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ORIGIN 1

Hotelling's T2 Test for a Single Population

Hotelling's T2 tests are multivariate analogs to univariate Student's t-tests.  As such, they have similar formal 
structure regarding null Ho and alternative hypotheses H1, rejection (or not) of the null by consulting a critical 
value CV or probability P based upon the sampling distribution of  the test  statist ic assuming Ho to be true, and 
construction of confidence intervals for location of the mean that essentially restate the rejection criterion. 
Student's t test statistic for a single population:
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measures "statistical distance", i.e., the difference (Xbar - ) corrected for population standard deviation ( n) 

or variance ( n)2 of the mean, estimated by sample standard deviation (s n) or variance (s n)2 of the mean 
respectively.  There is only one value of  X for each object (= case) in a dataset.  

Hotelling's T2 adopts the squared form of statistical distance above and extends the problem to cases where each 
object has p observations (X1, X2, X3 ... Xp).  Here population and sample means become mean vectors (1,2,3 
...p) and (X1bar,X2bar,X3bar ... Xpbar), and 2 becomes the population covariance matrix  estimated by sample 
covariance matrix S.  In strict analogy to Student's t (squared), the test statistic now becomes:
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where 2 is the squared Mahalanobis distance, and the factor (n) accounts for distance between mean vectors.  
Although numerical values for the T2 distribution can be found in tables, in actual practice one rarely uses 
them because T2 can be converted to values of more widely used F distribution, shown below, or with large 

sample size values of the 2 distribution. 

Interpretation of multivariate results such as Hotelling T2 is typically more involved than that of its 
univariate analog, and is further complicated by variant approaches and terminology.  Notable among these is 
the use of Likelihood Ratio test statistics such as Wilks lambda shown below and reported by most 
professional software.  Thus greater sophistication is required, but interpetation is greatly facilitated by 
intuition gained from the geometric perspective of points or vectors in multidimensional space.  Shown here is 
the one population/sample situation that tests whether the mean vector  from a population (of which we 
have a sample with mean vector Xbar) is sufficiently close in the space of p-dimensions to some specified 
vector o.  The example is drawn from  RA Johnson & DW Wichern (JW) Applied Multivariate Statistical 
Analysis 4th Edition 1998.  Useful discussion may also be found in AC. Rencher (AR) Methods of Multivariate 
Analysis 1995.

Perspiration in n = 20 healthy females (JW p. 214):
Columns:
                        X1 = sweat rate

                        X2 = Na content

                        X3 = K content 

Read Data:

X READPRN "c:\DATA\Multivariate\T5-1.DAT" 

n rows X( ) p cols X( )
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Maximum likelihood estimates of  &  (JW Result 4.11 p. 171) and 0:

Likelihood Ratio Test Statistic:

^ T2 is the normalized distance between vectors Xbar and 0

Tsq 9.738773( )Tsq n Xbar o T S
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 Xbar o 

Hotelling's Test Statistic:

< Note: Unlike univariate t-tests, All Hotelling T2 tests are two-sided

      since the T2 distribution, or equivalent F distribution, is asymmetric.

< 0 is a specified value for  H0:  = 0

H1:  0   
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Specify a test vector 0:

Hypotheses: ^ Note: this test is reasonably robust
   for deviations from ~Np(,) 

   with sufficient sample size

- Observed values X1, X2, X3, ... Xn are a random sample from ~Np(,).

- Covaraince Matrix  of the population is unknown and estimated by S.

Assumptions:

X

1 2 3

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
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3.7 48.5 9.3

5.7 65.1 8

3.8 47.2 10.9

3.2 53.2 12

3.1 55.5 9.7

4.6 36.1 7.9

2.4 24.8 14

7.2 33.1 7.6

6.7 47.4 8.5

5.4 54.1 11.3

3.9 36.9 12.7

4.5 58.8 12.3

3.5 27.8 9.8

4.5 40.2 8.4

1.5 13.5 10.1

8.5 56.4 7.1

4.5 71.6 8.2

6.5 52.8 10.9

4.1 44.1 11.2

5.5 40.9 9.4


S

2.87937

10.01
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10.01
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Covariance Matrix:
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Mean Vector:

I identity n( )ln
i

1

j 1 pi 1 n

Summary Statistics:
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C 10.719 < JW eq. 5-6 p. 212

NOTE: qF(1-) is used in function qF.

Decision Rule:
Tsq 9.739( ) C 10.7186 Reject H0 if Tsq > C

Decision if Tsq
1
C 1 0  Decision 0 < 0 = Do not reject H0

   1 = Reject H0

^ Therefore DO NOT Reject H0

Probability Value:

P 1 pF Tsq
n p( )

n 1( ) p
 p n p





 P 0.06492834( )

Confidence Intervals in Multivariate Analysis:

Because the problem of "confidence intervals" involves simultaneous estimation across p variables (X1, X2, X3 
... Xp) that may be correlated, one "natural" discription involves use of ellipses (for p=2), ellipsoids (p=3) or 
"hyper-ellipsoids" (p >3) analogous to those described in worksheet MTB 070.  Here, however, because the 
confidence intervals involve behavior with repeated sampling of mean vectors Xbar, the ellipsoids will be smaller 
than corresponding ellipsoids for data points at the same (1- level.  Shown below are four common 
representations:

Multivariate Confidence Ellipsoid - This is an actual description of the rejection/acceptance boundary in 
Hotelling's T2 test taking into account all covariances seen in S.  Constructing a confidence ellipsoid involves 
calculation of eigenvalues and eigenvectors of covariance matrix S, and results in a p-dimensional description 
of the ellipsoid in terms of eigenvector directions.  All points enclosed by the ellipsoid reside within the (1-) 
confidence limit for a specified .  When p > 2, results are often graphed as projections (="shadows") onto a 
specific 2-dimensional planes of variables two at a time.  When p is large, the confidence ellipsoid is very hard 
to visualize.

Likelihood Ratio & Wilks' lambda () (JW Eq. 5-13 p. 217):

<  = Wilks' lambda - value is 1.0                 
         when Xbar = 0 but decreases

          as 0 increases in distance

          from the sample mean.    
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Converting to Hotellings T2:
1
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0.661128( ) < Equivalent value in terms of 

   Hotellings T2 (jw Result 5.1 p. 218)
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
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

 n 1( ) 9.739 Tsq 9.739( ) < Solving for T2 (same as T2 above)

Sampling Distribution:

If Assumptions hold and H0 is true, then Tsq ~ T2
(n-1) =  [(n-1)p/(n-p)] F(p,n-p)

Critical Value of the Test:
 0.05 < Probability of Type I error must be explicitly set

C
n 1( ) p

n p( )
qF 1  p n p 
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< L are half-lengths of the axes of the
   confidence ellipsoid for m in the 
   directions of 

Multivariate confidence ellipsoid (JW Eq. 5-18 p. 221):

L
i

CT i

i 1 p

< CT gives the boundary for the confidence 
      ellipsoid for  - see JW eq. 5-18 p. 221
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The Multivariate Confidence Ellipsoid:

Simultaneous T2 Confidence Intervals - This represents a projection of the extreme limits of the T2 
confidence ellipsoid onto a range for each variable (X1, X2, X3 ... Xp).  The result is a hyper-rectangular block in 
p-dimensional space that is considerably larger in volume than the original T2 confidence ellipsoid.  Thus, it is a 
highly "conservative" estimate because it may include vectors that don't actually belong.  However, T2 
confidence intervals are easily tabulated, and all statements of means and all linear combinations are covered  
simultaneously by family-wise .  Thus all forms of post hoc analysis are allowed (see Biostatistics worksheet 

250 for a discussion).  Simultaneous T2 confidence intervals, are the widest among possibilities considered.

Univariate t Confidence Intervals -  Here, confidence intervals are calculated for each variable (X1, X2, X3 ... 
Xp) independently, just as one would in unvariate t-tests.  This approach ignores all covariances between the 
variables and may seriously inflate family-wise .  However, the results produce the narrowest invervals 
among possibilities considered.  

Bonferroni Simultaneous Confidence Intervals - This represents a Bonferroni style compromise in which (b) 
comparisons are specified "in advance of data collection" and then (b) is used to modify  into a family-wise . 
Post-hoc "data-snooping" is not allowed.  The results produce intervals that are intermediate between 

simultaneous T2 confidence intervals and univaraiate t confidence intervals.

So which tabulated interval should one use?  Obviously, if one's results are clear than use of  the most 
conservative T2 approach would be completely unproblematic.  However, these intervals may be too wide to be 
of practical use in many cases.  AR cites simulation studies suggesting preference (most powerful and also 
maintaining family-wise ) for the univariate t intervals following rejection of the null hypothesis using a T2 
test.  JW (p. 231) acknowledge this argument, but sound less than enthusiastic ("some researchers think...").  
The Bonferroni "compromise" is also worth considering, but here one may inevitably run into controversy 
surrounding when the researcher conceived of certain questions relative to data collection (see Biostatistics 
worksheet 250).
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Univariate t Intervals:

Xbar

4.64

45.4

9.965
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 < Mean values ci

3.84584

38.78478

9.0736

5.43416

52.01522

10.8564
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
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 < Univariate t confidence intervals

Bonferroni Simultaneous Confidence Intervals:

cb qt 1


2 p
 n 1





 cb 2.625106 < Critical value cb based on t distribution
    with Bonferroni correction factor p.
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S
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n
 < jw eq. 5-29 p. 232 

ci augment cilower ciupper 

Bonferroni  Intervals:

Xbar

4.64

45.4
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53.696922

11.083008











 < Bonferroni confidence intervals

Simultaneous T2 Confidence Intervals:
< JW eq. 5-24 p. 225 -slightly modified:

      CT
C

n
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Simultaneous Confidence Intervals:
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 < T2 confidence intervals

Univariate t Confidence Intervals:
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2
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
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 ct 2.093024 < Critical value ct based on t distribution 
    without correction
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 < jw eq. 5-29 p. 232 

ci augment cilower ciupper 
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Prototype in R:
> X              
    V1   V2   V3
1  3.7 48.5  9.3
2  5.7 65.1  8.0
3  3.8 47.2 10.9
4  3.2 53.2 12.0
5  3.1 55.5  9.7
6  4.6 36.1  7.9
7  2.4 24.8 14.0
8  7.2 33.1  7.6
9  6.7 47.4  8.5
10 5.4 54.1 11.3
11 3.9 36.9 12.7
12 4.5 58.8 12.3
13 3.5 27.8  9.8
14 4.5 40.2  8.4
15 1.5 13.5 10.1
16 8.5 56.4  7.1
17 4.5 71.6  8.2
18 6.5 52.8 10.9
19 4.1 44.1 11.2
20 5.5 40.9  9.4

#LOAD DATA & HYPOTHESIS:
X=read.table("c:/DATA/MulƟvariate\\/T5-1.DAT")
X              #DATA TABLE

#FUNCTION FOR ONE SAMPLE HOTELLING'S T2 TEST:
#X     = dataset
#mu0   = hypothesis vector
#alpha = alpha of the test

... function OS.Hotelling.T2() body is in R script ...

OS.Hotelling.T2(X,mu0=c(4,50,10),alpha=0.05)

All values verified above and in JW >
> RES=OS.Hotelling.T2(X,mu0=c(4,50,10),alpha=0.05)

 One Sample Hotelling's T2 
 
 Hypothesis Vector:       ( 4 50 10 ) 
 T2 Ellipsoid half lengths: ( 10.36503 1.558402 0.835138 ) 
 Hotelling's T2 Statistic:  9.738773 
 Equivalent F Statistic :   2.904546 
 F degrees of freedom:      ( 3 17 ) 
 Wilks's Lambda:            0.01595342 
 alpha:                     0.05 
 Critical Value:            10.7186 
 Probability:               0.06492834 
 
 Confidence Intervals: T2 - Bonferroni - t - Mean - t - Bonferroni - T2 
 
    T2.lower   B.lower   t.lower   Mean  t.upper   B.upper  T2.upper
V1  3.397768  3.643952  3.845840  4.640  5.43416  5.636048  5.882232
V2 35.052408 37.103078 38.784779 45.400 52.01522 53.696922 55.747592
V3  8.570664  8.846992  9.073601  9.965 10.85640 11.083008 11.359336

library(ICSNP) 
HotellingsT2(X,mu=c(4,50,10)) > HotellingsT2(X,mu=c(4,50,10))

        Hotelling's one sample T2-test

data:  X 
T.2 = 2.9045, df1 = 3, df2 = 17, p-value = 0.06493
alternative hypothesis: true location is not equal to c(4,50,10) 

Test provides the equivalent F statistic  > 
P values match.

library(rrcov)
T2.test(X,mu=c(4,50,10),method="c") > T2.test(X,mu=c(4,50,10),method="c")

        One-sample Hotelling test

data:  X 
T^2 = 2.9045, df1 = 3, df2 = 17, p-value = 0.06493
alternative hypothesis: true mean vector is not equal to (4, 50, 10)' 
 
sample estimates:
                V1   V2    V3
mean x-vector 4.64 45.4 9.965

Test provides the equivalent F statistic  > 
P values match.
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plot.CI <- funcƟon(M,R,X,Y)
--- body of function in R script ...
plot.CI(X,RES,1,2)
plot.CI(X,RES,1,3)
plot.CI(X,RES,2,3) Simultaneous T2 intervals (solid red) are the widest,  univariate t intervals (dashed) 

are the narrowest, with Bonferroni intervals (dotted) intermediate.  Blue cross is the 
mean vector, red triangle is the hypothesis vector:
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