$ORIGIN \equiv 0$

attach(ZAR2) Y=data X=group

summary(Im(Y~X)) detach(ZAR2)

General Linear Models and "dummy" Coding

Coding of Groups as "dummy" Variables:

Multiple Linear Regression is not restricted to cardinal data, but may be readily adapted to other forms of data. In this guise - the so called "General Linear Model" or "GLM", is a very wide-ranging method that can be shown to unify much of standard statistics including t-tests and ANOVA. Shown here is one standard extension to independent variables *in data classes* (as in t-tests or ANOVA) through the judicious use of "dummy coding". Because all variables can be "binned" into data classes (similar to making a histogram), this approach has broad application.

Two sample t-Test with assumed equal variances See <i>Biostatistics</i> Worksheet 160		Zar Example 8.1			
See Diosimismes Worksheet 100		data	group		
	1		gpB		
	2		gpB		
Two-Sample t-Test assuming Equal Variances:	3		gpB gpB		
Output from R:	4		gpB		
#COMPARING TWO-SAMPLE T-TEST WITH GLM:	5	9.1	gpB		
ZAR=read.table("c:/DATA/Biostatistics/ZarEX8.1R.txt")	6	9.6	gpB		
ZAR	7	9.9	gpG		
attach(ZAR)	8	9	gpG		
Y=data	9		gpG		
X=group	10		gpG		
v-Progh					
#PERFORMING TWO-SAMPLE TWO-SIDED t-TEST:	11		gpG		
t.test(Y~X,alternative="two.sided",var.equal=TRUE, conf.level=0.95)	12		gpG		
detach(ZAR)	13	9.5	gpG		
Two Sample t-test data: Y by X t = -2.4765, df = 11, p-value = 0.03076 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval:	Za	r Example	8.1		
-1.8752609 -0.1104534 sample estimates:					
mean in group gpB mean in group gpG	1	data gr 8.8	-		
8.750000 9.742857	1		0 0		
	3		0		
	4		0		
	5	9.1	0		
	6		0		
Decreasion America che mitth "decrease" Verich le	7		1		
Regression Approach: with "dummy" Variable	8		1		
for group with levels: gpB=0 & gpG=1	-	11.1 0 9.6	1 1		
	-	0 9.6 1 8.7	1		
#PERFORMING EQUIVALENT GLM REGRESSION:	-	1 8.7 2 10.4	1		
ZAR2=read.table("c:/DATA/Biostatistics/ZarEX8.1bR.txt") ZAR2		3 9.5	1		

>

ummary(lm(Y~X))	Call:
	lm(formula = Y ~ X)
	Residuals: Min 1Q Median 3Q Max -1.043 -0.350 -0.050 0.350 1.357
	Coefficients: Estimate Std. Error t value Pr(> t) (Intercept) 8.7500 0.2942 29.743 7.32e-12 ***
	X 0.9929 0.4009 2.476 0.0308 *
t statistic & P match >	 Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
difference in means	Residual standard error: 0.7206 on 11 degrees of freedom
calculated above match estimate for coefficient	Multiple R-squared: 0.358, Adjusted R-squared: 0.2996 F-statistic: 6.133 on 1 and 11 DF, p-value: 0.03076
β here.	

In general, appropriate discrete NUMERIC values allow Regression to accomplish the same calculations as done in t-Tests and ANOVA! When, as above, there are only two levels within a factor, numerical coding of a "dummy" variable is straightforward. In "multi-state" factors where there are more than two levels, coding is more complex usually involves multiple columns of "dummy" variables. There are multiple ways to code a factor into one or more "dummy" variables. Software packages often make options available. They will also choose a default method that may, or may not, be transparent to the end user.

One-Way ANOVA

#COMPARING ONE-WAY ANOVA AS GLM: ZAR3=read.table("c:/DATA/Biostatistics/ZarEX10.1R.txt") ZAR3		model matrix with "dummy" variables:		datafile:	
attach(ZAR3)				weights fee	d
	1	1 0 0 0	1	60.8	1
Y=weights	2 3	1 0 0 0 1 0 0 0	2	67.0	1
X=factor(feed)	4	1 0 0 0	3		1
LM=lm(Y~X)	5	1 0 0 0	4		1
model.matrix(LM)	6	1 1 0 0	5		1
	7	1 1 0 0			
	8	1 1 0 0	6		2
	9	1 1 0 0	7		2
In this example, there are four levels within	10 11	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8	75.0	2
factor "feed". When assignment to X was made using:	12		9	73.3	2
X=factor(feed)	13	1 0 1 0	10	71.8	2
followed by:	14	1 0 1 0	11	69.6	3
•	15	1 0 0 1	12	77.1	3
LM=lm(Y~X)	16	1 0 0 1	13		3
we told R's GLM procedure to code the factor using	17 18	$ 1 0 0 1 \\ 1 0 0 1 $	14		3
dummy variables. The following command:	18	1 0 0 1	15		4
model.matrix(LM)		assign")	16		
		1 1 1			4
allows us to see the dummy variables directly,	attr(,	"contrasts")	17		4
as well as the method of coding R used, called	attr(,"contrasts")\$X		18		4
"cont.treatment". An ANOVA table and test can be	[1] "contr.treatment"		19	60.3	4
generated as seen in <i>Biostatistics</i> Worksheet 230 where, in fact, GLM did the work for us.					

anova(LM)

Analysis of Variance Table Response: Y Df Sum Sq Mean Sq F value Pr(>F) 3 338.94 112.979 12.040 0.000283 *** х Residuals 15 140.75 9.383 Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Reading Estimates for Multi-state Unordered Factors in R:

ANOVA models are General Linear Models in which discrete (typically unordered) variables defining multiple groups are entered into the Linear Model regression machinery as specially coded multi-level "factors", with two or more levels for each factor. Coding of factors (i.e., "dummy variables") may be accomplished in different ways. Most statistical programs including R have options for coding "contrasts" for dummy variables and, of course, a default. R's anova() function summarizing the effect of each factor as a whole is unaffected by differences in coding. However the summary() results, looking at levels within a factor, will differ depending upon which coding contrast is employed. Listed below are common options in R.

Treatment Contrasts (R default):

```
"cont.treatment"
```

#TREATMENT CONTRASTS (DEFAULT)	co	ntrasts:	mo	del m	atri	ix:	
LM=Im(Y~X)		234	(Interd	cept) X	2 X	3	X4
	1	0 0 0	1	÷ .			0
contrasts(X)	2	2 1 0 0	2	1	0	0	0
model.matrix(LM)	3	3 0 1 0	3	1	0	0	0
summary(LM)	4	001	4	1	0	0	0
54			5		-	0	0
			6		-	0	0
			7			0	0
Call:			8			0	0
lm(formula = Y ~ X)			9			0	0
			10	1	1	0	0
Residuals:			11	1	0	1	0
Min 1Q Median 3Q Max			12	1	-	-	0
-3.82 -2.76 0.38 2.19 3.98			13	1		1	0
			14	1	0	1	0
Coefficients:			15	1	0	0	1
Estimate Std. Error t value Pr(> t			16	1	0	0	1
(Intercept) 64.620 1.370 47.171 < 2e-	16 ***		17	1	0	0	1
X2 6.680 1.937 3.448 0.0035	86 **		18	-	-	-	1
X3 8.730 2.055 4.248 0.0007	01 ***		19	1	0	0	1
X4 -1.380 1.937 -0.712 0.4872	04		attr(,"assign")				
			[1] 0 1 1	1			
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.	05 `.' 0.1 ` ' 1		<pre>attr(,"contrasts")</pre>				
			attr(,"cor	ntrasts	")\$	Х	

[1] "contr.treatment"

^ Here, the Estimate of "Intercept" refers to the the mean of the first factor level (i.e., factor level "1") encountered in the dataset. Estimates of X2, X3 & X4 are *differences* between means of each of these levels from that of X1 (the intercept). The t-tests are marginal tests of H₀: no difference between mean of X2 versus X1, X3 versus X1, and X4 versus X1, for each row in the summary() output.

Note: This system of contrast coding is almost, but not quite, equivalent to Treatments Model in ANOVA. Whereas Treatments models in ANOVA employ the grand mean μ and treatment effects α_i , the "contr.treatments" contrast system in R uses the mean for the first group specified in the model formula (reading from left to right) μ_1 and differences between the first group and others ($\mu_1 - \mu_2$), ($\mu_1 - \mu_3$), ...

Cell Means Contrasts:

"contr.treatment"

#CELL MEANS CONTRASTS:	contrasts:	model matrix:
LM=Im(Y~X-1)#Note use of -1 < Note -1 in formula contrasts(X) model.matrix(LM) summary(LM)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Call: lm(formula = Y ~ X - 1)		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Residuals: Min 1Q Median 3Q Max -3.82 -2.76 0.38 2.19 3.98 Coefficients:		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Estimate Std. Error t value Pr(> t)X164.6201.37047.17<2e-16		16 0 0 0 1 17 0 0 0 1 18 0 0 0 1 19 0 0 0 1 attr(,"assign") [1] 1 1 1 1
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` Residual standard error: 3.063 on 15 degrees of freedom Multiple R-squared: 0.9984, Adjusted R-squared: 0.998 F-statistic: 2340 on 4 and 15 DF, p-value: < 2.2e-16	' 1	<pre>attr(,"contrasts") attr(,"contrasts")\$X [1] "contr.treatment"</pre>

[^] Here Estimates refer to means for each treatment level X1-X4. The marginal t-tests now refer to H_0 : X1 - 0 = 0, X2 - 0 = 0, etc.

Note: Estimates provided by summary() are equivalent to the Cell Means Model in ANOVA, and the t-tests compare each estimate separately with zero.