
Adam Sasson, Kenny Fasano, Maheen Kibria 
A Scatter Plot Tutorial in R 

1 

 

Plotting Scatter Plots 

A scatter plot is a good tool to use when you have continuous bivariate data. Generally, the 

independent variable is plotted on the x-axis and the depended variable on the y. Scatters plots are 

useful tools for showing correlations between data.   Plotting a scatter plot is extremely easy in R.  

Simply use the plot(x,y).  For example using the data set “cars”: 

 <plot(speed,dist) 

 In the data set “cars” there are two variables speed and distance.  Speed is the independent variable so 

it goes on the x axis and distance is the dependent variable so it goes on the y axis. 

 

 

 

5 10 15 20 25

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0

speed

d
is

t



Adam Sasson, Kenny Fasano, Maheen Kibria 
A Scatter Plot Tutorial in R 

2 

 

 

Adding a Regression Line to a Scatter Plot 

 

    Adding a regression line to your scatter plot is very simple.  A regression line can be used to 

quantify the strength of the relationship between y and x.  The abline(lm(y~x)) function is used.  For 

example 

 > abline(lm(dist~speed)) 

  The resulting graph looks like this: 

 

  

5 10 15 20 25

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0

speed

d
is

t



Adam Sasson, Kenny Fasano, Maheen Kibria 
A Scatter Plot Tutorial in R 

3 

 

 

Making a Scatter Plot Look Good 

 Labeling and naming plots is extremely important and very easy.  

  To add a title to the scatter plot the command is main=”x” 

 To label the axis simply use xlab=”x” and ylab=”x” 

 Coloring the points is easy as well 

 To color points the command pch=21 is essential.  Now set the background to a color of your 

choosing bg=”red” and the outline color, col=”red” 

 For example with the data set cars: 

 

> plot(speed,dist,main="Stopping Distance",xlab="Speed",ylab="Distance",pch=21,bg="red",col="red") 

 

 This outputs the graph below and now it looks much better 

 

5 10 15 20 25

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0

Stopping Distance

Speed

D
is

ta
n

c
e



Adam Sasson, Kenny Fasano, Maheen Kibria 
A Scatter Plot Tutorial in R 

4 

 

 

Adding Points to a Scatter Plot 

 Adding points to a scatter plot can be useful and it is extremely easy.  To add points to a graph 

simply making use of the points() function.   

1. Import the new data set into R. 

a. > read.table("cars2.txt",header=TRUE) 

2. Attach the data set 

a. > cars2=read.table("cars2.txt",header=TRUE) 

b. > attach(cars2) 

3. Add points to graph 

a. > points(Speed,Distance,col="blue", pch=21,bg="blue") 

 Note that in the points() function you need to tell R where to get the points from.  Speed 

and Distance are the variable names of the new data set cars2.  If you are not sure what the 

variables are named, use the command the following command and it will output the 

variable names 

 >names(cars2)  

    [1] "Speed"    "Distance" 

 Note how I colored the new data points blue so we can differentiate between cars and cars2 

 

5 10 15 20 25

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0

Stopping Distances

Speed

D
is

ta
n

c
e



Adam Sasson, Kenny Fasano, Maheen Kibria 
A Scatter Plot Tutorial in R 

5 

 
Rescaling Your Scatter Plot/Adding Two Data Sets to a Scatter Plot 

We have successfully added data points to our scatter plot.  However, all of the data points in 

cars2 are not showing on the graph.  This is because the graph was scaled to fit cars, not cars2.  It is 

simple to cure this problem.  You can plot the points from both data sets on the same plot using 

type=”n” so that the axes are scaled such that all the points are encompassed on the graph (using the 

concatenation function).  For example: 

 >plot(c(speed,Speed),c(dist,Distance),xlab="Speed",ylab="Distance",main="Stopping 

Distances",type="n") 

 

 The two variables speed(cars) and Speed(cars2) are the variables that we want on the x axis and the 

two variables dist(cars) and Distance(cars2) are the variables that we want on the y axis. 

 This gives us a blank set of axis.  Now we need to add the points to our axis by using the points() 

function.  For example: 

 

 > points(speed,dist,col="red",pch=21,bg="red") 

 > points(Speed,Distance,col="blue",pch=21,bg="blue") 

 These three commands give us the following graph, and this graph includes all data points 

 
 

5 10 15 20 25 30

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0

Stopping Distances

Speed

D
is

ta
n

c
e



Adam Sasson, Kenny Fasano, Maheen Kibria 
A Scatter Plot Tutorial in R 

6 

 

Adding a Legend 
 

 The one thing that we are missing from our scatter plot is a legend.  Adding a legend is extremely 

easy we just need to make sure that we use the concatenate function correctly.  Each vector in the 

legend() function must have the same length.  For example: 

 

 >legend(locator(1),c("Car 1","Car 2"),pch=c(21,21),pt.bg=c("red","blue"),col=c("red","blue")) 

 

 Note how each function we used within legend() has the same vector length or number of vectors 

 Also the locator(1) portion of the command allows us to place the top right corner of the legend to a 

place of your choosing.  After you enter the command, simply click where you want the top right 

corner of the legend box.  Here is an example 

 

 

5 10 15 20 25 30

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0

Stopping Distances

Speed

D
is

ta
n

c
e

Car 1

Car 2



Adam Sasson, Kenny Fasano, Maheen Kibria 
A Scatter Plot Tutorial in R 

7 

 

Adding regression lines to each data set 

 We can now add a regression line to each data set.  We simply use the abline(lm()) function as 

shown above.  For example: 

 >abline(lm(Distance~Speed)) 

 >abline(lm(dist~speed)) 

 The below regression lines are now added to our graph as shown below 

 

 
 

 

 

 

5 10 15 20 25 30

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0

Stopping Distances

Speed

D
is

ta
n

c
e

Car 1

Car 2



Adam Sasson, Kenny Fasano, Maheen Kibria 
A Scatter Plot Tutorial in R 

8 

 
 

LOESS Regression 

An extremely useful tool that goes hand in hand in hand with scatter plot analysis is local 

regression curve fitting or locally weighted scatter-plot smoothing (LOWESS or LOESS). This modern 

method of curve fitting is favored by the scientific community for its effectiveness and its virtually 

assumption free nature. In comparison to the older and more common least squares regression analysis, 

the LOESS curve fitting leaves no room for subjective input from the user making it far more robust for 

certain applications than the standard line regression method. LOESS does not require the specific input 

of a function, to which the computer will fit a model of the data.  

How LOESS works  

LOESS uses a complex algorithm by which local linear polynomial fit is iterated through the data. 

LOESS uses a smoothing parameter α, a number between 0 and 1, to determine how lenient the 

computer will be when fitting the curve. A large value of α will make the line more smooth and may help 

find a broad trend among the data, whereas a small value of α will make the line more sensitive to 

fluctuations in the data.  If α is too large, you may be missing out on some valuable information in the 

patterns of the data. However an α value that is too small will make the line respond to random error in 

the data or noise. A good value for α is between .25-.5.  

Another facet of the LOESS method is the weight function that it employs. It utilizes the tri-cube 

weight function which places more emphasis on points that make up a bulk of the information rather 

than outliers (this is precisely the opposite of variance and standard deviation).  The tri-cube weight 

function looks like      w(x) = (1-|x|3)3 I [|x|< 1]  Once again, what makes this test so valuable is the 

notion that it employs, that points that are closer to each other are more likely to be related in a simple 

way than points that are further apart.  

The only disadvantages of LOESS are that it requires a large and densely sampled data set in order to 

work effectively and that it sometimes lacks the ability to provide a simple mathematical formula for 

expressing the data.  

 Let’s use R! 

R has a very simple yet powerful function for LOWESS analysis. It follows from the standard draw line 

function in R. The only input that you need to add to the function template is the name of the bivariate 

data set, the desired alpha value, which will be called f in R, and the color of the line that you wish to 

add. 

  



Adam Sasson, Kenny Fasano, Maheen Kibria 
A Scatter Plot Tutorial in R 

9 

 

5 10 15 20 25

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0

Stopping Distance

Speed

D
is

ta
n

c
e

 attach(cars) 

 plot(speed,dist,main="Stopping Distance", xlab="Speed", ylab="Distance", pch=21, bg=2, 

col=2)  

 lines(lowess(cars, f=.3),col =1) 

 lines(lowess(cars, f=.5),col =4) 

 lines(lowess(cars, f=.1),col =7) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The black lines represent the LOWESS iteration with alpha value .3. The blue line is the LOWESS iteration 

with alpha set to .5, and the green is alpha equals .1. Clearly, the larger the alpha value the more 

smooth the curve is. With a large alpha value, (blue line) we can see that the general trend is positive 

and exponential. With the medium value, (black line) we can see that the data seems to be bimodal with 

two small peaks and 3 small local minimums. When the alpha value is very small (green line) we can 

really see how the data fluctuates. An interesting question to ask is: what can all of this information tell 

us? What can we infer from this? That depends on the particular task and the particular application. 

Here we see that the data appears to have a little bit of a sine curve look to it. However it is important to 

note that this observation may be based on random sampling. I wouldn’t conclude anything unless I had 

more information and more points.  


