$ORIGIN \equiv 0$

Wilcoxon Rank-Sum Test **Mann-Whitney Test**

These fully equivalent procedures are the nonparametric analog to the two-sample t-test. They are applied when analyzing independent samples from two populations without assuming an underlying Normal distribution for each. Thus they may be applied to most/all situations one might normally apply to a parametric solution, but with fewer assumptions and less power.

Assumptions:

					P	
- Observed val	ues X _{1,1} , X _{1,2} , X _{1,3} , X _{1,n1} are a random sample					
Observed values X _{2,1} , X _{2,2} , X _{2,3} , X _{2,n2} are a random sample.				height	sex	rank
- Variables X_1 's and X_2 are independent.			1	193	male	1
- Underlying distributions are continuous.			2	188	male	2
- Measurement scale is at least ordinal - i.e, data can be ranked.			3	185	male	3
Hypotheses:			4	183	male	4
$\mathbf{H}_0: \boldsymbol{\Delta} = 0$	< No population ordinal difference in median		5	180	male	5
$\mathbf{H}_{1}: \Delta \neq 0$	< Two sided test		6	175	male	7
			7	170	male	9
Criterion for Normal Approximation:			8	178	female	6
- IF $(n_1 \ge 10) \land (n_2 \ge 10)$ THEN Normal Approximation may be used			9	173	female	8
OTHERWISE use Special Tables e.g., Zar 2010 Appendix B-11 or			10	168	female	10
Kosner 2006 ladie 11 in Appendix		11 12	11	165	female	11
Normal Approximation:		n ₁ := /	12	163	female	12)
		$n_2 := 5$	-			

Rank Data and Sum:

- Pool Data and Rank observations.

- Compute Rank Sum (RS₁ or RS₂) of one population (doesn't matter which).

$RS_1 := 1 + 2 + 3 + 4 + 5 + 7 + 9$	$RS_1 = 31$	< rank sum for males
$RS_2 := 6 + 8 + 10 + 11 + 12$	$RS_2 = 47$	< rank sum for females

Wilcoxon Test Statistic T:

IF $RS_1 \Leftrightarrow n_1(n_1+n_2+1)/2$ AND there are NO ties THEN:

$$T_1 := \frac{\left[\left| RS_1 - \frac{n_1 \cdot (n_1 + n_2 + 1)}{2} \right| - \frac{1}{2} \right]}{\sqrt{\left(\frac{n_1 \cdot n_2}{12}\right) \cdot (n_1 + n_2 + 1)}}$$

IF $RS_1 \ll n_1(n_1+n_2+1)/2$ AND there ARE ties THEN:

$$T_{2} \coloneqq \frac{\left[\left| RS_{1} - \frac{n_{1} \cdot (n_{1} + n_{2} + 1)}{2} \right| - \frac{1}{2} \right]}{\sqrt{\left(\frac{n_{1} \cdot n_{2}}{12}\right) \cdot \left[n_{1} + n_{2} + 1 - \sum_{i} \frac{t_{i} \cdot \left[(t_{i})^{2} - 1 \right]}{(n_{1} + n_{2}) \cdot (n_{1} + n_{2} - 1)} \right]} \qquad T_{2} = \frac{1}{2}$$

 $n_1 \cdot \frac{\left(n_1 + n_2 + 1\right)}{2} = 45.5$

T₁ = 2.2736 < **applies**

where:

t = number of tied individuals in each class or group.

i = is used to sum across all classes or groups.

Zar Example 8.11:

1

 $T_3 := 0$

IF $RS_1 = n_1(n_1+n_2+1)/2$ THEN:

 $T_1 = 2.2736$

Critical Value of the Test:

C := qnorm
$$\left(1 - \frac{\alpha}{2}, 0, 1\right)$$
 C = 1.96

Decision Rule:

IF T > C THEN REJECT H_0 , OTHERWISE ACCEPT H_0

Probability Value:

 $P := 2 \cdot (1 - pnorm(T_1, 0, 1))$ P = 0.023

Mann-Whitney Test Statistic U:

 $U := n_1 \cdot n_2 + \frac{n_1 \cdot (n_1 + 1)}{2} - RS_1$

U = 32
^ This statistic may be compared with Zar 2010 Appendix B-11.

Prototype in R:

#WILCOXON RANK-SUM TEST #MANN-WHITNEY TEST

ZAR=read.table("c:/DATA/Biostatistics/ZarEX8.11.txt") ZAR attach(ZAR)

wilcox.test(height~sex,paired=FALSE,exact=T,alternative="two.sided")

^ according to the documentation for wilcox.test() explicit calculation of the test statistic W is made if the samples contain less than 50 values and there are no ties. Otherwise a Normal Approximation is used.

Wilcoxon rank sum test

data: height by sex W = 3, p-value = 0.01768 alternative hypothesis: true location shift is not equal to 0

[^]Results show a small (but not the same) P value as expected since this dataset didn't qualify for the Normal approximation. Note also that R's statistic W doesn't match! See R's documentation about this... and below...

W := 3		< Reported statistic W from R above.		
$cf \coloneqq \frac{n_1 \cdot \left(n_1 + 1\right)}{2}$	cf = 28	< correction factor indicated in documentation		
W + cf = 31	$RS_1 = 31$	< W + cf is the same as our RS ₁		