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Kruskal-Wallis Test

Kruskal-Wallis Test

The Kruskal-Wallis is a non-parametric analog to the One-Way ANOVA F-Test of means. It is useful when
the k samples appear not to come from underlying Normal Distributions, or when variance in the different
samples are of greatly different magnitudes (non-homogeneous). As with other rank-based tests, it does not
have as much power as the fully parametric tests, but nevertheless enjoys wide use. Note that when the

number of samples k=2, this test is identical to the Mann-Whitney Test.

Data Structure: One-Way ANOVA
. Treatment Classes:
k groups with not -
iIv th Objects
necessarily the same. (Replicates)|  #1 #2 #3 #k
numbers of observations 1
and different means. 2
Let index i,j indicate 3
the ith column -
(treatment class) and n n1 n2 n3 nk
jth row (object). means: X1bar X2bar X3bar Xkbar

Assumptions:

- Observations in each class(block) are a random sample.
- Observations in each block are independent of observations in other class.

- Underlying distribution of observations in each cell are continuous.

- Measurement scale is at least ordinal.

Zar Example 10.10

Hypotheses:
H,: A=0 < No population differences
Hi: A#0 <Two Sided Test

Criterion for Normal Approximation:
IF n; > 5 THEN Normal Approximation Applies

OTHERWISE use Special Tables e.g. Rosner Table 15 p. 844
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Normal Approximation:

Rank Data and Sum:

- Pool the data over all treatment classes - Total sample size N = Xn,

- Assign Data to Ranks. In the case of ties, t observations in a rank are assigned the
appropriate average rank.

- Compute the Rank Sum (R,) for each treatment class i.

N:=15 k=3
Rl = 64 n1 =5
R2 =30 n, = 5
R3 =26 ny = 5
Test Statistic:
i=1.3 5
12 (Ri) < where R. are the Rank sums
Hg = Z ~3.(N+1) i
N-(N+1) 4« n, for each treatment class i
1
H, = 8.72
IF no ties, THEN: H:= Hg < no correction factor in this case...
OTHERWISE:
m:=0 = [ R t;| < t represent the number of
Z ( j) T observations that are tied
correction factor> Q-1 _a-+ in groups 1 to g
N’ - N Hy
Hy:= ‘o <Corrected Test Statistic

Sampling Distribution of the Test Statistic H:

If Assumptions hold, H_ is true, and assuming Normal Approximation then H ~x2(k_1)

Critical Value of the Test:

< Probability of Type I error must be explicitly set
o = 0.05

C:= qchisq(l - o,k - 1) C =5.9915 < Normal approximation = < Note: df = (k-1)

C:= 5.780 < Critical Value from Zar Appendix B-13
Decision Rule:

IF H > C THEN REJECT H,OTHERWISE ACCEPT H, He 87

Probability Value:

P:= (1 — pchisq(H.k — 1)) P=0.0128 < Normal approximation



Biostatistics 270 Kruskal-Wallis Test

Zar Example 10.11

Hypotheses:
Hy: A=0 < No population differences
Hi: A#0 <Two Sided Test

Criterion for Normal Approximation:
- IF n; > 5 THEN Normal Approximation Applies
OTHERWISE use Special Tables e.g. Rosner Table 15 p. 844
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Normal Approximation:

Rank Data and Sum:

- Pool the data over all treatment classes - Total sample size N = 3n,

- Assign Data to Ranks. In the case of ties, t observations in a rank are assigned the
appropriate average rank.
- Compute the Rank Sum (R,) for each treatment class i.

k=4
55 8
132.5 8
= n:.= N = n N= 31
143 . 2
163.5 8
Test Statistic:
i=1.k
12 (Ri)2 < where R, are the Rank sums
H = Z ~3-(N+1)
N-(N+1) 4 n, for each treatment class i
1
Hg = 11.8761
IF no ties, THEN: Hy == Hg < no correction factor...
OTHERWISE:
2
m:= 7
3
3 < t represent the number of
te | 4 tied observations in each of
B the m groups of tied ranks
3
2
3

i [(%)3 - ti}

correction factor> Q=1 - Q = 0.9944

N3—N

H
Hi= — H = 11.9435 < Corrected Test Statistic in this case
0

Distribution of the Test Statistic H:

If H, is true and assuming Normal Approximation then H mz(k_l)

Critical Value of the Test:

< Probability of Type I error must be explicitly set
a = 0.05

C:= qchisq(l - o,k - 1) C = 7.8147 < Normal approximation < Note: df = (k-1)

Decision Rule:
IF H > C THEN REJECT H,OTHERWISE ACCEPT H,
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Probability Value:

P:= (1 — pchisq(H,k — 1)) P=0.0076 < Normal approximation

Prototype in R:

#KRUSKAL-WALLIS TEST
#ZAR EXAMPLE 10.10

ZAR=read.table("c:/DATA/Biostatistics/ZarEX10.10R.txt")
ZAR

attach(ZAR)
kruskal.test(humber,loc)

Kruskal-Wallis rank sum test

data: number and loc
Kruskal-Wallis chi-squared = 8.72, df = 2, p-value = 0.01278

#ZAR EXAMPLE 10.11

ZAR=read.table("c:/DATA/Biostatistics/ZarEX10.11R.txt")
ZAR

attach(ZAR)
kruskal.test(pH,pond)

Kruskal-Wallis rank sum test

data: pH and pond
Kruskal-Wallis chi-squared = 11.9435, df = 3, p-value = 0.007579



