1
	4	5	45.6
	5	6	45.9
	6	7	46.8
	7	8	47.6

Assumptions:

- Observed values $X_1,\,X_2,\,X_3,\,...\,X_n$ are a random sample from ~N($\mu,\sigma^2).$

Note that this requirement is critical and not robust, thus limiting this test's usefulness.

- Variance σ^2 of the population is *unknown*.

Hypotheses:

$\sigma_0 \coloneqq \sqrt{1.5}$	< Set value of σ_0 as desired
$H_0: \sigma^2 = \sigma_0^2$	$< \sigma_0^2$ is a specified value for σ^2
$\mathbf{H_1:} \ \sigma^2 \neq \sigma_0^2$	< Two Sided Case
$H_1: \sigma^2 < \sigma_0^2$	< One Sided Case Lower Tail)
$H_1: \sigma^2 > \sigma_0^2$	< One Sided Case (Upper Tail)

Test Statistic:

$Xsq := \frac{(n-1) \cdot s^2}{2}$	Xsq = 12.5525	< population corrected ratio of observed sample
σ_0^2		variance and hypothesized variance

Sampling Distribution:

If Assumptions hold and H₀ is true, then Xsq ~ $\chi^2_{(n-1)}$

Critical Values of the Test:

 $\alpha := 0.05$

$$C_1 := qchisq\left(\frac{\alpha}{2}, n-1\right)$$
 $C_1 = 1.689869$ < Two sided lower Critical Value $C_2 := qchisq\left(1 - \frac{\alpha}{2}, n-1\right)$ $C_2 = 16.01276$ < Two sided upper Critical Value $C_3 := qchisq(\alpha, n-1)$ $C_3 = 2.16735$ < One sided lower Critical Value $C_4 := qchisq(1 - \alpha, n-1)$ $C_4 = 14.06714$ < One sided upper Critical Value

Decision Rules:

IF Xsq < C_1 or Xsq > C_2 , THEN REJECT H_0 , OTHERWISE ACCEPT H_0	< Two sided case
IF Xsq < C_3 , THEN REJECT H ₀ , OTHERWISE ACCEPT H ₀	< One sided case lower tail
IF Xsq > C_4 , THEN REJECT H_0 , OTHERWISE ACCEPT H_0	< One sided case upper tail

Probability Values:		Xsq = 12.5525
$P := 2 \cdot (1 - pchisq(Xsq, n - 1))$	P = 0.1676	< Two sided case
P := pchisq(Xsq, n - 1)	P = 0.9162	< One sided case lower tail
P := 1 - pchisq(Xsq, n - 1)	P = 0.0838	< One sided case upper tail

Confidence Intervals for σ^2 :

$CI := \left[\begin{array}{c} (n-1) \cdot s^2 \\ \hline C_2 \end{array} \frac{(n-1) \cdot s^2}{C_1} \end{array} \right]$	CI = (1.17586 11	.14213)	s ² = 2.6898 < Two sided case
$CI_L := \frac{(n-1) \cdot s^2}{C_3}$	minus infinity to	CI _L = 8.687453	< One sided case lower tail
$CI_U \coloneqq \frac{(n-1) \cdot s^2}{C_4}$	CI _U = 1.338492	to infinity	< One sided case upper tail

Prototype in R:

^ Note: I generally find two-side confidence intervals more meaningful.

#TEST OF VARIANCE FOR A NORMAL DISTRIBUTION	
#ZAR EXAMPLE 7.4	The R script associated with this test
ZAR=read.table("ZarEX7.4.txt")	includes direct calculation "by hand"
ZAR	because I couldn't find a function in R
attach(ZAR)	that would do this. However, Mian Li
X=distime	has come to our rescue! Listed below
n=length(X)	is the function varTest() found in
s=sqrt(var(X))	package {EnvStats}.
#USING FUNCTION varTest() in {EnvStats}:	
library(EnvStats)	
varTest(X,sigma.squared = 1.5,alternative="two.sided",conf.level=0.9	5)

>varTest(X,sigma.squared = 1.5,alternative="two.sided",conf.level=0.95)

Results of Hypothesis Test _____ Null Hypothesis:variance = 1.5Alternative Hypothesis:True variance is not equal to 1.5Chi-Squared Test on Variance Estimated Parameter(s): variance = 2.689821 Data: Test Statistic: Chi-Squared = 12.5525 Test Statistic Parameter: df = 7 P-value: 95% Confidence Interval:

Х 0.1675838 LCL = 1.175859UCL = 11.142135