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#Biostatistics with R, BIOL597 

#John Armitage Graduate Project, Spring 2014 

 

#Prototyping Principal Components Analysis (PCA) 

#PCA is a multivariate method of ordination. Ordination is the process of examining data trends and 

groupings, as opposed to hypothesis testing. Imagine plotting all measured variables onto a multi-

dimensional grid, and rotating the grid so that the most “influential” variables (those which best explain 

variance) are plotted against one another, in order of decreasing influence. Typically, the two most 

influential variables are primarily dealt with. The axes along which these variables are plotted are called 

eigenvectors, and the variance describe by each eigenvector is an eigenvalue. 

#I have chosen to prototype using the iris dataset, included with R 

>iris 

#calling the variable to be sure data displays correctly 

    Sepal.Length Sepal.Width Petal.Length Petal.Width    Species 

1            5.1         3.5          1.4         0.2     setosa 

2            4.9         3.0          1.4         0.2     setosa 

3            4.7         3.2          1.3         0.2     setosa 

4            4.6         3.1          1.5         0.2     setosa 

5            5.0         3.6          1.4         0.2     setosa 

… 

150          5.9         3.0          5.1         1.8  virginica 

#actual data reduced here to save space 

#we must remove the factor variable Species, and create an object to which we can apply functions 

>irisPCA=iris[-5] 

>attach(irisPCA) 

>irisPCA 

    Sepal.Length Sepal.Width Petal.Length Petal.Width 

1            5.1         3.5          1.4         0.2 

2            4.9         3.0          1.4         0.2 

3            4.7         3.2          1.3         0.2 

4            4.6         3.1          1.5         0.2 
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5            5.0         3.6          1.4         0.2 

… 

150          5.9         3.0          5.1         1.8 

#the data displayed correctly, with Species excluded. This means we are now dealing with only 4 

variables. 

#next, calculate a covariance matrix, looking at the covariance between each variable, NOTE: it does not 

matter here if you use the raw data or mean centered data, the variance is the same 

> cov(irisPCA,irisPCA) 

             Sepal.Length Sepal.Width Petal.Length Petal.Width 

Sepal.Length    0.6856935  -0.0424340    1.2743154   0.5162707 

Sepal.Width    -0.0424340   0.1899794   -0.3296564  -0.1216394 

Petal.Length    1.2743154  -0.3296564    3.1162779   1.2956094 

Petal.Width     0.5162707  -0.1216394    1.2956094   0.5810063 

#looks good, let’s create a variable we can call 

> covmatrix=cov(irisPCA,irisPCA) 

#Now we need to find the eignevalues and eigenvectors from this matrix 

> eigen(covmatrix) 

$values 

[1] 4.22824171 0.24267075 0.07820950 0.02383509 

 

$vectors 

            [,1]        [,2]        [,3]       [,4] 

[1,]  0.36138659 -0.65658877 -0.58202985  0.3154872 

[2,] -0.08452251 -0.73016143  0.59791083 -0.3197231 

[3,]  0.85667061  0.17337266  0.07623608 -0.4798390 

[4,]  0.35828920  0.07548102  0.54583143  0.7536574 

#Now we need to order eigenvalues from highest to lowest. By chance, they are already in descending 

order in the output 

#Choose how many eigenvectors you want to keep. I have chosen to keep all eigenvectors, for the most 

accurate results 



3 
 

> eigen(covmatrix)$vectors 

            [,1]        [,2]        [,3]       [,4] 

[1,]  0.36138659 -0.65658877 -0.58202985  0.3154872 

[2,] -0.08452251 -0.73016143  0.59791083 -0.3197231 

[3,]  0.85667061  0.17337266  0.07623608 -0.4798390 

[4,]  0.35828920  0.07548102  0.54583143  0.7536574  

#let’s set this to a variable we can call 

> eigenvec=eigen(covmatrix)$vectors 

#for later, we can also create a variable which will only deal with eigenvalues 

> eigenval=eigen(covmatrix)$values 

#Now we calculate the principal component scores by multiplying the data by the transposed ranked 

eigenvectors. In order to transpose a matrix (which means switching the columns and rows), use the 

function t() 

> PCS=t(eigenvec)*irisPCA 

> PCS 

    Sepal.Length Sepal.Width Petal.Length  Petal.Width 

1      1.8430716   1.2540122   1.19933885 -0.016904503 

2     -3.2172850   0.2264431   0.24272173 -0.146032287 

3     -0.3972558   1.1564371   0.46577596  0.171334121 

4     -3.3587426  -2.0354252   0.11322153  0.034674533 

5      4.2833530  -0.3042811   0.50594123  0.071657839 

… 

150    1.0228987  -2.1904843  -3.34860273  0.135865836 

#Next, calculate the correlation of the original variables with the principal components (called the 

componenet scores) 

> compscores=((eigenvec*sqrt(eigenval))/(sqrt(irisPCA))) 

> compscores 

    Sepal.Length  Sepal.Width Petal.Length  Petal.Width 

1    0.329053754  0.025916500 -1.141062246  0.535708605 

2   -0.018809752  0.006727993 -0.303993003  0.123687879 
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3    0.110508247  0.415410002  0.042524449 -3.018966934 

4    0.025790706 -0.023648319  0.009514820 -0.804289886 

5   -0.603793387  0.126267729  0.628040890  0.108416498 

… 

150 -0.148081771  0.031936073 -0.018437245  0.008685802 

#determining the amount of variance described by each eigenvalue 

> FE=eigenval/sum(eigenval) 

> FE 

[1] 0.924618723 0.053066483 0.017102610 0.005212184 

#This means that about 92% of variation is explained by the first eigenvalue, which is further illustrated 

by a Scree Plot 

# 

 

#The entire process can be streamlined by running the function prcomp()…. 

> PCS=prcomp(irisPCA,retx=TRUE,center=TRUE,scale.=FALSE) 

> PCS 

Standard deviations: 

[1] 2.0562689 0.4926162 0.2796596 0.1543862 

 

Rotation: 

                     PC1         PC2         PC3        PC4 

Sepal.Length  0.36138659 -0.65658877  0.58202985  0.3154872 

Sepal.Width  -0.08452251 -0.73016143 -0.59791083 -0.3197231 

Petal.Length  0.85667061  0.17337266 -0.07623608 -0.4798390 

Petal.Width   0.35828920  0.07548102 -0.54583143  0.7536574 

> PCS$x 

                PC1          PC2          PC3           PC4 

  [1,] -2.684125626 -0.319397247  0.027914828  0.0022624371 

  [2,] -2.714141687  0.177001225  0.210464272  0.0990265503 
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  [3,] -2.888990569  0.144949426 -0.017900256  0.0199683897 

  [4,] -2.745342856  0.318298979 -0.031559374 -0.0755758166 

  [5,] -2.728716537 -0.326754513 -0.090079241 -0.0612585926 

… 

[150,]  1.390188862  0.282660938 -0.362909648 -0.1550386 

> PCS$center 

Sepal.Length  Sepal.Width Petal.Length  Petal.Width  

    5.843333     3.057333     3.758000     1.199333 

 

#Unfortunately my calculated principal components scores do not match those of the prcomp() 

function, indicating an error on at least one party’s computations 

########## 

 

#INTERPRETATION OF PCA 

#The first type of plot to examine is the scree plot, which will graphically demonstrate which will 

graphically illustrate the variance explained by eigenvectors as a percentage 

>plot(PCA) 
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#Clearly one eigenvector dominates 

#Next is the biplot… 

> biplot(PCS,choices=c(1,2),cex=0.5) 

 

#This specific plot uses principal component 1 (PC1) and principal component 2 (PC2) as axes. This data 

has been mean-centered (but not scaled), which is why the vectors begin at zero. This is called a biplot 

because the variables and the individual data points are both plotted. 

#The axes represent recombinations of the original variables-these are the principal components. The 4-

dimensional space in which sepal width, sepal length, petal width, and petal length existed has been 

restructured in way that best shows their relationships. The principal components represent a warped 

space of orthogonal eigenvectors. You will notice that the lowest values of data are clustered to the left, 

at -0.1 along the PC1 axis. These values correspond the species Iris Setosa, indicating that this species is 

quite distinct from the other two. There is very little clustering occurring along the vertical PC2 axis. This 

makes sense, as our scree plot indicated that PC1 explained nearly all variance between individuals. 
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#The red arrows represent the variables as vectors. The length of the vector is proportional to its 

influence on variability within data. Petal length has the longest vector, meaning it contributes most to 

variability. The direction of the vector indicates the variable’s influence of principal components. As you 

can see, petal length and petal width have almost no vertical aspect to their slope, indicating they 

primarily comprise PC1. Sepal length and sepal width have short lengths, meaning they have little 

impact on variability between specimens. Additionally, they have some vertical aspect, meaning they 

help to define PC2 more than petal length and petal width. 
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#Special thanks to: 

#Dr. Stein for providing the following link 

http://biotoolbox.binghamton.edu/Multivariate%20Methods/Multivariate%20Ordinations/pdf%20files/

010-2012%20MVO%20010.pdf 

#Lindsay I Smith for uploading the following free PCA tutorial 

http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf 

#Brian S Everitt and Torsten Hothorn for uploading the following free PCA tutorial http://cran.r-

project.org/web/packages/HSAUR/vignettes/Ch_principal_components_analysis.pdf 

#and the R community for their many posts, questions, answers, and more found online 

http://biotoolbox.binghamton.edu/Multivariate%20Methods/Multivariate%20Ordinations/pdf%20files/010-2012%20MVO%20010.pdf
http://biotoolbox.binghamton.edu/Multivariate%20Methods/Multivariate%20Ordinations/pdf%20files/010-2012%20MVO%20010.pdf
http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf
http://cran.r-project.org/web/packages/HSAUR/vignettes/Ch_principal_components_analysis.pdf
http://cran.r-project.org/web/packages/HSAUR/vignettes/Ch_principal_components_analysis.pdf

