$ORIGIN \equiv 1$

Cochran's Q Test for for nominal scale data in Randomized Blocks or Repeated Measures Designs

Cochran's Q Test is a non-parametric analog to the Repeated Measures ANOVA design, or Randomized Block ANOVA design. Both designs are Model III (Mixed Model) ANOVA in which treatments (A) are a fixed factor and individuals or blocks (B) are a random factor. As with Friedman's Test, the object is to compare observations exactly matched across treatment classes for replicate individuals or blocks. However, the data in this case are dichotomous nominal classes that may be arbitrarily labeled "0" or "1". If the number of treatment classes (a) = 2, this test is identical to McNemar's Test except for the latter's correction for continuity.

Data Structure:

k groups (treatments) exactly matched within individuals (objects). Typically, the order in which specific treatments are presented to individuals is randomized and exactly matched over the n replicates.

Let index i,j indicate		Cochran's Q Test for Nominal data							
the ith column		Treatment Classes:							
(treatment class) and	Individuals								
jth row (object). X _{i i}	(Replicates)	#1	#2	#3		#K			
represents outcome of thetreatment for each individual in terms of only zero or one.	1	"0" or "1"	"0" or "1"	"0" or "1"		"0" or "1"			
	2	"0" or "1"	"0" or "1"	"0" or "1"		"0" or "1"			
	3	"0" or "1"	"0" or "1"	"0" or "1"		"0" or "1"			
		"0" or "1"	"0" or "1"	"0" or "1"		"0" or "1"			
	n	n	n	n		n			
nptions:	means:	X1bar	X2bar	X3bar		Xkbar			

1

3

G := 3

6

Assumptions:

- The n Individuals or blocks represent a random sample.

- Observations are nominal scale.

Hypotheses:

 $H_0: \Delta = 0$ < No population differences in treatment</th> $H_1: \Delta \neq 0$ < Two Sided Test</td>

Criterion for Approximation:

where: a = number of treatment classes b = number of individuals or individuals (blocks)

IF a > 3 and $b \cdot a > 23$ THEN Approximation holds, OTHERWISE use special tables.

a := 5 < approximation holds b := 7

^ one discards individuals (blocks) with all "0" or all "1"
- One block deleted here.

Group and Block Counts:

Zar Example 12.6:

	lilo	liti	dklo	dkst	none	Totals
1	0	0	0	1	0	1
2	1	1	1	1	1	
3	0	0	0	1	1	2
4	1	1	0	1	0	3
5	0	1	1	1	1	4
6	0	1	0	0	1	2
7	0	0	1	1	1	3
8	0	0	1	1	0	2
totals	1	3	3	6	4	

< block counts

Test Statistic:

$$Q := \frac{(a-1) \cdot \left[\sum_{i=1}^{a} (G_{i})^{2} - \frac{\left(\sum_{i=1}^{a} G_{i}\right)^{2}}{a}\right]}{\sum_{j=1}^{b} B_{j} - \frac{\sum_{j=1}^{b} (B_{j})^{2}}{a}} \qquad Q = 6.9474$$

Sampling Distribution of the Test Statistic Q:

If Assumptions hold, $H^{}_0$ is true, and given approximation above, then Q ${\sim}\chi^2_{~(a-1)}$

Critical Value of the Test:

 $\alpha := 0.05$ < type I error rate must be set

$$C := qchisq(1 - \alpha, a - 1)$$
 $C = 9.4877$

Decision Rule:

IF Q > C THEN REJECT H_0 , OTHERWISE ACCEPT H_0

Probability Value:

P := (1 - pchisq(Q, a - 1)) P = 0.1387

Prototype in R:

#COCHRAN'S Q TEST #ZAR EXAMPLE 12.6 ZAR=read.table("c:/DATA/Biostatistics/ZarEX12.6R.txt") ZAR attach(ZAR) X=score tr=treatment b=block ?mantelhaen.test

mantelhaen.test(X,tr,b)

Cochran-Mantel-Haenszel test

data: X and tr and b Cochran-Mantel-Haenszel M^2 = 6.9474, df = 4, p-value = 0.1387

Note: this test is called the "Cochran-Mantel-Haenszel" Test in R.

a = 5b = 7