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Abstract:  The use of simple and multiple correspondence analysis is well-established in social 

science research for understanding relationships between two or more categorical variables.  

By contrast, canonical correspondence analysis, which is a correspondence analysis with linear 

restrictions on the solution, has become one of the most popular multivariate techniques in 

ecological research.  Multivariate ecological data typically consist of frequencies of observed 

species across a set of sampling locations, as well as a set of observed environmental variables 

at the same locations.  In this context the principal dimensions of the biological variables are 

sought in a space that is constrained to be related to the environmental variables.  This 

restricted form of correspondence analysis has many uses in social science research as well, 

as is demonstrated in this paper.  We first illustrate the result that canonical correspondence 

analysis of an indicator matrix, restricted to be related an external categorical variable, reduces 

to a simple correspondence analysis of a set of concatenated (or “stacked”) tables.  Then we 

show how canonical correspondence analysis can be used to focus on, or partial out, a 

particular set of response categories in sample survey data.  For example, the method can be 

used to partial out the influence of missing responses, which usually dominate the results of a 

multiple correspondence analysis.  
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1.  Introduction 

Simple correspondence analysis (CA) of two categorical variables, and multiple correspondence 

analysis (MCA) of more than two variables, are methods commonly used to visualize and 

interpret categorical data in the social and environmental sciences.  In ecology one of the main 

uses of CA is in a form known as canonical correspondence analysis (CCA), which visualizes a 

matrix of biological data (e.g., abundance data of various species at a set of sampling locations) 

in relation to a set of concomitant environmental variables, which could be measured on 

continuous and/or discrete scales (Ter Braak, 1986; for a summary, see Greenacre, 2007: 

Chapter 24).   In CCA the solution space, usually a two-dimensional plane, is not the optimal 

one that would have been obtained by regular CA, but is restricted to be related linearly to the 

concomitant variables – in other words, the objective is to find a solution directly related to the 

concomitant variables, which play the role of explanatory variables.    

This idea can also be used fruitfully in the analysis of social science data, as we shall 

demonstrate.  We give two possibilities in the context of MCA of a set of question responses in a 

social survey: first, the analysis of the questions with a single explanatory variable that is 

discrete; and second, the focusing on, or partialling out, a chosen set of response categories.  The 

strategy of partialling out the effects of missing responses in a questionnaire survey is 

particularly useful since these usually dominate the MCA solution and obscure the more 

interesting relationships amongst the substantive variables. 

2.  Canonical correspondence analysis 

The theory of CA is well-known and we just summarize it here to establish notation.  Suppose 

that N is an I × J table of non-negative data.  First divide N by its grand total n to obtain the so-

called correspondence matrix P = (1/n) N.   Let the row and column marginal totals of P be the 
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vectors r and c respectively – these are the weights, or masses, associated with the rows and 

columns.  Let Dr and Dc be the diagonal matrices of these masses.  Then CA is based on the 

singular-value decomposition (SVD of : 2/12/1 )( −− −=
cr
DrcPDS

T , i.e., T
VUDS σ= , where U

T
U = 

V
T
V = I .  The principal coordinates of the rows and columns are σUDDF

2/1−= r and 

σVDDG
2/1−= c  respectively, hence are scaled in such a way that 2

σDGDGFDF == cr
TT , i.e. the 

weighted sum of squares of the coordinates on the k-th dimension (or their inertia in the direction 

of this dimension) is equal to σk
2
, called the principal inertia (or eigenvalue) on dimension k.   

Standard coordinates are similarly defined but without scaling on the right by the singular 

values σD , and hence the standard coordinates on any given dimension have weighted sum of 

squares equal to 1.    The sum of squares of the decomposed matrix S is a quantity called the 

total inertia, and this quantity is decomposed by the squared singular values σk
2
, which are in 

decreasing order.  The best solution in two dimensions would use the first two columns of the 

coordinate matrices, and the explained inertia would be the sum of the first two terms σ1
2
+σ2

2
, 

usually expressed as a percentage of the total inertia.  

When a separate set of variables is available that can be regarded as possibly explaining the 

phenomena evident in the results of a CA, it is common to relate them to a given CA solution as 

supplementary variables (see, for example, Greenacre, 2007: Chapter 12).  In ecological 

applications this is known as ‘indirect ordination’ because the explanatory variables play no role 

in determining the solution but are mapped into the solution a posteriori, with the result that the 

explanatory variables are often poorly correlated with the CA solution.   By contrast, in CCA, the 

dimensions are intentionally defined as linear combinations of the explanatory variables, so this 

ensures that the explanatory variables have high correlations with the solution space: this is 

called ‘direct ordination’.  Geometrically, the principal axes in CCA are sought in that restricted 

part of the space which is projected onto the explanatory variables.  This also means that we can 
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also look for principal axes in the space that is uncorrelated with the explanatory variables, in 

which case the (linear) effects of the explanatory variables have been partialled out.  In this latter 

case we have what is called partial canonical correspondence analysis (PCCA), which could 

optionally also involve its own separate set of constraining explanatory variables.  

Algebraically, CCA follows the same scheme as CA except that there is an initial projection of 

the data onto the space spanned by the explanatory variables.  Suppose X (I × K ) is the matrix of 

K explanatory variables used to restrict the CA solution, supposed to be standardized to mean 0, 

variance 1 (the rows are always weighted by their masses in all computations).  Then the 

projection matrix is Q = 2/112/1 )( rrr DXXDXXD TT −  and the matrix S defined previously, 

projected onto the explanatory variables, is S* = QS.  Notice here that projection, which is a 

scalar product operation, incorporates the weighting of the rows in the diagonal matrix of row 

masses Dr.   Having performed the projection, everything follows as for regular CA, using S* 

rather than S.   For PCCA, projection takes place on the space orthogonal to the explanatory 

variables: S
⊥
 = (I – S)Q, and then the same steps follow as before, applied to S

⊥
. 

In CCA there is a double decomposition of inertia: first, total inertia is decomposed into a part in 

the restricted space and the complementary part in the unrestricted space.  In the restricted space 

there is the usual decomposition along principal axes, and similarly there can be a decomposition 

of the complementary part of inertia along principal axes in the unrestricted space.   

In the applications considered here, we shall use these results in the case of MCA, when the 

primary data in N consist of dummy variables.   Hence, to make our terminology even more 

specific, we could say that we are performing ‘canonical multiple correspondence analysis’ and 

‘partial canonical multiple correspondence analysis’.  The data considered are from the survey of 

International Social Survey Program (ISSP) on Family and Changing Gender Roles II (ISSP 
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1994), specifically responses from 2494 respondents in Spain to 11 questions relating to the issue 

of working women (Table 1 lists the questions and the five substantive response categories).    

Table 1:  11 questions from ISSP (1994) concerning women working: respondents 

had to choose between (1) strongly agree, (2) somewhat agree; (3) neither agree nor 

disagree; (4) somewhat disagree; (5) strongly disagree; and an additional category (6) 

don’t know/missing.  Some statements are clearly in favour of women working 

(marked +), others clearly opposed (–), and the remainder not so clearly oriented (?).  

____________________________________________________________________________ 

A [+] A working mother can establish just as warm and secure a relationship with her children 
as a mother who does not work  

B [–]   A pre-school child is likely to suffer if his or her mother works  

C [–] All in all, family life suffers when the woman has a full-time job 

D [–] A job is all right, but what most women really want is a home and children  

E [?] Being a housewife is just as fulfilling as working for pay 

F [+] Having a job is the best way for a woman to be an independent person 

G [?] Most women have to work these days to support their families 

H [+] Both the man and woman should contribute to the household income 

 I  [–] A man’s job is to earn money; a woman’s job is to look after the home and family 

J  [?] It is not good if the man stays at home and cares for the children and the woman goes 
out to work 

K [?] Family life often suffers because men concentrate too much on their work 

____________________________________________________________________________ 

 

3.  Constraining by a single categorical variable 

In social science applications, the variables being analyzed are generally categorical, hence the 

relevance of CA and MCA.  Figure 1 shows the MCA of the Spanish data for the questions in 

Table 1.  Three clusters of response categories are evident: all the missing categories at upper 

right, all the moderate responses (“agree” and “disagree”) and middle responses (“neither agree 

nor disagree”) in a bunch near the origin (these are the most frequent responses), and all extreme 

responses (“strongly agree” and “strongly disagree”) at upper right.  A demographic variable, 

age group, with six categories from young to old, a1 (16-25 years) to a6 (more than 65 years), is 

displayed in the form of supplementary points, all near the origin.   This result is typical of an 
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MCA of questionnaire data such as these: the missing responses dominate as well as response 

styles (moderate versus extreme, independent of the fact that several questions have reverse 

wording) and a supplementary variable has categories only slightly separated spatially.  

Figure 1:  MCA of 11 questions from ISSP (1994), Spanish sample (N = 2494), with 

age group variable as supplementary – the supplementary age categories are all close 

together near the centre of the map (e.g., the labels a1, a5 and a6 are just visible, with 
the oldest age group a6 tending in the direction of the missing responses).  
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cross-tables stacked one on top of another.  This result follows from the fact that CCA is 

equivalently defined as the CA of the weighted averages of the conditioning variables for each 

response category (see, for example, Greenacre, 2007: 191–192).  This simplifying result 

appears not be well-known: for example, Nishisato’s “forced classification” (Nishisato, 1984, 

2006) is identical to the CCA described here, which in turn is identical to the CA of the stacked 

tables.      Figure 2 shows the CA of the stacked tables, which is more efficiently performed than 

the CCA of the large indicator matrices. 

Figure 2:  CA of cross-tabulations of 11 questions with age groups.  The standard 

biplot scaling is used (Greenacre, 2007: chapter 13). 
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favour of men working and women staying at home, question I (see Table 1), from I5 on the left 

to I1 on the right, while question A in favour of women working goes in the opposite direction.  

Notice that all the missing value categories are on the right, in the direction of the older 

respondents.   

4.  Constraints for dealing with missing responses 

CCA can be used to focus on, or partial out, an external variable or variables.  In Figure 1 we 

have all the missing response categories defining a diagonal spread of points, very dominant in 

the analysis because of the high association amongst missing responses on different questions.  

To avoid deleting cases that have missing responses from the study, Greenacre and Pardo 

(2006a, 2006b) proposed a subset version of correspondence analysis to choose subsets of 

categories for visualizing – for example, this approach can be used to select all substantive 

response categories and ignore the missing ones.  The present approach is an alternative strategy 

where we define external variables for constraining the solution.  There are different ways of 

doing this, and we show just one of the alternatives where the constraining variable is defined as 

the count of missing responses for each respondent.  For example, a respondent with no missing 

respondents gets value 0, with one missing response 1, and so on, with respondents giving 

missing responses to all 11 questions getting a value 11.  If we constrain the MCA solution to be 

linearly related to this single variable we obtain a one-dimensional CCA solution
*
.   

Figure 3 shows this solution as the horizontal axis (labeled ‘CCA1’), and the second axis is the 

optimal first axis of the unconstrained solution (labeled ‘CA1’).    Comparing this map to Figure 

1 we see that the constraint has forced the missing categories to coincide with the first axis.  The 

                                                      
*
 Matschinger and Angermeyer (2006) also use the missing value counts in order to take care of missing responses – 

the count variable is added as a categorical variable (i.e., with as many categories as levels of counts) to each of the 

questions of the questionnaire and then generalized canonical analysis is used with a restriction to concentrate the 

missing count categories onto a single dimension.  The approach is different but the idea is the same: to partial out 

the missing responses to avoid having to delete cases with missing data. 
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variable “missings” that we created, is the sum of the 11 columns of the indicator matrix 

corresponding to the missing categories, hence its position in space is the average of these 

categories, as shown by the vector in Figure 3 corresponding to the constraining variable.   

Figure 3:  CCA of 11 questions constrained by number of missings, which is a point 

vector lying at the average of the 11 dummy variables for the missing categories. This 

vector is constrained to be the first axis in the CCA. 
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dispersion along the horizontal axis, for the extreme responses at the top, and for the moderate 

and middle responses at the bottom. 

Figure 4:  CCA of 11 questions after partialling out the variable “missings” that 

counts the missing response categories.  The missing categories (numbered ‘6’) are 

now all near the origin and play almost no role in the solution. 

 

 

 

 

 

 

 

5.  Discussion 

In these analyses we have not reported inertias on the principal axes and their percentages.  It is 

known that in MCA these values are severe under-estimates of the variance accounted for, and 

adjustments have been proposed by Greenacre (1988, 1995) to correct for this.  For example, in 
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†
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†
 The total inertia in the MCA of an indicator matrix with Q categorical variables and a total of J categories is          

(J–Q)/Q, hence in this example it is (66–11)/11 = 5 (see, for example, Greenacre, 2007: chapter 18). For a definition 

of the adjustment, see Greenacre, 2007: chapter 19. 
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Figure 2, the total inertia of the CA is equal to 0.0857, which is identical to the inertia in the 

constrained CCA solution of the indicator matrix, accounting for only 1.7% of the total inertia of 

the indicator matrix.   Similarly, in Figure 3 the constrained part of the inertia is 0.383, 7.7% of 

the total inertia, while in Figure 4 the two subsequent unconstrained axes have values 0.387 and 

0.305, with percentages 7.7% and 6.1% respectively.  All these percentages are low owing to the 

inflated value of the total inertia of the indicator matrix, but how to adjust in these alternative 

situations is not immediately clear and is an open problem.  Adjustment may be possible if 

canonical MCA could be phrased in terms of the Burt matrix, similar to the way the adjustment 

is made for ordinary MCA, where total inertia is taken to be the average of the Burt matrix’s off-

diagonal cross-tabulations. 

We have shown how CCA can be used to incorporate external information into MCA results or 

to treat specific response categories in survey data by imposing linear constraints on the solution 

space.  The map can be concentrated on the display on these variables or categories, or their 

effects can be partialled out.  We are also using this approach fruitfully to study the “middle” 

response categories (Greenacre and Pardo, 2008) and their relationship to demographic 

variables, as well as to partial out acquiescence effects which are rife in questionnaire data.   

Computing note 

The ca and vegan packages in R (R development core team, 2008) were used to perform the 

analyses and maps in this article – for ca see Nenadić and Greenacre (2007), and for vegan, a 

package developed for ecologists, see Oksanen et al. (2006).   
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