$ORIGIN \equiv 1$

Friedman Test

Friedman Two-Way Analysis of Variance by Ranks Test

The Friedman Two-Way ANOVA by Ranks Test is the non-parametric analog to the One-Way Repeated Measures ANOVA design, or Randomized block ANOVA design. Both are Model III (Mixed Model) ANOVA in which treatments (A) are a fixed factor and individuals or block (B) are a random factor. The object here is to compare observations exactly matched across treatment classes for replicate individuals.

Data Structure:

k groups (treatments) exactly matched within individuals (objects). Typically, the order in which specific treatments are presented to individuals is randomized and exactly matched over the n replicates.

.	Friedman's Two-Way ANOVA by Ranks								
Let index 1,j indicate the ith column (treatment class) and	Treatment Classes:								
	Individuals (Replicates)	#1	#2	#3		#k			
jth row (object). $X_{i,j}$	1								
represents the rank or average rank of the treatment for each individual.	2								
	3								
	n	n	n	n		n			
untions.	means:	X1bar	X2bar	X3bar		Xkbar			

Assumptions:

- The n Individuals or blocks represent a random sample.

- Underlying distribution of observations in treatment cells are continuous.

- Observations are of at least ordinal scale.

Hypotheses:

 $H_0: \Delta = 0$ < No population differences in treatment</th> $H_1: \Delta \neq 0$ < Two Sided Test</td>

Criterion for Approximation:

- IF $n_i \ge 8$ THEN Approximation Applies OTHERWISE the test is conservative.

Rank Data and Sum:

Zar Example 12.5:

a := 3		tr1	Rtr1	tr2	Rtr2	tr3	Rtr3	
u . <i>b</i>		8.25	1	11.25	3	10.75	2	
b := 5	2	11	1	12.5	3	11.75	2	
i = 1a	3	10.25	1	12	3	11.25	2	
	4	9.5	2	9.75	3	9	1	
	5	8.75	1	11	3	10	2	
$\left(\right)$								
		47.75		56.5		52.75		sum
$R := \begin{vmatrix} 15 \\ \text{from chart} > \end{vmatrix}$			6		15		9	rank sum
(9) nom chart >			1.2		3		1.8	mean rank

- n = number of individuals (i.e., blocks), k = number of treatment classes

- Assign Data for treatment class to Ranks considering each individual (block) at a time. In the case of ties, t observations in a rank are assigned the appropriate average rank.
- Compute the Rank Sum (R_i) for each treatment class i.

Test Statistic:

$$\chi r := \frac{12}{b \cdot a \cdot (a + 1)} \cdot \left[\sum_{i} \left(R_{i} \right)^{2} \right] - 3 \cdot b \cdot (a + 1) \qquad \chi r = 8.4 \qquad \text{ < where } R_{i} \text{ are the Rank sums for each treatment class i}$$
IF no ties, THEN: $\chi := \chi r \qquad \text{ < uncorrected statistic}$
OTHERWISE:
$$correction factor for ties \qquad > \qquad CF := 1 - \frac{\sum_{k=1}^{g} t_{k}}{b \cdot \left(a^{3} - a \right)} \qquad \text{ < t represent the number of observations that are tied in each tied group 1 to g}$$

$$\chi re := \frac{\chi r}{CF}$$

$$\chi := \chi r \qquad \chi = 8.4 \qquad \text{ < no ties in this example}$$

$$F_{F} := \frac{(b-1) \cdot \chi r}{b \cdot (a-1) - \chi r} \qquad F_{F} = 21 \qquad \text{ < alternative "generally preferred statistic" Zar Eq. 12.45 p. 279}$$

Sampling Distribution of the Test Statistics $\chi \& F_F$:

If Assumptions hold and H_0 is true, then χ ~Friedman χ_r^2 table Zar 2010 Appendix B14

If Assumptions hold, H_0 is true, and Normal Approximation then $\chi \sim \chi^2_{(a-1)}$ or $F_F \sim F_{(a-1,(a-1)(b-1))}$

Critical Value of the Test:

 $\alpha := 0.05 \qquad < \text{Probability of Type I error must be explicitly set}$ $C\chi 2r := 6.400 \qquad < \text{from Zar 2010 Table B14}$ $C\chi 2 := qchisq(1 - \alpha, a - 1) \qquad C\chi 2 = 5.9915 \qquad < \chi^2 \text{ approximation when b>14 at } \alpha = 0.05 \text{ or b>22 at } \alpha = 0.01$ $C_F := qF[1 - \alpha, a - 1, (a - 1) \cdot (b - 1)] \qquad C_F = 4.459 \qquad < using F_F \text{ statistic above}$

Decision Rules:

IF $\chi > C\chi 2r$ THEN REJECT H₀, OTHERWISE ACCEPT H₀ (exact table) IF $\chi > C\chi 2$ THEN REJECT H₀, OTHERWISE ACCEPT H₀ (χ^2 approximation) IF F_F > C_F THEN REJECT H₀, OTHERWISE ACCEPT H₀ (alternative F_F statistic)

Probability Value:

$$\begin{split} P_{\chi 2} &:= \begin{pmatrix} 1 - \text{pchisq}(\chi, a - 1) \end{pmatrix} & P_{\chi 2} = 0.015 \\ P_F &:= 2 \cdot \begin{bmatrix} 1 - pF[F_F, a - 1, (a - 1) \cdot (b - 1)] \end{bmatrix} & P_F = 0.0013 \\ b = 5 \end{split}$$

Prototype in R:

#FRIEDMAN'S TEST #ZAR EXAMPLE 12.5 ZAR=read.table("c:/DATA/Biostatistics/ZarEX12.5R.txt") ZAR attach(ZAR) X=eff g=treatment b=block data:

Friedman rank sum test

data: X, g and b
Friedman chi-squared = 8.4, df = 2, p-value = 0.01500

friedman.test(X,g,b)