Signed-Rank Test

Wilcoxon Signed-Rank Test

The Signed-Rank Test is a nonparametric analog to the paired t-test utilizing more information than available in the Sign Test. The Signed-Rank test requires use of ordinal data - data that can be ordered, or ranked, according to amount of effect. However, amount or effect need not have meaning beyond order of classes of data.

Assumptions:

- Observed values X_{1,1}, X_{1,2}, X_{1,3}, ... X_{1,n} are a random sample exactly matched with Observed values X_{2,1}, X_{2,2}, X_{2,3}, ... X_{2,n} across individuals 1,2,3, ... ,n.
- Let the value $d_i = X_{1,i} X_{2,i}$ for each individual i be assessed as $|d_i| = rank$ order of single observations or discrete classes of observations with observed frequency.
- The d_i's are independent.
- The underlying distribution of the d_i's is continuous & symmetric but not necessarily a Normal Distribution.
- All d_i's have the same median

Dermatology Example > Rosner 2006 Ex 9.12, p. 370

Hypotheses:

 $H_0: \Delta = 0$ < No population ordinal difference in median</th> $H_1: \Delta \neq 0$ < Two sided test</td>

Rank Data and Sum:

- Ignore all d_i 's = 0 Don't include them in the rankings.
- The $|d_i|$'s are ranked ($\mathbf{R}_i = \operatorname{rank}(|d_i|)$ according to their absolute value with smallest $|d_i| = 1$ and largest $|d_i| = n$.
- Give all d_i's with same absolute value the same average rank.
- Count number of ties (t_i) for each group (g) of ties for the d_i's
- Compute the Rank Sum [RS_{pos}] of positive d_i's.

$$d_{neg} := \begin{pmatrix} -8 \\ -7 \\ -6 \\ -5 \\ -4 \\ -3 \\ -2 \\ -1 \end{pmatrix} count_{neg} := \begin{pmatrix} 1 \\ 3 \\ 2 \\ 2 \\ 1 \\ 5 \\ 4 \\ 4 \end{pmatrix} \qquad d_{pos} := \begin{pmatrix} 8 \\ 7 \\ 6 \\ 5 \\ 4 \\ 3 \\ 2 \\ 1 \end{pmatrix} count_{pos} := \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 2 \\ 6 \\ 10 \end{pmatrix}$$

 $R := d_{pos}$

 $count := count_{neg} + count_{pos}$

$$R = \begin{pmatrix} 8 \\ 7 \\ 6 \\ 5 \\ 4 \\ 3 \\ 2 \\ 1 \end{pmatrix}$$
 count = $\begin{pmatrix} 1 \\ 3 \\ 2 \\ 2 \\ 1 \\ 1 \end{pmatrix}$ i := 0 .. length(R) - 1
n := $\sum_{i} count_{i}$
n = 40
< count in absolute value
of rank (sums the positive
and negative counts above)

	Before	After	d
1	1	9	-8
2	1	8	-7
3	1	8	-7
4	1	8	-7
5	1	7	-6
6	1	7	-6
7	1	6	-5
8	1	6	-5
9	1	5	-4
10	2	5	-3
11	2	5	-3
12	3	6	-3
13	1	4	-3
14	1	4	-3
15	3	5	-2
16	2	4	-2
17	1	3	-2
18	1	3	-2
19	1	2	-1
20	2	3	-1
21	3	4	-1
22	4	5	-1
23	5	4	1
24	6	5	1
25	4	3	1
26	2	1	1
27	2	1	1
28	3	2	1
29	5	4	1
30	6	5	1
31	2	1	1
32	2	1	1
33	3	1	2
34	4	2	2
35	5	3	2
36	6	4	2
37	5	3	2
38	4	2	2
39	4	1	3
40	5	2	3

Averaging Absolute Value of Rank:

$$R = \begin{pmatrix} 8 \\ 7 \\ 6 \\ 5 \\ 4 \\ 3 \\ 2 \\ 1 \end{pmatrix} \quad count = \begin{pmatrix} 1 \\ 3 \\ 2 \\ 2 \\ 1 \\ 1 \end{pmatrix} \quad AR := \begin{pmatrix} 40 \\ 38 \\ 35.5 \\ 32 \\ 2 \\ 1 \\ 7 \\ 10 \\ 14 \end{pmatrix} \quad AR := \begin{pmatrix} 40 \\ 38 \\ 35.5 \\ 32.5 \\ 32 \\ 28 \\ 19.5 \\ 7.5 \end{pmatrix} \begin{pmatrix} "< average rank = sum(37.39)/3" \\ "< average rank = sum(35.36)/2" \\ "< average rank = sum(32.37)/2" \\ "< average rank = sum(32)/2 " \\ "< average rank = sum(32)/2 " \\ "< average rank = sum(25.31)/7" \\ "< average rank = sum(15.24)/10" \\ "< average rank = sum(1-14)/14" \end{pmatrix} \quad count_{pos} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 2 \\ 6 \\ 10 \end{pmatrix} \quad < multiplied$$

Computing Rank Sum Positive:

$$RS_{pos} := 10 \cdot 7.5 + 6 \cdot 19.5 + 2 \cdot 28$$
 $RS_{pos} = 248$ < sum of the ranks for positive d_i's

Computing Criterion for Test Statistic T:

$$\frac{n \cdot (n+1)}{4} = 410$$
 < criterion for test statistic T < Critical Value $n = 40$

Criterion for Normal Approximation:

- IF number of non-zero d_i < 16 THEN use Special Tables e.g., Rosner Table 11 in Appendix **OTHERWISE** Normal Approximation may be used

n = 40 < qualifies for Normal Approximation		$\begin{pmatrix} 1 \\ 2 \end{pmatrix}$		$\begin{pmatrix} 1 \\ 27 \end{pmatrix}$		$\begin{pmatrix} 0 \\ 24 \end{pmatrix}$
t := count		3 2		8		6
$St := \sum \left(t^3 - t \right) \qquad St = 4092$	t =	2 1	$t^3 =$	8 1	$t^{3} - t =$	6 0
 note use of vector sum function here that adds all elements of a vector together 		7 10		343 1000		336 990
int:		14		2744		2730

Test Statistic:

IF
$$RS_{pos} \neq \frac{n(n+1)}{4}$$
 AND there ARE NO ties THEN:

$$T := \frac{\left[\left| RS_{pos} - \frac{n \cdot (n+1)}{4} \right| - \frac{1}{2} \right]}{\sqrt{\frac{n \cdot (n+1) \cdot (2 \cdot n+1)}{24}}} \qquad T = 2.1708$$

IF
$$RS_{pos} \neq \frac{n(n+1)}{4}$$
 AND there ARE ties THEN:

$$T := \frac{\left[\left| RS_{pos} - \frac{n \cdot (n+1)}{4} \right| - \frac{1}{2} \right]}{\sqrt{\frac{n \cdot (n+1) \cdot (2 \cdot n+1)}{24}} - \frac{\sum^{\left(t^{3} - t\right)}}{48}}{48}}$$

T = 2.1877

< this one applies here, since there are ties

 $RS_{pos} = 248$

^ sum these for St IF $RS_{pos} = n(n+1)/4$ THEN:

T := 0

GENERAL ALTERNATIVE TO THE ABOVE:

$$j := 0 \dots length(AR) - 1$$

$$T := \frac{\left[\left\| RS_{pos} - \frac{n \cdot (n+1)}{4} \right\| - \frac{1}{2} \right]}{\sqrt{\sum_{j} \frac{\left[t_{j} \cdot \left(AR_{j} \right)^{2} \right]}{4}}} \qquad T = 2.1877 \qquad < \text{this one also applies}$$

Critical Value of the Test:

$$\alpha := 0$$

0.05 **Characteristic State Sta**

$$C := qnorm\left(1 - \frac{\alpha}{2}, 0, 1\right) \qquad C = 1.96$$

Decision Rule:

IF T > C THEN REJECT H_0 OTHERWISE ACCEPT H_0

T = 2.1877 C = 1.96

Probability Value:

 $P := 2 \cdot (1 - pnorm(T, 0, 1)) \qquad P = 0.02869$

Prototype in R:

```
#WILCOXON SIGNED-RANK TEST
#PAIRED t-TEST ANALOG
ROS=read.table("c:/DATA/Biostatistics/RosnerEX9.12.txt")
ROS
attach(ROS)
wilcox.test(Before, After, alternative="two.sided", paired=T)
```

Wilcoxon signed rank test with continuity correction

data: Before and After V = 248, p-value = 0.02869 alternative hypothesis: true location shift is not equal to 0

Warning message: In wilcox.test.default(Before, After, alternative = "two.sided", : cannot compute exact p-value with ties

^ Note: V in R's report = RS_{pos} above. P values match.