#Biologist Analytic Toolkit (BIOL 483M) #Franco Porto #Marietta Ezeoke #Wilcoxon Rank Sum/Mann-Whitney test for two populations

#Data Set:

Brand X		Brand Y	
Rating	Rank	Rating	Rank
5	5.5	9	11
2	1.5	7	9
6	7.5	5	5.5
2	1.5	10	12
4	4	6	7.5
3	3	8	10

#The above table can be saved in MS Word and used directly in R. Here it is saved as "Brand.txt"

#Assumption:

Observed values X _{rating,1},X _{rating,2}... are of random sample. Observed values Y_{rating,1},Y_{rating,2}... are of random sample Underlying distributions within data are continuous. Variables X and Y are independent. Underlying distributions are continuous. Measurement scale is ordinal and data can thus be ranked.

#Hypotheses:

 $H_0:\Delta=0 <-$ No population ordinal difference in median. #This refers to the null hypothesis.

 $H_{1:}\Delta \neq 0 \leq Two sided test.$

#This refers to the alternative hypothesis.

Test statistics:

> X=read.table("Brand.txt",header=T)

#Here we assign X with the data within the Brand.txt file.

Х

#This should produce the result below:

Rating Rank Brand

1	5 5.5	Х		
2	2 1.5	Х		
3	6 7.5	Х		
4	2 1.5	Х		
5	4 4.0	Х		
6	3 3.0	Х		
7	9 11.0	Y		
8	7 9.0	Y		
9	5 5.5	Y		
10	10 12.0	Y		
11	6 7.5	Y		
12	8 10.0	Y		
attach(X)				

#paired: This indicates whether the test will be paired or unpaired #alternative: This describes the result of the alternative hypothesis. It must be either "two.sided," "greater" or "less."

#exact: This indicates whether or not R should compute an exact p-value for the calculation.

#The x and y values describe the separate sets of values. The actual titles can be given in the R calculation. Here they are "Rating" and "Brand."

wilcox.test(Rating~Brand,paired=FALSE,exact=T,alternative="two.sided")

Wilcoxon rank sum test with continuity correction

data: Rating by Brand W = 2, p-value = 0.01259alternative hypothesis: true location shift is not equal to 0

#Conclusion:

#Since p-value is 0.01259 and is less than alpha which 0.05, then we reject the null hypothesis.