$ORIGIN \equiv 0$

General F-test for Model Comparison

The General Linear Models (GLM) F-Test using formal comparison between "full" and "reduced" statistical models *that internest* ask whether fewer variables of a reduced model (RM) are sufficient to describe the dependent variable Y in a dataset, or whether a more complex full model (FM) is instead required. A FM may always be identified by having smaller Sum of Squares Error than than the corresponding RM. One can also compare the total number of parameters estimated for each model. A FM always has more estimated parameters than the corresponding RM. The GLM F-test involves H₀ that sets one or more coefficients of the FM to zero. Unlike marginal tests that must treat one independent variable at a time, this procedure allows any comparison between models as long as one is a subset of the other. Worked example is drawn from Ch. 9 in Kuter et al. (KNNL) Applied Linear Statistical Models 5th Edition.

Example in R:

#GLM F-TEST OF FM VS RM K=read.table("c"/DATA/Biostatistics/KNNLCh9SurgicalUnit.txt") K attach(K) options(digits=6) #FITTING THE FULL LINEAR MODEL FM=lm(Y~X1+X2+X3+X4+X5+factor(X6)) #FITTING A REDUCED LINEAR MODEL

RM=Im(Y~X1+X2+X3+X5) #COMPARING MODELS anova(FM) anova(RM)

FM:

compare RSS below:

Analysis of Variance Table Response: Y Df Sum Sq Mean Sq F value Pr(>F) Х1 1 0.776 0.776 12.558 0.000904 *** 1 2.589 2.589 41.880 5.19e-08 *** X2 1 6.334 6.334 102.470 2.16e-13 *** X3 1 0.025 0.025 0.398 0.531382 X4 2.046 0.159218 1 0.126 0.126 X.5 factor(X6) 1 0.052 Residuals 47 **2.905** 0.052 0.845 0.362735 0.062 Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

RM:

Analysis of Variance Table Response: Y Df Sum Sq Mean Sq F value Pr(>F) 1 0.776 0.776 12.849 0.000776 *** X1 1 2.589 2.589 42.853 3.35e-08 *** X2 6.334 104.850 9.12e-14 *** 1 6.334 XЗ X5 1 0.148 0.148 2.456 0.123503 Residuals 49 2.960 0.060 Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Surgical Unit Example KNNL Table 9.1

	X1	X2	Х3	Х4	Х5	ХG	Y
1	6.7	62	81	2.59	50	0	6.544
2	5.1	59	66	1.70	39	0	5.999
3	7.4	57	83	2.16	55	0	6.565
4	6.5	73	41	2.01	48	0	5.854
5	7.8	65	115	4.30	45	0	7.759
6	5.8	38	72	1.42	65	1	5.852
7	5.7	46	63	1.91	49	1	6.250
8	3.7	68	81	2.57	69	1	6.619
9	6.0	6/	93	2.50	58	0	6.962
1 U	5.1	7 10 0 1	94	2.40	48	0	6.613
12	67	51	03 43	1 86	57	0	5 549
1.3	5.8	96	114	3.95	63	1	7.361
14	5.8	83	88	3.95	52	1	6.754
15	7.7	62	67	3.40	58	0	6.554
16	7.4	74	68	2.40	64	1	6.695
17	6.0	85	28	2.98	36	1	6.526
18	3.7	51	41	1.55	39	0	5.321
19	7.3	68	74	3.56	59	1	6.309
20	5.6	57	87	3.02	63	0	6.731
21	5.2	52	76	2.85	39	0	5.883
22	3.4	83	53	1.12	6/	T	5.866
23	6./ 5 0	26 67	68	2.10	30	1	6.395
24	J.0 6 3	59	100	2 95	49	1	6 478
26	5.8	61	73	3.50	62	1	6.621
27	5.2	52	86	2.45	70	0	6.302
28	11.2	76	90	5.59	58	1	7.583
29	5.2	54	56	2.71	44	1	6.167
30	5.8	76	59	2.58	61	1	6.396
31	3.2	64	65	0.74	53	0	6.094
32	8.7	45	23	2.52	68	0	5.198
33	5.0	59	/3	3.50	5/	1	6.019
34	5.8 5.4	/ Z	93 70	2.30	29	1	6.944
36	J.4 5 3	51	99	2.04	48	1	6 453
37	2.6	74	86	2.05	4.5	0	6.519
38	4.3	8	119	2.85	65	1	5.893
39	4.8	61	76	2.45	51	1	6.457
40	5.4	52	88	1.81	40	1	6.558
41	5.2	49	72	1.84	46	0	6.283
42	3.6	28	99	1.30	55	0	6.366
43	8.8	86	88	6.40	30	1	7.147
44	6.5	56	//	2.85	41	0	6.288
45	3.4	11	93	1.48	69 54	1	6.1/8 6.116
40	0.5	40	106	3.00	17	1	6 867
48	4.8	86	101	4.10	35	± 1	7.170
49	5.1	67	77	2.86	66	1	6.365
50	3.9	82	103	4.55	50	0	6.983
51	6.6	77	46	1.95	50	0	6.005
52	6.4	85	40	1.21	58	0	6.361
53	6.4	59	85	2.33	63	0	6.310
54	8.8	78	72	3.20	56	0	6.478

GLM F-Test:

Assumptions:

- Standard Linear Regression depends on specifying in advance which variable is to be considered 'dependent' and which 'independent'. This decision matters as changing roles for Y & X usually produces a different result.

- Y (dependent variable) is a single vector random sample ~ $N(\mu,\sigma^2)$.
- X1, X2, X3, ..., Xi (independent variables) multiple vectors with each value of Xi matched to Yi

Within this setup, two models for the relationship between X and Y variables are explicitly compared:

Full Model:	where: Y_i and $[X_1, X_2,, X_i]$ are matched dependent and independent variables, and
$Y_i = \beta_0 + \Sigma \beta_j X_i + \epsilon_i$	β_0 is the y intercept of the regression line (translation)
Reduced Model:	β_j are slope coefficients for the <i>full set</i> of independent variables $X_1, X_2,, X_j$ β_k are slope coefficients for a smaller <i>set</i> of independent variables <i>within</i> X_j
$\mathbf{Y}_i = \boldsymbol{\beta}_0 + \boldsymbol{\Sigma} \boldsymbol{\beta}_k \mathbf{X}_i + \boldsymbol{\epsilon}_i$	ε_i is the error factor in prediction of Y _i and a random variable ~N(0, σ^2).

Hypotheses:

 H_0 : coefficients in j but NOT INCLUDED in k = 0

H₁: at least some of these coeficients not 0

Note that Null Hypotheses are, in general, a formal statement of parsimony (i.e., "simplicity" of explanation). The null hypothesis says that the simpler of two alternatives is to be preferred unless the data require us to reject it. In a one population t-test of mean, for example, we ask whether an observed mean value X_{bar} is statistically indistinguishable from some specified value μ_0 . We normally interpret the Null Hypothesis H₀ to say "the differences we observe between X_{bar} and μ_0 are the expected result of random behavior". However, random must always be defined in light of some model of what we expect for random, such as $\sim N(\mu,\sigma)$. We might more accurately claim instead that H₀ says "unless compelled to do so, prefer the simpler hypothesis about difference between X_{bar} and μ_0 ", namely that there is nothing more to explain about the relationship between X_{bar} and μ_0 than $\sim N(\mu,\sigma)$. The Null Hypothesis for GLM above works exactly this way.

Degrees of Freedom:

#DEGREES OF FREEDOM n=length(Y)			
n	[1] 54	< n = number of match	ed observations in dataset
dfF = summary.lm(FM)\$df[1] dfF	[1] 47	< degrees of freedom fo	or FM
dfR = summary.lm(RM)\$df[1] dfR	[1] 49	< degrees of freedom fo	or RM
Sums of Squares:			
#SUMS OF SQUARES ERROR		[1] 2.90527	< SSE _F
SSEF – summary(FM)\$sigma^2 summ SSEF SSER = summary(RM)\$sigma^2*sumn SSER	nary(RM)\$df[2]	[1] 2.96016	< SSE _R

GLM Test Statistic:

		$SSE_R := 2.96$	5016	$df_R \coloneqq 49$
	$SSE_R - SSE_F$	$SSE_F := 2.90$)527	$df_F \coloneqq 47$
с	$df_R - df_F$			
г.=	SSEF	E = 0.444		
	$df_{\rm F}$	1 - 0.444		

#GLM TEST F-STATISTIC F=((SSER-SSEF)/(dfR-dfF))/(SSEF/dfF) [1] 0.444 F

Critical Value of the Test:

$CV := qF(1 - \alpha, df_R - df_F, df_F)$	CV = 5.0874	< note degrees of freedom here

< Probability of Type I error must be explicitly set

Decision Rule:

 $\alpha := 0.01$

IF $F > CV$, THEN REJECT H	OTHERWISE ACCEPT H ₀
-----------------------------	---------------------------------

F = 0.444	CV = 5.0874
1 = 0.111	CV = 5.0074

Probability Value:

1 - 1 - 1 - 0.0771
1 - 1 - 1 - 0.0771

IMPORTANT NOTE:

FALURE to reject H₀ in this test means that the MORE PARSIMONIOUS model RM is PREFERRED! #ANOVA GLM F-TEST anova(RM,FM)

Analysis of Variance Table Model 1: Y ~ X1 + X2 + X3 + X5 Model 2: Y ~ X1 + X2 + X3 + X4 + X5 + factor(X6) Res.Df RSS Df Sum of Sq F Pr(>F) 1 49 2.960 2 47 2.905 2 0.05489 0.444 0.644

^ difference in degrees of freedom