ORIGIN = 0

Two Sample t-Test for Populations with Equal Variances

This test is employed where two sets of measurements are derived from samples with approximately equal variances.

ZAR := READPRN("c:/DATA/Biostatistics/ZarEX8.1M.txt")

< Zar Example 8.1

$$i := 0..5$$

$$X1_i := \left(ZAR^{\langle 1 \rangle}\right)_i$$

$$n_1 := length(X1)$$
 $n_1 = 6$

$$n_2 := length(X2)$$
 $n_2 = 7$

 $X2 := ZAR^{\langle 2 \rangle}$

$$n_2 = 7$$

$$X1_{bar} := mean(X1) \quad X1_{bar} = 8.75 \qquad X2_{bar} := mean(X2) \qquad X2_{bar} = 9.742857$$

$$X2_{bar} := mean$$

$$X2_{bar} = 9.742857$$

$$s_1 := \sqrt{Var(X1)}$$
 $s_1 = 0.582237$ $s_2 := \sqrt{Var(X2)}$ $s_2 = 0.818244$

$$s_1 = 0.582237$$

$$s_2 := \sqrt{Var(X2)}$$

$$s_2 = 0.818244$$

^ Note: since MathCad doesn't allow empty or 'NA' data values in its data arrays, I had to put 0.0 as a value for X16 in the original data table ZAR8.1.txt. I then read data for X1 by indexing the values using variable i. Most statistical programs, including R, does a much better job with missing values.

ZAR =	0	1	8.8	9.9
	1	2	8.4	9
	2	3	7.9	11.1
	3	4	8.7	9.6
	4	5	9.1	8.7
	5	6	9.6	10.4
	6	7	0	9.5

Assumptions:

- Observed values $X_{1,1}$, $X_{1,2}$, $X_{1,3}$, ... X_{1,n_1} are a random sample from $\sim N(\mu_1, \sigma_1^2)$
- Observed values $X_{2,1}, X_{2,2}, X_{2,3}, \dots X_{2,n_2}$ are a random sample from $\sim N(\mu_2, \sigma_2^2)$
- Variances σ_1^2 & σ_2^2 are approximately equal but *unknown*.
- Samples $X_{1,n1}$ and $X_{2,n2}$ are independent.

^ Note: this test is reasonably robust especially if sample sizes are nearly equal and two tailed hypotheses are entertained.

Hypotheses:

 H_0 : $\mu_1 = \mu_2$ < No difference in mean between populations X_1 , & X_2 .

 H_1 : $\mu_1 \neq \mu_2$ < Two Sided Case

 $H_1: \mu_1 < \mu_2$ < One Sided Case Lower Tail)

 $H_1: \mu_1 > \mu_2$ < One Sided Case (Upper Tail)

Pooled Sample Variance:

$$s_p := \sqrt{\frac{\left(n_1 - 1\right) \cdot s_1^2 + \left(n_2 - 1\right) \cdot s_2^2}{n_1 + n_2 - 2}} \qquad s_p^2 = 0.5192857 \qquad \text{$<$ variance is pooled from the two samples and adjusted for each sample's size n_1. & n_2.}$$

$${s_p}^2 = 0.5192857$$

adjusted for each sample's size n₁ & n₂.

Test Statistic:

$$t := \frac{X1_{bar} - X2_{bar}}{\sqrt{s_p^2 \cdot \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

$$t = -2.4765$$

< t is the normalized mean X_2 bar - X_2 bar

< s_n^2 is the pooled sample variance defined above

 $n_1 + n_2 - 2 = 11$

< degrees of freedom of pooled variance

Sampling Distribution:

If Assumptions hold and H_0 is true, then $t \sim t_{(n_1+n_2-2)}$

Critical Values of the Test:

< Probability of Type I error must be explicitly set $\alpha := 0.05$

$$C_1 := \operatorname{qt}\left(\frac{\alpha}{2}, n_1 + n_2 - 2\right)$$

$$C_1 = -2.201$$

< Two sided lower Critical Value

$$C_2 := qt \left(1 - \frac{\alpha}{2}, n_1 + n_2 - 2\right)$$

$$C_2 = 2.201$$

< Two sided upper Critical Value

$$C := |C_1|$$

$$C = 2.201$$

< Critical value used for two sided test (to simplify)

$$C_3 := qt(\alpha, n_1 + n_2 - 2)$$

$$C_3 = -1.7959$$

$$C_4 := qt(1 - \alpha, n_1 + n_2 - 2)$$

$$C_4 = 1.7959$$

Decision Rules:

IF |t| > C THEN REJECT H_0 , OTHERWISE ACCEPT H_0 IF $t < C_3$, THEN REJECT H_0 , OTHERWISE ACCEPT H_0 < Two sided case

IF $t > C_4$, THEN REJECT H_0 , OTHERWISE ACCEPT H_0

< One sided case lower tail

< One sided case upper tail

$$t = -2.4765$$

Probability Values:

$$P := 2 \cdot pt(t, n_1 + n_2 - 2)$$

$$P = 0.03076$$
 s if $t \le 0$

< Two sided case

$$P := 2 \cdot (1 - pt(t, n_1 + n_2 - 2))$$
 $P = 1.969235$

$$P = 1.969235$$
 < if $t > 0$

$$P := \mathsf{pt} \big(t, n_1 + n_2 - 2 \big)$$

$$P = 0.015382$$

< One sided case lower tail

$$P := 1 - pt(t, n_1 + n_2 - 2)$$

$$P = 0.984618$$

< One sided case upper tail

Confidence Intervals for the difference in mean:

$$CI := \left[X1_{bar} - X2_{bar} - C \cdot \sqrt{s_p^2 \cdot \left(\frac{1}{n_1} + \frac{1}{n_2} \right)} X1_{bar} - X2_{bar} + C \cdot \sqrt{s_p^2 \cdot \left(\frac{1}{n_1} + \frac{1}{n_2} \right)} \right]$$

$$X1_{bar} - X2_{bar} = -0.9929$$

$$X1_{bar} - X2_{bar} + C \cdot \sqrt{s_p^2 \cdot \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$$

$$X1_{bar} - X2_{bar} = -0.9929$$

CIL :=
$$X1_{bar} - X2_{bar} - C_3 \cdot \sqrt{s_p^2 \cdot \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$$

CI = (-1.8752609 -0.1104534)

$$+\frac{1}{n_2}$$
 minus

minus infinity to
$$CIL = -0.2728634$$

CIU :=
$$X1_{bar} - X2_{bar} - C_4 \cdot \sqrt{s_p^2 \cdot \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$$
 CIU = -1.712851 **to infinity**

$$CIU = -1.712851$$

Prototype in R:

```
#ZAR EXAMPLE 8.1
ZAR=read.table("c:/DATA/Biostatistics/ZarEX8.1.txt", na.strings="NA")
ZAR
attach(ZAR)
X1=na.omit(gpB)
X2=gpG
X2
n1=length(X1)
n2=length(X2)
n2
X1bar=mean(X1)
X1bar
X2bar=mean(X2)
X2bar
s1=sqrt(var(X1,na.rm=TRUE))
s2=sqrt(var(X2))
sp=((n1-1)*s1^2+(n2-1)*s2^2)/(n1+n2-2)
sp
#PERFORMING TWO-SAMPLE TWO SIDED t-TEST:
t.test(X1, X2, alternative="two.sided", var.equal=TRUE, conf.level=0.95)
detach(ZAR)
```

Two Sample t-test

data: X1 and X2 t = -2.4765, df = 11, p-value = 0.03076 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: -1.8752609 -0.1104534 sample estimates: mean of x mean of y 8.750000 9.742857

>ZAR2

```
#CHECK THE FOLLOWING DATASET FOR A MORE
                                                                        data group
#EFFICIENT WAY TO INPUT DATA USING read.table()
                                                                      1 8.8 gpB
                                                                      2 8.4 gpB
ZAR2=read.table("c:/DATA/Biostatistics/ZarEX8.1R.txt")
                                                                      3 7.9 gpB
ZAR2
                                                                      4 8.7 gpB
attach(ZAR2)
                                                                      5 9.1 gpB
X1=data[group=="gpB"]
                                                                      6 9.6 gpB
                                                                      7 9.9 gpG
X2=data[group=="gpG"]
                                                                      8 9.0 gpG
X2
                                                                      9 11.1 gpG
                                                                      10 9.6 gpG
                                                                      11 8.7 gpG
                                                                      12 10.4 gpG
                                                                      13 9.5 gpG
```

#PERFORMING TWO-SAMPLE ONE SIDED LOWER TAIL t-TEST: t.test(X1, X2, alternative="less", var.equal=TRUE, conf.level=0.95)

Two Sample t-test

data: X1 and X2 t = -2.4765, df = 11, p-value = 0.01538 alternative hypothesis: true difference in means is less than 0 95 percent confidence interval: -Inf -0.2728634 sample estimates: mean of x mean of y

#PERFORMING TWO-SAMPLE ONE SIDED UPPER TAIL t-TEST: t.test(X1, X2, alternative="greater", var.equal=TRUE, conf.level=0.95)

Two Sample t-test

8.750000 9.742857

data: X1 and X2 t = -2.4765, df = 11, p-value = 0.9846 alternative hypothesis: true difference in means is greater than 0 95 percent confidence interval: -1.712851 Inf sample estimates: mean of x mean of y 8.750000 9.742857