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ORIGIN 0
General F-test for Model Comparison

The General Linear Models (GLM) F-Test using formal comparison 
between "full" and "reduced" statistical models that internest ask 
whether fewer variables of a reduced model (RM) are sufficient to 
describe the dependent variable Y in a dataset, or whether a more 
complex full model (FM) is instead required.  A FM may always be 
identified by having smaller Sum of Squares Error than than the 
corresponding RM.  One can also compare the total number of 
parameters estimated for each model.  A FM always has more 
estimated parameters than the corresponding RM.  The GLM F-test 
involves H0 that sets one or more coefficients of the FM to zero.  
Unlike marginal tests that must treat one independent variable at a 
time, this procedure allows any comparison between models as long 
as one is a subset of the other.  Worked example is drawn from Ch. 9 
in Kuter et al. (KNNL) Applied Linear Statistical Models  5th Edition.

Surgical Unit Example KNNL Table 9.1

     X1 X2  X3   X4 X5 X6     Y
1   6.7 62  81 2.59 50  0 6.544
2   5.1 59  66 1.70 39  0 5.999
3   7.4 57  83 2.16 55  0 6.565
4   6.5 73  41 2.01 48  0 5.854
5   7.8 65 115 4.30 45  0 7.759
6   5.8 38  72 1.42 65  1 5.852
7   5.7 46  63 1.91 49  1 6.250
8   3.7 68  81 2.57 69  1 6.619
9   6.0 67  93 2.50 58  0 6.962
10  3.7 76  94 2.40 48  0 6.875
11  6.3 84  83 4.13 37  0 6.613
12  6.7 51  43 1.86 57  0 5.549
13  5.8 96 114 3.95 63  1 7.361
14  5.8 83  88 3.95 52  1 6.754
15  7.7 62  67 3.40 58  0 6.554
16  7.4 74  68 2.40 64  1 6.695
17  6.0 85  28 2.98 36  1 6.526
18  3.7 51  41 1.55 39  0 5.321
19  7.3 68  74 3.56 59  1 6.309
20  5.6 57  87 3.02 63  0 6.731
21  5.2 52  76 2.85 39  0 5.883
22  3.4 83  53 1.12 67  1 5.866
23  6.7 26  68 2.10 30  0 6.395
24  5.8 67  86 3.40 49  1 6.332
25  6.3 59 100 2.95 36  1 6.478
26  5.8 61  73 3.50 62  1 6.621
27  5.2 52  86 2.45 70  0 6.302
28 11.2 76  90 5.59 58  1 7.583
29  5.2 54  56 2.71 44  1 6.167
30  5.8 76  59 2.58 61  1 6.396
31  3.2 64  65 0.74 53  0 6.094
32  8.7 45  23 2.52 68  0 5.198
33  5.0 59  73 3.50 57  0 6.019
34  5.8 72  93 3.30 39  1 6.944
35  5.4 58  70 2.64 31  1 6.179
36  5.3 51  99 2.60 48  0 6.453
37  2.6 74  86 2.05 45  0 6.519
38  4.3  8 119 2.85 65  1 5.893
39  4.8 61  76 2.45 51  1 6.457
40  5.4 52  88 1.81 40  1 6.558
41  5.2 49  72 1.84 46  0 6.283
42  3.6 28  99 1.30 55  0 6.366
43  8.8 86  88 6.40 30  1 7.147
44  6.5 56  77 2.85 41  0 6.288
45  3.4 77  93 1.48 69  0 6.178
46  6.5 40  84 3.00 54  1 6.416
47  4.5 73 106 3.05 47  1 6.867
48  4.8 86 101 4.10 35  1 7.170
49  5.1 67  77 2.86 66  1 6.365
50  3.9 82 103 4.55 50  0 6.983
51  6.6 77  46 1.95 50  0 6.005
52  6.4 85  40 1.21 58  0 6.361
53  6.4 59  85 2.33 63  0 6.310
54  8.8 78  72 3.20 56  0 6.478

Example in R: 

#GLM F‐TEST OF FM VS RM
K=read.table("c"/DATA/BiostaƟsƟcs/KNNLCh9SurgicalUnit.txt")
K
aƩach(K)
opƟons(digits=6)
#FITTING THE FULL LINEAR MODEL
FM=lm(Y~X1+X2+X3+X4+X5+factor(X6))
#FITTING A REDUCED LINEAR MODEL
RM=lm(Y~X1+X2+X3+X5)
#COMPARING MODELS
anova(FM)
anova(RM)

compare RSS below:
FM:

Analysis of Variance Table
Response: Y
           Df Sum Sq Mean Sq F value   Pr(>F)    
X1          1  0.776   0.776  12.558 0.000904 ***
X2          1  2.589   2.589  41.880 5.19e-08 ***
X3          1  6.334   6.334 102.470 2.16e-13 ***
X4          1  0.025   0.025   0.398 0.531382    
X5          1  0.126   0.126   2.046 0.159218    
factor(X6)  1  0.052   0.052   0.845 0.362735    
Residuals  47  2.905   0.062                     
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

RM:

Analysis of Variance Table
Response: Y
          Df Sum Sq Mean Sq F value   Pr(>F)    
X1         1  0.776   0.776  12.849 0.000776 ***
X2         1  2.589   2.589  42.853 3.35e-08 ***
X3         1  6.334   6.334 104.850 9.12e-14 ***
X5         1  0.148   0.148   2.456 0.123503    
Residuals 49  2.960   0.060                     
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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< SSER

< SSEF[1] 2.90527

[1] 2.96016

#SUMS OF SQUARES ERROR
SSEF = summary(FM)$sigma^2*summary(FM)$df[2]
SSEF
SSER = summary(RM)$sigma^2*summary(RM)$df[2]
SSER

Sums of Squares:

< degrees of freedom for RM

< degrees of freedom for FM

< n = number of matched observations in dataset[1] 54

[1] 47

[1] 49

#DEGREES OF FREEDOM
n=length(Y)
n
dfF = summary.lm(FM)$df[1]
dfF
dfR = summary.lm(RM)$df[1]
dfR

Degrees of Freedom:

Note that Null Hypotheses are, in general, a formal statement of parsimony (i.e., "simplicity" of explanation).  
The null hypothesis says that the simpler of two alternatives is to be preferred unless the data require us to 
reject it.  In a one population t-test of mean, for example, we ask whether an observed mean value Xbar is 
statistically indistinguishable from some specified value 0.  We normally interpret the Null Hypothesis H0 to 
say "the differences we observe between Xbar and 0 are the expected result of random behavior".  However, 
random must always be defined in light of some model of what we expect for random, such as ~N(,).  We 
might more accurately claim instead that H0 says "unless compelled to do so, prefer the simpler hypothesis 
about difference between Xbar and 0", namely that there is nothing more to explain about the relationship 
between Xbar and 0than ~N(,) .  The Null Hypothesis for GLM above works exactly this way.

H1: at least some of these coeficients not 0

H0: coefficients in j but NOT INCLUDED in k = 0

Hypotheses:

Yi = 0kXi + i

Reduced Model:

Yi = 0jXi + i

where: Yi and [X1,X2, ... Xi] are matched dependent and independent variables, and

            0 is the y intercept of the regression line (translation)

j are slope coefficients for the full set of independent variables X1,X2, ... Xj

k are slope coefficients for a smaller set of independent variables within Xj
 

            i is the error factor in prediction of Yi and a random variable ~N(0,2).  

Full Model:

- Standard Linear Regression depends on specifying in advance which variable is to be  considered 
'dependent' and which 'independent'.  This decision matters as changing roles for Y & X usually produces a 
different result.

- Y (dependent variable) is a single vector random sample ~ N(,2).
- X1, X2, X3, ... , Xj (independent variables) multiple vectors with each value of Xi matched to Yi

Within this setup, two models for the relationship between X and Y variables are explicitly compared: 

Assumptions:

GLM F-Test:
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^ difference in degrees of freedom

Analysis of Variance Table

Model 1: Y ~ X1 + X2 + X3 + X5
Model 2: Y ~ X1 + X2 + X3 + X4 + X5 + factor(X6)
  Res.Df   RSS Df Sum of Sq     F Pr(>F)
1     49 2.960                          
2     47 2.905  2   0.05489 0.444  0.644

#ANOVA GLM F‐TEST
anova(RM,FM)

FALURE to reject H0 in this test means that the MORE PARSIMONIOUS model RM is 
PREFERRED!

IMPORTANT NOTE: 
 

P 0.6441P 1 pF F dfR dfF dfF 

Probability Value:

CV 5.0874F 0.444

IF F > CV, THEN REJECT H0 OTHERWISE  ACCEPT H0

Decision Rule:

< note degrees of freedom hereCV 5.0874CV qF 1  dfR dfF dfF 

< Probability of Type I error must be explicitly set 0.01

Critical Value of the Test:

[1] 0.444

#GLM TEST F‐STATISTIC
F=((SSER‐SSEF)/(dfR‐dfF))/(SSEF/dfF)
F

F 0.444

F

SSER SSEF

dfR dfF

SSEF

dfF



dfF 47SSEF 2.90527

dfR 49SSER 2.96016
GLM Test Statistic:


