ORIGIN = 0Estimation of Sample Size and Power in t-Tests for Two Samples

Estimates for sample size (N) and power $(1-\beta)$ on this page are similar to that seen in Biostatistics Worksheet 130, but here for comparing two samples.

ZAR := READPRN("c:/DATA/Biostatistics/ZarEX8.1M.txt")

< Zar Example 8.1

$$i := 0..5$$

$$X1_i := \left(ZAR^{\langle 1 \rangle}\right)_i$$

$$X2 := ZAR^{\langle 2 \rangle}$$

$$n_1 := length(X1)$$
 $n_1 = 6$

$$n_2 := length(X2) \qquad \qquad n_2 = 7$$

$$n_2 = 7$$

$$X1_{bar} := mean(X1)X1_{bar} = 8.75$$
 $X2_{bar} := mean(X2)$ $X2_{bar} = 9.742857$

$$X2_{\text{bar}} := \text{mean}(X2)$$

$$X2_{bar} = 9.742857$$

$$s_1 := \sqrt{Var(X1)}$$
 $s_1 = 0.582237$

$$s_2 := \sqrt{Var(X2)}$$
 $s_2 = 0.818244$

$$s_2 = 0.818244$$

$$s_p := \sqrt{\frac{(n_1 - 1) \cdot s_1^2 + (n_2 - 1) \cdot s_2^2}{n_1 + n_2 - 2}} \qquad s_p^2 = 0.5192857$$
 < pooled variance

$$s_p^2 = 0.5192857$$

Assumptions:

- Observed values $X_{1,1}$, $X_{1,2}$, $X_{1,3}$, ... $X_{1,n}$ are a random sample from $\sim N(\mu_1, \sigma_1^2)$
- Observed values $X_{2,1}$, $X_{2,2}$, $X_{2,3}$, ... $X_{2,n}$ are a random sample from $\sim N(\mu_2, \sigma_2^2)$
- Samples from the two samples are independent
- Population variances $\sigma_1^2 = \sigma_2^2$

Estimated Sample Size for a Given Resolved Distance between Populations:

Desired CI half width:

< This is set as desired. Note that 2d is the CI width. d := 0.5

Desired Type 1 Error level:

$$\alpha := 0.05$$
 < Type 1 error α

$X1 = \begin{bmatrix} 8.4 \\ 7.9 \\ 8.7 \\ 9.1 \\ 9.6 \end{bmatrix} \quad X2 = \begin{bmatrix} 9 \\ 11.1 \\ 9.6 \\ 8.7 \\ 10.4 \end{bmatrix}$

1

8.8

7.9

8.7

9.6

1

6

ZAR =

2

9.9

11.1

9.6

8.7

10.4

9.5

9

Initial Guess of Sample Size:

< Initial guess of sample sample size N needed. $N_0 := 50$

Iterative Calculation:

< Set initial guess for sample size $N_0 := 50$

$$N_1 \coloneqq \frac{2 \cdot s_p^{\ 2} \cdot qt \Bigg[1 - \frac{\alpha}{2}, 2 \cdot \left(N_0 - 1\right)\Bigg]^2}{d^2}$$

$$N_1 = 16.36004$$

$$N_2 \coloneqq \frac{2 \cdot s_p^{-2} \cdot qt \left[1 - \frac{\alpha}{2}, 2 \cdot \left(N_1 - 1\right)\right]^2}{d^2}$$

$$N_2 = 17.293$$

^ Note: input into the qt() function depends on whether the alternative hypotheses involve a one-sided or two-sided test. This example is a two-sided test. For a one-sided test, use α instead of $\alpha/2$.

Prototype in R:

#POWER & SAMPLE SIZE CALCULATIONS

```
#FOR TWO SAMPLES
                                                         #ESTIMATING SAMPLE SIZE FOR CI
#ZAR EXAMPLE 8.1
                                                         #SET THE FOLLOWING VALUES AS DESIRED:
ZAR=read.table("c:/DATA/Biostatistics/ZarEX8.1R.txt")
                                                         d = 0.5
ZAR
                                                         N0 = 50
attach(ZAR)
                                                         alpha=0.05
X1=data[group=="gpB"]
                                                         #ITERATE THE FOLLOWING UNTIL N IS STABILIZED:
X2=data[group=="gpG"]
                                                         N1=(2*sp^2*(qt(1-alpha/2,2*(N0-1)))^2)/d^2
n1=length(X1)
n1
                                                         N2=(2*sp^2*(qt(1-alpha/2,2*(N1-1)))^2)/d^2
n2=length(X2)
                                                         N3=(2*sp^2*(qt(1-alpha/2,2*(N2-1)))^2)/d^2
s1=sqrt(var(X1))
s2=sqrt(var(X2))
                                                         N4=(2*sp^2*(qt(1-alpha/2,2*(N3-1)))^2)/d^2
#POOLED VARIANCE:
sp=sqrt(((n1-1)*s1^2+(n2-1)*s2^2)/(n1+n2-2))
                                                         N5=(2*sp^2*(qt(1-alpha/2,2*(N4-1)))^2)/d^2
                                                         N5
sp<sup>2</sup>
```

Estimating Sample Size for a Two Sample t-Test:

This estimation differs from the one above in being specifically tied to a distance δ defined by the alternative H_0 and H_1 hypotheses of a two-sample t-test.

Hypotheses:

$$H_0$$
: $\mu_1 = \mu_2$ < μ_0 is a specified value for μ
 H_1 : $\mu \neq \mu_0$ < Two sided test

Desired Precision δ:

 $\delta := 0.5$ < Set as desired for precision in estimating μ_1 - μ_2 . We want to reject H_0 if $|\mu_1 - \mu_2| > \delta$

Desired Type 1 & 2 Error levels:

$$\alpha := 0.05$$
 < Type 1 error α
 $\beta := 0.10$ < Type 2 error β

Initial Guess of Sample Size:

 $N_0 := 100$ < Initial guess of sample sample size N needed.

Iterative Calculation:

$$\begin{split} N_1 &\coloneqq \frac{2 \cdot s_p^{-2}}{\delta^2} \cdot \left[qt \left[\frac{\alpha}{2}, 2 \cdot \left(N_0 - 1 \right) \right] + qt \left(\beta, N_0 - 1 \right) \right]^2 \\ N_2 &\coloneqq \frac{2 \cdot s_p^{-2}}{\delta^2} \cdot \left[qt \left[\frac{\alpha}{2}, 2 \cdot \left(N_1 - 1 \right) \right] + qt \left(\beta, N_1 - 1 \right) \right]^2 \\ N_2 &\coloneqq \frac{2 \cdot s_p^{-2}}{\delta^2} \cdot \left[qt \left[\frac{\alpha}{2}, 2 \cdot \left(N_1 - 1 \right) \right] + qt \left(\beta, N_1 - 1 \right) \right]^2 \\ N_2 &\coloneqq 44.94591 \end{split}$$

^ Note: input into the qt() function depends on whether the alternative hypotheses involve a one-sided or two-sided test. This example is a two-sided test. For a one-sided test, use α instead of $\alpha/2$.

Prototype in R:

```
#ESTIMATING SAMPLE SIZE FOR TWO SAMPLE T-TEST
#SET THE FOLLOWING VALUES AS DESIRED:
delta=0.5
alpha=0.05
beta=0.10
N0=100
#ITERATE THE FOLLOWING UNTIL N IS STABILIZED:
N1=(2*sp^2/delta^2)*(qt(alpha/2,2*(N0-1))+qt(beta,N0-1))^2
N1
N2=(2*sp^2/delta^2)*(qt(alpha/2,2*(N1-1))+qt(beta,N1-1))^2
N2
N3=(2*sp^2/delta^2)*(qt(alpha/2,2*(N2-1))+qt(beta,N2-1))^2
N3
N4=(2*sp^2/delta^2)*(qt(alpha/2,2*(N3-1))+qt(beta,N3-1))^2
N4
N5=(2*sp^2/delta^2)*(qt(alpha/2,2*(N4-1))+qt(beta,N4-1))^2
N5
```

Estimating Detectable Difference of a given Sample Size for a Two Sample t-Test:

For a given sample with size n, one can estimate $\delta = \mu_1 - \mu_2$ directly.

Desired Sample Size:

N := 20 < set for desired sample size N

Desired Type 1 & 2 Error levels:

$$\alpha := 0.05$$
 < Type 1 error α
 $\beta := 0.10$ < Type 2 error β

Calculation:

$$\delta := \sqrt{\frac{2 \cdot s_p^{\ 2}}{N}} \cdot \left[q \left[\frac{\alpha}{2}, 2 \cdot (N-1) \right] + q \left[\beta, 2 \cdot (N-1) \right] \right]$$

$$\delta = -0.7585216$$
 < Note: sign of δ doesn't matter

^ Note: input into the qt() function depends on whether the alternative hypotheses involve a one-sided or two-sided test. This example is a two-sided test. For a one-sided test, use α instead of $\alpha/2$.

Prototype in R:

```
#ESTIMATING DETECTABLE DIFFERENCE GIVEN N
#FOR ONE SAMPLE t-TEST
#SET THE FOLLOWING VALUES AS DESIRED:
N=20
alpha=0.05
beta=0.10

delta=sqrt(2*sp^2/N)*(qt(alpha/2,2*(N-1))+qt(beta,2*(N-1)))
delta
```

Estimating POWER of a Two Sample t-test:

POWER $(1-\beta)$ of a test is the probability of properly rejecting H_0 when it is false. It is the converse of Type 2 error β . We would like POWER to be as high as possible.

Desired Sample Size:

N := 15 < set for desired sample size N

Desired Precision δ:

 $\delta := 1.0$ < Set as desired for precision in estimating $\mu_1 - \mu_2$. We want to reject H_0 if $|\mu_1 - \mu_2| > \delta$

Desired Type 1 Error level:

 $\alpha := 0.05$ < Set Type 1 error α

Calculation:

$$B := \frac{\delta}{\sqrt{\frac{2 \cdot s_p^2}{N}}} - \left| qt \left[\frac{\alpha}{2}, 2 \cdot (N-1) \right] \right| \qquad B = 1.751975$$

^ Note: absolute value used here to allow use of standared qt() function whereas Zar uses a *partial* table that only has positive values.

POWER := pt[B, $2 \cdot (N - 1)$]

POWER = 0.9546375

< Exact calculation using pt() function

 $POWER_N := pnorm(B, 0, 1)$

 $POWER_N = 0.960111$

<Approximate calculation using
pnorm() function assuming s=σ.</pre>

 $^{\wedge}$ POWER = (1- β)

Note use of the probability functions.

Prototype in R:

#ESTIMATING POWER OF TWO SAMPLE t-TEST
#SET THE FOLLOWING VALUES AS DESIRED:
N=15
delta=1.0
alpha=0.05

B=(delta/sqrt(2*sp^2/N))-abs(qt(alpha/2,2*(N-1)))
B
POWER=pt(B,2*(N-1))
POWER
POWERN=pnorm(B,0,1)
POWERN