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ORIGIN 1 Multiple Pairwise Comparison Procedures in 
One-Way ANOVA with Fixed Effects Model

When the omnibus F-Test for ANOVA rejects the null hypothesis that all i's = 0, or equivalently that all i 
are the same, then one usually wants to determine specifically which of the i's differ from the others.  In two 
population t-Tests, only a single comparison between population means (1 with 2) is made.  In ANOVA, 
greater than two populations is standard and multiple pairwise (i.e., 1 - 2 and 1 - 3 and 2 - 3 for three 
populations) or multiple linear contrasts (i.e.,  1+2-23  etc.) are often of interest.  In these cases, 
comparisons are made simultaneously, and are therefore dependent upon the same sample data.  As a result, 
it is standadard practice to pool the estimate of within group variance (MSW).  However, in comparing multiple 
hypotheses simultaneously an important complication arises.  The existence of multiple dependent 
probabilities derived from each comparison implies that the joint probability of a family of comparisons 
together is greater than each one separately.  Thus, if one specifies Type I error  = 0.05 for one one test then 
familywise fw for all tests together is always greater than  (e.g., less significant - see Zar 2010 Ch. 10). 

From the mathematical end of things, statisticians routinely caution experimenters about the potential pitfalls 
of post hoc (analysis following data collection, or "unplanned") "data snooping" (to borrow a term from Neter 
et al. 1996).  By this, they mean running a large number of simultaneous tests or confidence intervals, and 
then proceeding to report "statistically significant" findings as if discovered outside the context of all the tests 
run, or worse, as the result of a strategically-chosen a priori (before data collection, or "planned")  
experimental design.  The problem is that if enough simultaneous tests are run, the laws of probability predict 
that some tests will end up showing significance merely due to chance.  This mathematically-based caution is 
certainly correct.  

Given this, are one or more "significant" planned or unplanned results in ANOVA tests to be considered valid 
or not?  Much depends on what exactly is meant by the foundational concept of  in often widely differing 
theoretical and experimental contexts.  Whereas mathematicians might like to draw a bright line between a 
priori and post hoc, rarely in experimental practice is the distinction so clear.  All experiments exist within a 
framework of pre-existing literature and laboratory/field data collection.  In addition, data collection in 
research often involves cycles of refinement, and thus rarely a one-shot deal.  So of course biologists regularly 
conduct complex "data snooping" in conceiving of problems, designing studies and analyzing results.  They 
could hardly do otherwise, and engaging in a debate about what a researcher knew about data, and when he or 
she knew it relative to some often abstract point in time, is usually very silly. 

However, in my opinion, the a priori vs post hoc distinction remains of interest from both theoretical and 
practical standpoints, and to be aware of the issues involved makes it possible to construct stronger scientific 
arguments.  The distinction also points to clear limitations in statistical reasoning in the sciences to the extent 
that all of it must be acknowledged to be nothing more than a rough approximation.  If one's data are 
overwhelmingly clear, then difficulties in approximation of probabilities do not really matter.  However, if the 
data are unclear, then how one employs the approximation may influence what one might say within a test, 
but not necessarily what one might conclude.  The take-home message remains the same - the data remain 
ambiguous.  Biological interpretation, and experimental replication, must necessarily take precedence over 
abstract mathematical reasoning.            

Simultaneous Inference Procedures in Practice:

Several multiple comparison procedures (MCP) have been developed to adjust Probabilities of Tests and 
associated Confidence Interval widths to accomodate familywise assessments.  Some methods explicitly 
permit "data snooping" whereas others do not.  It is important to be aware of how, and under what 
circumstances, each procedure is employed.  As a practical matter, of course, standard statistical packages 
offer a full battery of possibilites and if the data permits, use of the "most conservative" (i..e, widest 
confidence intervals) is often considered evidence of good experimental design.
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Analysis of Variance Table

Response: Y
          Df      Sum Sq     Mean Sq  F value     Pr(>F)    
X          2 46.80333333 23.40166667 20.97341 4.5151e-05 ***
Residuals 15 16.73666667  1.11577778                        
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

^ descriptive statistics derived from R
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< total number of casesN 18

< number of classesk 3

Zar Example 10.3
#ONE‐WAY ANOVA TABLE
#MULTIPLE t‐TESTS
ZAR=read.table("c:/DATA/BiostaƟsƟcs/ZarEX10.3R.txt")
ZAR
aƩach(ZAR)
Y=potassium
X=factor(variety)
opƟons(digits=12)
#DESCRIPTIVE STATISTICS:
X1bar=mean(Y[X=="1"])
X1bar
X2bar=mean(Y[X=="2"])
X2bar
X3bar=mean(Y[X=="3"])
X3bar
n1=length(Y[X=="1"])
n1
n2=length(Y[X=="2"])
n2
n3=length(Y[X=="3"])
n3
s1=sqrt(var(Y[X=="1"]))
s1
s2=sqrt(var(Y[X=="2"]))
s2
s3=sqrt(var(Y[X=="3"]))
s3
#GENERATING ANOVA TABLE:
anova(lm(Y~X))

ij are a random sample ~ N(0,2) 

Assumptions: 

< allows estimation of k parameters. 
    See Rosner 2006 p. 558

k 0kor

i

i 0

i

i 0or

i

n
i
i 0

i

n
i
i 0

Restriction: 

< where:Xi,j =  + i + i,j 
 is the grand mean of all objects.
i is the mean of i =  +i for each class i.

i,j is the error term specific to each object i,j

Model: 

Let index i,j indicate 
the ith column 
(treatment class) and 
jth row (object).

k groups with not
necessarily the same
numbers of observations
and different means.

Data Structure:

Objects 
(Replicates) #1 #2 #3 … #k

1
2
3
…
n n1 n2 n3 nk

means: X1bar X2bar X3bar … Xkbar

One-Way ANOVA
Treatment Classes:
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Multiple t-Test / Fisher's LSD Test for Specific Treatment Pairs:

This test, offers a "solution" to the problem of distinguishing single Type I error  versus familywide fw in 
multiple comparisons that ignores the issue entirely!  According to Sheskin 1997 Handbook of Parametric 
and Nonparametric Statistical Procedures, "Multiple t-Tests" is the term often employed for planned data, 
whereas "Fisher's Least Significant Difference Tests" often refers to comparisons made post hoc.  However, 
the two are computationally equivalent.  Among MCP's this procedure is the most powerful and most 
capable of detecting differences between means but, of course, also with the highest level of familywise 
error fw.  Multiple t-Test/Fisher's LSD is often employed when the researcher feels that "data snooping" is 
not a major issue in the study and/or the number of multiple comparisions are relatively low.  Of course, 
this is a judgement call.  So if the data permits, use of one of the procedures below is more "conservative" 
and is often judged to be more prudent.  Studies may report both - if it matters.  

Hypotheses:
H0: i  j=   for specific i & j

H1: i j   for specific i & j  

< Means in treatment classes i & j are the same

< Two sided test

Test Statistic:
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 t2 4.2086 < Comparing sample 1 with 3
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
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 t3 6.3676 < Comparing sample 2 with 3

^ Note that pooled variance MSW is used here, 
making the calculation of t statistics a little 
different from the 2-populations calculation

Sampling Distribution of the test Statistic t:
If Assumption hold and H0 is true then t ~t(N-k) where: k = number of classes

N = total number of observations

One-Way ANOVA Table: Values taken from R's ANOVA table:

Source: SS df MS

Between SSB 46.80333333 dfB k 1 dfB 2 MSB
SSB

dfB
 MSB 23.4017

Within SSW 16.73666667 dfW N k dfW 15 MSW
SSW

dfW
 MSW 1.1158

TOTAL SST SSB SSW

SST 63.54
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< Two sided case

For sample 1 vs 3:

t2 4.2086

P 2 1 pt t2 N k   P 1.99924 < if t > 0

P 2 pt t2 N k  P 0.00076 < if t 0 < Two sided case

For sample 2 vs 3:

t3 6.3676

P 2 1 pt t3 N k   P 1.999987 < if t > 0

P 2 pt t3 N k  P 1.263977 10
5

 < if t 0 < Two sided case

Prototype in R:

#PAIRWISE COMPARISON OF MEANS:

#MULTIPLE t‐TEST/FISHER'S LSD:
pairwise.t.test(Y,X,p.adj="none",alternaƟve="two.sided")

        Pairwise comparisons using t tests with pooled SD 

data:  Y and X 

  1       2      
2 0.04746 -      
3 0.00076 1.3e-05

Critical Value of the Test:
 0.05 < Probability of Type I error must be explicitly set

C1 qt


2
N k





 C1 2.1314 < Note: degrees of freedom = (N-k).
This also differs from the 2-populations 
calculation

C2 qt 1


2
 N k





 C2 2.1314

N k 15
C C1 C 2.1314

Decision Rule:
IF |t| > C, THEN REJECT H0 OTHERWISE  ACCEPT H0

Probability Value:
For sample 1 vs 2:

t1 2.159

P 2 1 pt t1 N k   P 0.04746 < if t > 0

P 2 pt t1 N k  P 1.95254 < if t 0
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< comparing sample 2 with 3t3 6.3676

< comparing sample 1 with 3t2 4.2086
< Note that pooled variance MSW is used here, 
making the calculation of t statistics a little 
different from the 2-populations calculation

< comparing sample 1 with 2t1 2.159

Same as calculated above:

Test Statistic:

< Two sided test
< Means in treatment classes i & j are the sameH0: i  j=   for specific i & j

H1: i j   for specific i & j  

Hypotheses:

If a specific and relatively small set of simultaneous tests are desired, this procedure will often give the 
narrowest confidence intervals among MCP's that worry about fw and is often preferred for that reason.  
Since the Bonferroni method requires identifying a specific set of simultaneous tests, it is not considered 
appropriate for post hoc "data snooping".  The Bonferroni approach of adjusting fw in a way that's directly 
related to a specified number of multiple comparisons is very widespread among statistical methods. 

Bonferroni Multiple Comparisons Procedure:
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For sample 2 vs 3:
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For sample 1 vs 3:

CI1 0.0168 2.6165( )
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For sample 1 vs 2:

Multiple t-Test / Fisher's LSD Confidence Intervals:
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P 2 g pt t1 N k  P 5.85762 < if t 0 < Two sided case

For sample 1 vs 3:

t2 4.2086

P 2 g 1 pt t2 N k   P 5.997721 < if t > 0

P 2 g pt t2 N k  P 0.002279 < if t 0 < Two sided case

For sample 2 vs 3:

t3 6.3676

P 2 g 1 pt t3 N k   P 5.999962 < if t > 0

P 2 g pt t3 N k  P 3.79193 10
5

 < if t 0 < Two sided case

Prototype in R:

#BONFERRONI COMPARISON OF MEANS:
pairwise.t.test(Y,X,p.adj="bonferroni",alternaƟve="two.sided")

         Pairwise comparisons using t tests with pooled SD
 
data:  Y and X 
  1      2      
2 0.1424 -      
3 0.0023 3.8e-05
P value adjustment method: bonferroni 

Sampling Distribution of the test Statistic t:
If Assumptions hold and H0 is true then t ~t(N-k) where: k = number of classes

N = total number of observations

Critical Value of the Test:
 0.05 < Probability of Type I error must be explicitly set

g 3 < Bonferroni's factor = number of planned comparisons.  
       Here for three pairwise comparison of means

C1 qt


2 g
N k





 C1 2.6937 < Note: degrees of freedom = (N-k).

< Note also the bonferroni factor g.
C2 qt 1



2 g
 N k





 C2 2.6937

N k 15
CB C1 CB 2.6937

Decision Rule:
IF |t| > CB, THEN REJECT H0 OTHERWISE  ACCEPT H0

Probability Values:
For sample 1 vs 2:

Note below the Bonferroni factor g:
t1 2.159

P 2 g 1 pt t1 N k   P 0.14238 < if t > 0



Biostatistics 250 ANOVA Multiple Comparisons 7

        Pairwise comparisons using t tests with pooled SD 

data:  Y and X 

  1      2      
2 0.0475 -      
3 0.0015 3.8e-05

P value adjustment method: holm 

#HOLM COMPARISON OF MEANS:
pairwise.t.test(Y,X,p.adj="holm",alternaƟve="two.sided")

This procedure is an iterative refinement of the Bonferroni approach designed to provide a simultaneous 
probability of fw for a specific set of tests.  Holm sometimes rejects a null hypothesis that Bonferroni would 
not with the same data and is, thus, more powerful.  However, Holm is computationally more complex and 
lacks direct computation of Confidence Intervals.  Although Holm may be the preferred method for 
theoretical reasons, power consideration by itself may not necessarily be a good reason for chosing the test.  
As with Bonferroni, this method is unsuitable for "data snooping".

Holm Simultaneous Testing Procedure:

^ Note: Bonferroni intervals are wider than Fisher's LSD

CIB3 5.5261 2.2405( )
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For sample 2 vs 3: CIB2 4.2095 0.9239( )

CI2 3.8665 1.2668( )
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For sample 1 vs 3:

CIB1 0.3261 2.9595( )

CI1 0.0168 2.6165( )
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1
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
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For sample 1 vs 2:

Bonferroni Confidence Intervals:
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< critical value constructed from 
"studentized" range distribution.

CT 2.5975CT
1

2
3.67337762497

[1] 3.67337762497

#CALCULATING C FROM THE STUDENTIZED RANGE DISTRIBUTION:
alpha=0.05
N=18
k=3
qtukey(1‐alpha,k,N‐k)

k 3N 18

< Studentized range distribution doesn't exist in MathCad,
so, I'll calculate it using the function qtucky() in R.

CT
1

2
qstudentizedrange 1  k N k  qstudentizedrange

< Probability of Type I error must be explicitly set 0.05

Critical Value of the Test:
^ "studentized range distribution"

If Assumptions hold and H0 is true then q ~q(k,N-k)

where: k = number of classes
N = total number of observations

Sampling Distribution of the test Statistic q:

q3 9.00516017411q3

2 Xbar
2

Xbar
3

 

MSW
1

n
2

1

n
3













For sample 2 vs 3:

q2 5.951908441386q2

2 Xbar
1

Xbar
3

 
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1

n
1

1

n
3













For sample 1 vs 3:

q1 3.053251732725q1

2 Xbar
1

Xbar
2

 

MSW
1

n
1

1

n
2













For sample 1 vs 2:

Tukey Test Statistic:

This procedure is designed to provide a simultaneous probability of fw when comparing means of all 
possible pairs of populations within the ANOVA data structure.  When sample sizes ni differ, this procedure 

is also called the Tukey-Kramer Procedure.  Analysis post hoc is permitted with this procedure as long as 
one is restricts "snooping" to pairwise comparisons of population means. 

Tukey Multiple Pairwise Comparisons Procedure:
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CIT3 5.4674 2.2992( )

CIB3 5.5261 2.2405( )

CI3 5.1832 2.5835( )

CIT3 Xbar
2

Xbar
3

 CT MSW
1
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

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

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




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








CIT2 4.1508 0.9826( )
For sample 2 vs 3:

CIB2 4.2095 0.9239( )

CI2 3.8665 1.2668( )

CIT2 Xbar
1

Xbar
3

 CT MSW
1

n
1

1

n
3







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n
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





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







For sample 1 vs 3: CIT1 0.2674 2.9008( )

CIB1 0.3261 2.9595( )

CI1 0.0168 2.6165( )

CIT1 Xbar
1

Xbar
2

 CT MSW
1

n
1

1

n
2









 Xbar
1

Xbar 
2
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1

n
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n
2




















For sample 1 vs 2:

Tukey Confidence Interval for Multiple Pairwise Comparisons:

[1] 3.55985514127e‐05#FOR SAMPLE 2 VS 3:
P3=1‐ptukey(q3,k,N‐k)
P3

[1] 0.00206212040461#FOR SAMPLE 1 VS 3:
P2=1‐ptukey(q2,k,N‐k)
P2

[1] 0.111388393096#FOR SAMPLE 1 VS 2:
P1=1‐ptukey(q1,k,N‐k)
P1

#CALCULATING P FROM THE STUDENTIZED RANGE DISTRIBUTION:
#q‐STATISTICS FROM MATHCAD:
q1=3.053251732725
q2=5.951908441386
q3=9.00516017411
opƟons(digits=12)

Probability Values:

IF |q| > CT, THEN REJECT H0 OTHERWISE  ACCEPT H0

Decision Rule:
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Prototype in R:

#TUKEY HSD TEST:
TukeyHSD(aov(Y~X),conf.level=0.95)

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = Y ~ X)

$X
              diff             lwr            upr          p adj
2-1 -1.31666666667 -2.900752846105 0.267419512772 0.111388393032
3-1  2.56666666667  0.982580487228 4.150752846105 0.002062120403
3-2  3.88333333333  2.299247153895 5.467419512772 0.000035598551

^ P values and confidence intervals match, signs of values differ for CIT


