$ORIGIN \equiv 0$

Testing Equal Variances in Two Populations: Variance Ratio F-test and Levine's Test

variance

In order to decide whether to use two sample t-tests that assume equal variance between the populations, these tests are more-or-less useful depending on the underlying distribution of the data.

Variance Ratio F-Test for Equal Variances in Two Samples:

ZAR := READPRN("c	:/DATA/Biostatistics/Zar	EX8.7R.txt") <	Zar Example 8.7
i := 0 10		j := 1120	
$X1_i := (ZAR^{\langle 1 \rangle})_i$		$X2_{j-11} := \left(ZAR^{\langle 1 \rangle}\right)_{j}$	i
$n_1 := length(X1)$	$n_1 = 11$	$n_2 := length(X2)$	$n_2 = 10$
$X1_{bar} := mean(X1)$	$X1_{bar} = 36.4545$	$X2_{bar} := mean(X2)$	$X2_{bar} = 57.7$
$s_1 := \sqrt{Var(X1)}$	$s_1^2 = 21.872727$	$s_2 := \sqrt{Var(X2)}$	$s_2^2 = 12.9$

Assumptions:

- Observed values $X_{1,1}, X_{1,2}, X_{1,3}, \dots X_{1,n1}$ are a random sample from ~N(μ_1, σ_1^2)

- Observed values $X_{2,1}, X_{2,2}, X_{2,3}, ..., X_{2,n2}$ are a random sample from ~N(μ_2, σ_2^2)
- Samples from the two samples are independent.

^ Note: this test is severely compromised by non normal distributions. See Levene Test for a possibly better alternative.

Hypotheses:

$H_0: \sigma_1^2 = \sigma_2^2$	< No difference in variance between populations $X_{1.} \& X_{2.}$
$\mathbf{H_1:} \ \sigma_1^2 \neq \sigma_2^2$	< Two Sided Case
$H_1: \sigma_1^2 < \sigma_2^2$	< One Sided Case Lower Tail)
$H_1: \sigma_1^2 > \sigma_2^2$	< One Sided Case (Upper Tail)

Test Statistics:

Two Sided Case:

$$F := \frac{s_1^2}{s_2^2}$$

$$F = 1.69556$$
F = 1.69556
F = 1.69556

One Sided Case Lower Tail):

$$F_A := \frac{s_2^2}{s_1^2}$$
 $F_A = 0.5898$

One Sided Case (Upper Tail):

$$F_{\rm B} := \frac{{s_1}^2}{{s_2}^2}$$
 $F_{\rm B} = 1.6956$

Sampling Distribution:

If Assumptions hold and H_0 is true, then F ~F_{(n1-1)/(n2-1)}

		0	1
	0	1	41
	1	2	35
	2	3	33
	3	4	36
	4	5	40
	5	6	46
	6	7	31
	7	8	37
ZAR =	8	9	34
LAR -	9	10	30
	10	11	38
	11	12	52
	12	13	57
	13	14	62
	14	15	55
	15	16	64
	16	17	57
	17	18	56
	18	19	55

	(41)		()
	35		(52)
	33		57
			62
	36		55
	40		64
X1 =	46	X2 =	
	31		57
	37 34		56
			55
			60
	30		59)
	(38)		$(\mathbf{J}\mathbf{J}\mathbf{J})$

Critical Values of the Test:

 $\alpha := 0.05$ < Probability of Type I error must be explicitly set

$$C := qF\left(1 - \frac{\alpha}{2}, n_1 - 1, n_2 - 1\right) \qquad C = 3.9639 \qquad \qquad < \text{Two sided Critical Value}$$

$$C_A := qF(\alpha, n_1 - 1, n_2 - 1) \qquad C_A = 0.3311 \qquad \qquad < \text{One sided lower Critical Value}$$

$$C_B := qF(1 - \alpha, n_1 - 1, n_2 - 1) \qquad C_B = 3.1373 \qquad \qquad < \text{One sided upper Critical Value}$$

Decision Rules:

IF F > C, THEN REJECT H_0 , OTHERWISE ACCEPT H_0	< Two sided case
IF $F_A < C_A$, THEN REJECT H_0 , OTHERWISE ACCEPT H_0	< One sided case lower tail
IF $F_B > C_B$, THEN REJECT H_0 , OTHERWISE ACCEPT H_0	< One sided case upper tail

Probability Values:

$P := 2 \cdot pF(F, n_1 - 1, n_2 - 1)$	P = 1.5599	< if F ≤ 1		
$P := 2 \cdot (1 - pF(F, n_1 - 1, n_2 - 1))$	P = 0.4401	< if F > 1	< Two sided case	
$P := pF(F, n_1 - 1, n_2 - 1)$	P = 0.78		< One sided case lower tail	
$P := 1 - pF(F, n_1 - 1, n_2 - 1)$	P = 0.22		< One sided case upper tail	

Confidence Intervals for Variance Ratio:

$$\begin{split} L_{1} &:= \left(\frac{s_{1}^{2}}{s_{2}^{2}}\right) \cdot \left(\frac{1}{qF\left(1 - \frac{\alpha}{2}, n_{1} - 1, n_{2} - 1\right)}\right) & L_{1} = 0.4277543 & \frac{s_{1}^{2}}{s_{2}^{2}} = 1.6956 \\ L_{2} &:= \left(\frac{s_{1}^{2}}{s_{2}^{2}}\right) \cdot \left(qF\left(1 - \frac{\alpha}{2}, n_{2} - 1, n_{1} - 1\right)\right) & L_{2} = 6.4074588 & < \text{Two sided case} \\ & \left(L_{1} \quad L_{2}\right) = (0.4277543 \quad 6.4074588) \end{split}$$

^ Note: CI for the inverse ratio: s_2^2/s_1^2 , simply reverse indices 1 & 2 in the equations above.

$$\begin{array}{ll} L_3 \coloneqq \left(\frac{s_1^2}{s_2^2}\right) \cdot \left(qF\left(1-\alpha,n_2-1,n_1-1\right)\right) & L_3 = 5.121241 & < \text{One sided case lower tail} \\ L_4 \coloneqq \left(\frac{s_1^2}{s_2^2}\right) \cdot \left(\frac{1}{qF\left(1-\alpha,n_1-1,n_2-1\right)}\right) & L_4 = 0.5404555 & < \text{One sided case upper tail} \\ L_4 \text{ to infinity} & \end{array}$$

Prototype in R:

<pre>#READING DATA IN R FORMAT: ZAR=read.table("c:/DATA/Biostatistics/ZarEX8.7R.txt") ZAR attach(ZAR) X1=data[type=="typ1"] X1 X2=data[type=="typ2"] X2</pre>	
#PERFORMING F TEST FOR EQUAL VARIANCES" ?var.test	F test to compare two variances
#TWO-SIDED CASE: var.test(X1,X2,alternative="two.sided",conf.level=0.95)	data: X1 and X2 F = 1.6956, num df = 10, denom df = 9, p-value = 0.4401 alternative hypothesis: true ratio of variances is not equal to 1 95 percent confidence interval: 0.4277543 6.4074588 sample estimates:
#NOTE ALTERNATIVE COMMAND IN R #FOR THE SAME TEST: var.test(data~type,alternative="two.sided",conf.level=0.95)	ratio of variances 1.695560
	F test to compare two variances
#ONE-SIDED CASE LOWER TAIL:	data: data by type F = 1.6956, num df = 10, denom df = 9, p-value = 0.4401 alternative hypothesis: true ratio of variances is not equal to 1 95 percent confidence interval: 0.4277543 6.4074588 sample estimates: ratio of variances 1.695560
var.test(data~type,alternative="less",conf.level=0.95)	
	F test to compare two variances
	data: data by type F = 1.6956, num df = 10, denom df = 9, p-value = 0.78 alternative hypothesis: true ratio of variances is less than 1 95 percent confidence interval: 0.000000 5.121241 sample estimates: ratio of variances 1.695560

#ONE-SIDED CASE UPPER TAIL: var.test(data~type,alternative="greater",conf.level=0.95)

F test to compare two variances

data: data by type
F = 1.6956, num df = 10, denom df = 9, p-value = 0.2200
alternative hypothesis: true ratio of variances is greater than 1
95 percent confidence interval:
 0.5404555 Inf
sample estimates:
 ratio of variances
 1.695560

Levene Test for Equal Variances in Two Samples:

This test employs a *transformation* of the original data values to difference values around each mean. (11)

Assumptions:		11	(52)
- Observed values $X_{1,1}, X_{1,2}, X_{1,3}, \dots X_{1,n1}$ are a random sample from $\sim N(\mu_1, \sigma_1^2)$		35	57	
- Observed values $X_{2,1}, X_{2,2}, X_{2,3}, \dots X_{2,n2}$ are a random sample from $\sim N(\mu_2, \sigma_2^{-2})$		33	62	
- Samples from the two samples are <i>independent</i> .		36	55	
		10	64	
^ Note: this test is somewhat less compromised by non-normal distribution			$X2 = \begin{bmatrix} 57\\57 \end{bmatrix}$	
Hypotheses:		31	56	
		37	55	
$H_0: \sigma_1^2 = \sigma_2^2$ < No difference in variance between populations $X_{1.} & X_{2.}$		34	60	
$H_1: \sigma_1^2 \neq \sigma_2^2$ < Two Sided Case		30	59)
$H_1: \sigma_1^2 < \sigma_2^2$ < One Sided Case Lower Tail)		38)	,	/
	$X1_{bar} = 36.454$	5	$X_{21} = 5$	77
$H_1: \sigma_1^2 > \sigma_2^2$ < One Sided Case (Upper Tail)	$x_{1bar} = 50.434$. ر	$2^{2}bar - J$	

Transformation to Absolute Difference from Mean:

ransformation to Absolute Difference from Mean:		(4.545)		$(\epsilon \tau)$
X1T := $\overrightarrow{ X1 - X1_{bar} }$ < Each value of X1 and X2 is subtracted from the represtive mean		1.455	ſ	$\begin{pmatrix} 5.7\\ 0.7 \end{pmatrix}$
subtracted from the respective mean for X1 or X2, and then the absolute		3.455		4.3
$X2T := \frac{ X2 - X2_{bar} }{ X2 - X2_{bar} }$ value is taken.		0.455		2.7
$X1T_{bar} := mean(X1T)$ $X1T_{bar} = 3.5868$		3.545		6.3
$ATT_{bar} = mean(ATT)$ $ATT_{bar} = 5.5000$	X1T =		X2T =	0.7
$X2T_{bar} := mean(X2T)$ $X2T_{bar} = 2.84$		5.455		1.7
$sT_1 := \sqrt{Var(X1T)}$ $sT_1^2 = 7.721262$ $sT_2 := \sqrt{Var(X2T)}$ $sT_2^2 = 3.938222$		0.545		2.7
		2.455		2.3
(-1) T^{2} (-1) T^{2}		6.455		(1.3)
$sT_p := \sqrt{\frac{(n_1 - 1) \cdot sT_1^2 + (n_2 - 1) \cdot sT_2^2}{n_1 + n_2 - 2}}$ $sT_p^2 = 5.9293$		(1.545)		

^ pooled variance of transformed variables

Test Statistics:

$$t := \frac{X1T_{bar} - X2T_{bar}}{\sqrt{\frac{sT_p^2}{n_1} + \frac{sT_p^2}{n_2}}} \qquad t = 0.7019 \qquad t^2 = 0.4927$$

Sampling Distribution:

If Assumptions hold and \boldsymbol{H}_{0} is true, then t ${\sim}t_{(n1+n2-2)}$

Critical Values of the Test:

< Probability of Type I error must be explicitly set $\alpha := 0.05$

$C_1 := qt\left(\frac{\alpha}{2}, n_1 + n_2 - 2\right)$	$C_1 = -2.093$	< Two sided lower Critical Value
$C_2 := qt \left(1 - \frac{\alpha}{2}, n_1 + n_2 - 2 \right)$	$C_2 = 2.093$	< Two sided upper Critical Value
$C := C_1 $	C = 2.093	< Critical value used for two sided test (to simplify)
$C_3 := qt(\alpha, n_1 + n_2 - 2)$	$C_3 = -1.7291$	< One sided lower Critical Value
$C_4 := qt(1 - \alpha, n_1 + n_2 - 2)$	$C_4 = 1.7291$	< One sided upper Critical Value

Decision Rules:

IF $ t > C$ THEN REJECT H ₀ , OTHERWISE ACCEPT H ₀	< Two sided case
IF $t < C_3$, THEN REJECT H_0 , OTHERWISE ACCEPT H_0	< One sided case lower tail
IF $t > C_4$, THEN REJECT H_0 , OTHERWISE ACCEPT H_0	< One sided case upper tail

Probability Values:

Р

Р

Р

Р

$P := 2 \cdot pt(t, n_1 + n_2 - 2)$	P = 1.50875	$if t \le 0$	< Two sided case
$P := 2 \cdot (1 - pt(t, n_1 + n_2 - 2))$	P = 0.49125	< if t > 0	
$P := pt(t, n_1 + n_2 - 2)$	P = 0.754375		< One sided case lower tail
$P := 1 - pt(t, n_1 + n_2 - 2)$	P = 0.245625		< One sided case upper tail

t = 0.7019

Prototype in R:

#DOWNLOAD {car} library(car) ?leveneTest leveneTest(data,ty	VENE TEST FOR EQUAL VARIANCES Thanks are due to Radovan Omorjan for correcting difficulties with a previous version of this worksheet! pe,center=mean) pe,center=median)
	> leveneTest(data,type,center=mean)
	Levene's Test for Homogeneity of Variance (center = mean)
	Df F value Pr(>F)
	group 1 0.4927 0.4913
	19
$t^2 = 0.4927$	> leveneTest(data,type,center=median)
	Levene's Test for Homogeneity of Variance (center = median)
	Df F value Pr(>F)
	group 1 0.5438 0.4699
	19

^ Results from R match the calculations above when center=mean option is chosen within leveneTest(). Note that leveneTest() reports an F statistic which is the square of the t statistic calculated above.

R documentation for levineTest() indicates that use of the median rather than mean for center results in a more robust test.