Kruskal-Wallis Test

The Kruskal-Wallis is a non-parametric analog to the One-Way ANOVA F-Test of means. It is useful when the k samples appear not to come from underlying Normal Distributions, or when variance in the different samples are of greatly different magnitudes (non-homogeneous). As with other rank-based tests, it does not have as much power as the fully parametric tests, but nevertheless enjoys wide use. Note that when the number of samples k=2, this test is identical to the Mann-Whitney Test.

Data Structure:

k groups with not necessarily the same numbers of observations and different means.

Let index i,j indicate the ith column (treatment class) and jth row (object).

One-Way ANOVA								
	Treatment Classes:							
Objects								
(Replicates)	#1	#2	#3		#k			
1								
2								
3								
n	n1	n2	n3		nk			
means:	X1bar	X2bar	X3bar		Xkbar			

Assumptions:

- Observations in each class(block) are a random sample.
- Observations in each block are independent of observations in other class.
- Underlying distribution of observations in each cell are continuous.
- Measurement scale is at least ordinal.

Zar Example 10.10

Hypotheses:

 H_0 : $\Delta = 0$ < No population differences

 H_1 : $\Delta \neq 0$ < Two Sided Test

	number	loc	rank	RankSum
4	8.2	1	10	
3	9.6	1	12	
5	10.2	1	13	
2	12.1	1	14	
1	14	1	15	64
7	5.1	2	2	
8	5.5	2	4	
10	6.3	2	6	
9	6.6	2	7	
6	8.4	2	11	30
14	4.1	3	1	
15	5.4	3	3	
13	5.8	3	5	
11	6.9	3	8	
12	7.3	3	9	26

Criterion for Normal Approximation:

IF $n_i \ge 5$ THEN Normal Approximation Applies OTHERWISE use Special Tables e.g. Rosner Table 15 p. 844

Biostatistics 270 Kruskal-Wallis Test 2

Normal Approximation:

Rank Data and Sum:

- Pool the data over all treatment classes Total sample size $N = \sum_{i=1}^{n} n_i$
- Assign Data to Ranks. In the case of ties, t observations in a rank are assigned the appropriate average rank.
- Compute the Rank Sum (R_i) for each treatment class i.

$$N := 15$$
 $k := 3$
 $R_1 := 64$ $n_1 := 5$
 $R_2 := 30$ $n_2 := 5$
 $R_3 := 26$ $n_3 := 5$

Test Statistic:

$$i := 1..3$$

$$H_S := \frac{12}{N \cdot (N+1)} \cdot \sum_i \frac{\left(R_i\right)^2}{n_i} - 3 \cdot (N+1)$$

 where R_i are the Rank sums for each treatment class i
$$H_S = 8.72$$

IF no ties, THEN:

 $H := H_s$

< no correction factor in this case...

OTHERWISE:

$$\begin{array}{ll} m \coloneqq 0 & \sum\limits_{j=1}^{m} \left[\left(t_{j} \right)^{3} - t_{j} \right] & < t \ represent \ the \ number \ of \\ observations \ that \ are \ tied \\ in \ groups \ 1 \ to \ g & \\ H_{X} \coloneqq \frac{H_{S}}{\Omega} & < Corrected \ Test \ Statistic & \end{array}$$

Sampling Distribution of the Test Statistic H:

If Assumptions hold, H_0 is true, and assuming Normal Approximation then $H \sim \chi^2_{(k-1)}$

Critical Value of the Test:

< Probability of Type I error must be explicitly set

$$\alpha := 0.05$$

$$C := qchisq(1-\alpha,k-1)$$

$$C = 5.9915$$
 < Normal approximation < Note: df = (k-1)
$$C := 5.780$$
 < Critical Value from Zar Appendix B-13

Decision Rule:

IF H > C THEN REJECT H_0 OTHERWISE ACCEPT H_0

H = 8.72

Probability Value:

P := (1 - pchisq(H, k - 1)) P = 0.0128 < Normal approximation

Zar Example 10.11

Hypotheses:

 H_0 : $\Delta = 0$ < No population differences

 H_1 : $\Delta \neq 0$ < Two Sided Test

рН	pond	rank	RankSum	n
7.68	1	1		
7.69	1	2		
7.7	1	3.5		
7.7	1	3.5		
7.72	1	8		
7.73	1	10		
7.73	1	10		
7.76	1	17	55	8
7.71	2	6		
7.73	2	10		
7.74	2	13.5		
7.74	2	13.5		
7.78	2	20		
7.78	2	20		
7.8	2	23.5		
7.81	2	26	132.5	8
7.74	3	13.5		
7.75	3	16		
7.77	3	18		
7.78	3	20		
7.8	3	23.5		
7.81	3	26		
7.84	3	28	145	7
7.71	4	6		
7.71	4	6		
7.74	4	13.5		
7.79	4	22		
7.81	4	26		
7.85	4	29		
7.87	4	30		
7.91	4	31	163.5	8

Criterion for Normal Approximation:

- IF $\ n_i \geq 5$ THEN Normal Approximation Applies OTHERWISE use Special Tables e.g. Rosner Table 15 p. 844

Normal Approximation:

Rank Data and Sum:

- Pool the data over all treatment classes Total sample size $N = \sum n_i$
- Assign Data to Ranks. In the case of ties, t observations in a rank are assigned the appropriate average rank.
- Compute the Rank Sum (Ri) for each treatment class i.

$$k := 4$$

$$R := \begin{pmatrix} 55 \\ 132.5 \\ 145 \\ 163.5 \end{pmatrix} \qquad n := \begin{pmatrix} 8 \\ 8 \\ 7 \\ 8 \end{pmatrix} \qquad N := \sum n \qquad N = 31$$

Test Statistic:

$$i := 1 .. k$$

$$H_s := \frac{12}{N \cdot (N+1)} \cdot \sum_i \frac{\left(R_i\right)^2}{n_i} - 3 \cdot (N+1)$$

 where R_i are the Rank sums for each treatment class i

IF no ties, THEN: $H_x := H_s$

$$H_X := H_S$$

< no correction factor...

OTHERWISE:

$$t := \begin{pmatrix} 2 \\ 3 \\ 3 \\ 4 \\ 4 \\ 3 \\ 2 \\ 3 \end{pmatrix}$$
The second of the migroups of the

$$\sum_{j=1}^{m} \left[\left(t_{j} \right)^{3} - t_{j} \right]$$
correction factor > $\Omega := 1 - \frac{\sum_{j=1}^{m} \left[\left(t_{j} \right)^{3} - t_{j} \right]}{N^{3} - N}$ $\Omega = 0.9944$

Distribution of the Test Statistic H:

If H_0 is true and assuming Normal Approximation then $H \sim \chi^2_{(k-1)}$

Critical Value of the Test:

< Probability of Type I error must be explicitly set

$$\alpha := 0.05$$
 $C := qchisq(1 - \alpha, k - 1)$
 $C = 7.8147$ < Normal approximation < Note: df = (k-1)

Decision Rule:

IF H > C THEN REJECT H_0 OTHERWISE ACCEPT H_0

Probability Value:

P := (1 - pchisq(H, k - 1)) P = 0.0076 < Normal approximation

Prototype in R:

#KRUSKAL-WALLIS TEST

#ZAR EXAMPLE 10.10

ZAR=read.table("c:/DATA/Biostatistics/ZarEX10.10R.txt")

ZAR

attach(ZAR)

kruskal.test(number,loc)

Kruskal-Wallis rank sum test

data: number and loc Kruskal-Wallis chi-squared = 8.72, df = 2, p-value = 0.01278

#ZAR EXAMPLE 10.11
ZAR=read.table("c:/DATA/Biostatistics/ZarEX10.11R.txt")
ZAR
attach(ZAR)
kruskal.test(pH,pond)

Kruskal-Wallis rank sum test

data: pH and pond Kruskal-Wallis chi-squared = 11.9435, df = 3, p-value = 0.007579