G-test for Goodness of Fit

Log Liklihood ratios supply an alternative method for assessing goodness of fit based on a maximum liklihood approach. This test may be used for the same kinds of data as the $\chi 2$ test for Goodness of fit, sometimes with a different result. According to Zar 2010 p. 480, opinions differ as to which is the better test. This may be mostly a matter of religious adherence to a preferred methodology It's useful to run both and compare results.

Data Structure:

Observations are counts of individuals in k classes.

Assumptions:

 Observed values O_j are a random sample in k cells

Zar Example 22.1

seed classes					
yellow/smooth	yellow/wrinkled	green smooth	green/wrinkled	n	
152	39	53	6	250	
				250	

Model:

Let Expected Probabilities:

- E_i be specified as:

^ number of classes

- internally specified model with g parameters estimated from the sample.

g := 0

k := 4

OR

- externally specified model

^ number of internally specified parameters

Hypotheses:

H₀: P_i Probabilities are distributed according to the model

 H_1 : P_j Probabilities differ from the model < Two sided test

Construct Contingency Tables of Observed and Expected in each cell:

- Tabulate O_j for each cell
- Calculate Observed Row and Column Totals
- Calculate Expected for each cell:

$$O := \begin{pmatrix} 152 \\ 39 \\ 53 \\ 6 \end{pmatrix} \qquad E := \begin{bmatrix} \left(\frac{9}{16}\right) \cdot 250 \\ \left(\frac{3}{16}\right) \cdot 250 \\ \left(\frac{3}{16}\right) \cdot 250 \\ \left(\frac{1}{16}\right) \cdot 250 \end{bmatrix} \qquad E = \begin{pmatrix} 140.625 \\ 46.875 \\ 46.875 \\ 15.625 \end{pmatrix}$$

seed classes					
yellow/smooth	yellow/wrinkled	green smooth	green/wrinkled	n	
152	39	53	6	250	
140.625	46.875	46.875	15.625	250	

 $^{\wedge}$ where: E_j are the expected probabilities of each cell based on theory in genetics. g = 0 in this case.

χ^2 Test Statistic:

$$j := 1..k$$

$$\chi_{sq} := \sum_{j} \frac{\left(O_{j} - E_{j}\right)^{2}}{E_{j}} \qquad \chi_{sq} = 8.9724$$

G Test Statistic:

$$G := 2 \cdot \sum_{j} O_{j} \cdot \ln \left(\frac{O_{j}}{E_{j}} \right) \qquad G = 10.83251 \qquad 2 \cdot \left(\sum_{j} O_{j} \cdot \ln(O_{j}) - \sum_{j} O_{j} \cdot \ln(E_{j}) \right) = 10.8325$$

Sampling Distribution:

If Assumptions hold and H_0 is true, then $G \sim \chi_{(k-g-1)}$

Critical Value of the Test:

 $\alpha := 0.05$ < Probability of Type I error must be explicitly set

df := k - g - 1 df = 3 where: k = the number of cells,

g = number of parameters of the*internally*specified model

 $C := qchisq(1 - \alpha, df)$ C = 7.814728

Decision Rule:

If
$$\chi_{sq} > C$$
 THEN REJECT H_0 ,OTHERWISE ACCEPT $\chi_{sq} = 8.9724$ $G = 10.8325$

IF G > C THEN REJECT H_0 , OTHERWISE ACCEPT **Probability Value:**

riobadility value.

$$P_{\chi} := (1 - pchisq(\chi_{sq}, df))$$
 $P_{\chi} = 0.02966$ < for χ^2 test

$$P_G := (1 - pchisq(G, df))$$
 $P_G = 0.01267$ < for G test

Prototype in R:

#CHI-SQUARE TEST FOR GOODNESS OF FIT #ZAR EXAMPLE 22.8

ZAR=read.table("c:/DATA/Biostatistics/ZarEX22.8R.txt")
ZAR

attach(ZAR)

> chisq.test(observed,p=expected,rescale.p=TRUE)

Chi-squared test for given probabilities

chisq.test(observed,p=expected,rescale.p=TRUE)
data: observed

X-squared = 8.9724, df = 3, p-value = 0.02966

```
#G-TEST FOR GOODNESS OF FIT
#APPROPRIATE TEST FUNCTION NOT YET FOUND IN R
#THEREFORE, I HAD TO DO THIS FROM SCRATCH:
#G STATISTIC:
                                                                       >#G STATISTIC:
G=2*sum(observed*log(observed/expected))
                                                                       > G
                                                                       [1] 10.83251
#CRITICAL VALUE:
                                                                       > #CRITICAL VALUE:
alpha=0.05
                                                                       > C
k=4
                                                                       [1] 7.814728
g=0
df=k-g-1
                                                                       > #PROBABILITY:
C=qchisq(1-alpha,df)
                                                                       [1] 0.01266689
#PROBABILITY:
P=(1-pchisq(G,df))
```

Yates Correction when degrees of freedom = 1:

Correction is applied in a way that's analogous to what's done in the χ^2 case. Both are shown here for comparison.

$$O := \begin{pmatrix} 84 \\ 16 \end{pmatrix} \qquad E := \begin{bmatrix} \left(\frac{3}{4}\right) \cdot 100 \\ \left(\frac{1}{4}\right) \cdot 100 \end{bmatrix} \qquad \qquad E = \begin{pmatrix} 75 \\ 25 \end{pmatrix} \qquad \qquad k := 2$$

$$i := 1 ... k$$

Zar Example 22.1:

Seed		
Yellow	Green	n
84 16		100
75	25	100

χ^2 Test Statistic:

$$j:=1..k$$

$$\chi_{sq}:=\sum_{j}\frac{\left(\mathrm{O}_{j}-\mathrm{E}_{j}\right)^{2}}{\mathrm{E}_{j}}$$

$$\chi_{sq}=4.32$$

G Test Statistic:

$$G := 2 \cdot \sum_{j} O_{j} \cdot \ln \left(\frac{O_{j}}{E_{j}} \right) \qquad G = 4.758032$$

Yates Correction for the χ^2 Test Statistic:

In cases where number of classes = 2 (df =1) Yates correction is routinely employed to allow test statistic χ^2 to be destributed as $\chi^2_{(df=1)}$

$$\chi_{\text{Csq}} := \sum_{j} \frac{\left(\left| O_{j} - E_{j} \right| - 0.5 \right)^{2}}{E_{j}}$$
 $\chi_{\text{Csq}} = 3.8533$

Yates Correction for the G Test Statistic:

$$O := \begin{pmatrix} 84 - 0.5 \\ 16 + 0.5 \end{pmatrix}$$
 < correction applied to observed values

$$G_C := 2 \cdot \sum_j O_j \cdot ln \left(\frac{O_j}{E_j} \right)$$

$$G_C = 4.216863$$

Probability Value for the ${\chi_{C}}^{2}$ Test Statistic:

$$P_{\chi C} := (1 - pchisq(\chi_{Csq}, df))$$

$$P_{\chi C} = 0.049647$$

Probability Value for the G_{C} Test Statistic:

$$P_C := (1 - pchisq(G_C, df))$$

 $P_{C} = 0.04002409$

Prototype in R:

#YATES CORRECTION:

ZAR2=read.table("c:/2010BiostatsData/ZarEX22.1R.txt")

ZAR2

attach(ZAR2)

df=1

#YATES CORRECTED G STATISTIC:

obs=c(84-0.5,16+0.5)

Gc=2*sum(obs*log(obs/expected))

Gc

#YATES CORRECTED PROBABILITY:

Pc=(1-pchisq(Gc,df))

Pc

> ZAR2

observed expected class

1 84 75 yellow

2 16 25 green

> #YATES CORRECTED G STATISTIC:

> Gc

[1] 4.216863

>

> #YATES CORRECTED PROBABILITY:

> Pc

[1] 0.04002409