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vegan-package Community Ecology Package: Ordination, Diversity and Dissimilari-
ties

Description

The vegan package provides tools for descriptive community ecology. It has most basic functions
of diversity analysis, community ordination and dissimilarity analysis. Most of its multivariate tools
can be used for other data types as well.

Details

The functions in the vegan package contain tools for diversity analysis (see vignette vegandocs("diversity")),
ordination and analysis of dissimilarities (see vignette vegandocs("intro")). Together with the
labdsv package, the vegan package provides most standard tools of descriptive community anal-
ysis. Package ade4 provides an alternative comprehensive package, and several other packages
complement vegan and provide tools for deeper analysis in specific fields. Package BiodiversityR
provides a GUI for a large subset of vegan functionality.

The vegan package is developed at R-Forge (http://vegan.r-forge.r-project.org). The R-
Forge provides up-to-date information and mailing lists for help queries and bug reports. Bug
reports can also be emailed to the function authors or to the package maintainers.

The vegan documents can be read with vegandocs function. In addition to vignettes of basic us-
age, you can read NEWS on the new features and bug fixes in the release version (vegandocs("NEWS")),
and more technical and fine grained ChangeLog (vegandocs("Change")). Several frequently asked
questions really are answered in the vegan FAQ (vegandocs("FAQ")). The discussion on design de-
cisions can be read with vegandocs("decision"). A tutorial of the package at http://cc.oulu.
fi/~jarioksa/opetus/metodi/vegantutor.pdf provides a more thorough introduction to the
package.

To see the preferable citation of the package, type citation("vegan").

Author(s)

The vegan development team is Jari Oksanen, F. Guillaume Blanchet, Roeland Kindt, Pierre Leg-
endre, Peter R. Minchin, R. B. O’Hara, Gavin L. Simpson, Peter Solymos, M. Henry H. Stevens,
Helene Wagner. Many other people have contributed to individual functions: see credits in function
help pages.

The maintainers at the R-Forge are Jari Oksanen <jari.oksanen@oulu.fi> and Gavin Simpson <gavin.simpson@ucl.ac.uk>.

http://vegan.r-forge.r-project.org
http://cc.oulu.fi/~jarioksa/opetus/metodi/vegantutor.pdf
http://cc.oulu.fi/~jarioksa/opetus/metodi/vegantutor.pdf
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Examples

### Example 1: Unconstrained ordination
## NMDS
data(varespec)
data(varechem)
ord <- metaMDS(varespec)
plot(ord, type = "t")
## Fit environmental variables
ef <- envfit(ord, varechem)
ef
plot(ef, p.max = 0.05)
### Example 2: Constrained ordination (RDA)
## The example uses formula interface to define the model
data(dune)
data(dune.env)
## No constraints: PCA
mod0 <- rda(dune ~ 1, dune.env)
mod0
plot(mod0)
## All environmental variables: Full model
mod1 <- rda(dune ~ ., dune.env)
mod1
plot(mod1)
## Automatic selection of variables by permutation P-values
mod <- ordistep(mod0, scope=formula(mod1))
mod
plot(mod)
## Permutation test for all variables
anova(mod)
## Permutation test of "type III" effects, or significance when a term
## is added to the model after all other terms
anova(mod, by = "margin")
## Plot only sample plots, use different symbols and draw SD ellipses
## for Managemenet classes
plot(mod, display = "sites", type = "n")
with(dune.env, points(mod, disp = "si", pch = as.numeric(Management)))
with(dune.env, legend("topleft", levels(Management), pch = 1:4,

title = "Management"))
with(dune.env, ordiellipse(mod, Management, label = TRUE))
## add fitted surface of diversity to the model
ordisurf(mod, diversity(dune), add = TRUE)
### Example 3: analysis of dissimilarites a.k.a. non-parametric
### permutational anova
adonis(dune ~ ., dune.env)
adonis(dune ~ Management + Moisture, dune.env)

add1.cca Add or Drop Single Terms to a Constrained Ordination Model
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Description

Compute all single terms that can be added to or dropped from a constrained ordination model.

Usage

## S3 method for class ’cca’
add1(object, scope, test = c("none", "permutation"),

pstep = 100, perm.max = 200, ...)
## S3 method for class ’cca’
drop1(object, scope, test = c("none", "permutation"),

pstep = 100, perm.max = 200, ...)

Arguments

object A constrained ordination object from cca, rda or capscale.

scope A formula giving the terms to be considered for adding or dropping; see add1
for details.

test Should a permutation test be added using anova.cca.

pstep Number of permutations in one step, passed as argument step to anova.cca.

perm.max Maximum number of permutation in anova.cca.

... Other arguments passed to add1.default, drop1.default, and anova.cca.

Details

With argument test = "none" the functions will only call add1.default or drop1.default.
With argument test = "permutation" the functions will add test results from anova.cca. Func-
tion drop1.cca will call anova.cca with argument by = "margin". Function add1.cca will im-
plement a test for single term additions that is not directly available in anova.cca.

Functions are used implicitly in step, ordiR2step and ordistep. The deviance.cca and deviance.rda
used in step have no firm basis, and setting argument test = "permutation" may help in get-
ting useful insight into validity of model building. Function ordistep calls alternately drop1.cca
and add1.cca with argument test = "permutation" and selects variables by their permutation
P -values. Meticulous use of add1.cca and drop1.cca will allow more judicious model building.

The default perm.max is set to a low value, because permutation tests can take a long time. It should
be sufficient to give a impression on the significances of the terms, but higher values of perm.max
should be used if P values really are important.

Value

Returns a similar object as add1 and drop1.

Author(s)

Jari Oksanen
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See Also

add1, drop1 and anova.cca for basic methods. You probably need these functions with step and
ordistep. Functions deviance.cca and extractAIC.cca are used to produce the other arguments
than test results in the output. Functions cca, rda and capscale produce result objects for these
functions.

Examples

data(dune)
data(dune.env)
## Automatic model building based on AIC but with permutation tests
step(cca(dune ~ 1, dune.env), reformulate(names(dune.env)), test="perm")
## see ?ordistep to do the same, but based on permutation P-values
## Not run:
ordistep(cca(dune ~ 1, dune.env), reformulate(names(dune.env)), perm.max=200)

## End(Not run)
## Manual model building
## -- define the maximal model for scope
mbig <- rda(dune ~ ., dune.env)
## -- define an empty model to start with
m0 <- rda(dune ~ 1, dune.env)
## -- manual selection and updating
add1(m0, scope=formula(mbig), test="perm")
m0 <- update(m0, . ~ . + Management)
add1(m0, scope=formula(mbig), test="perm")
m0 <- update(m0, . ~ . + Moisture)
## -- included variables still significant?
drop1(m0, test="perm")
add1(m0, scope=formula(mbig), test="perm")

adipart Additive Diversity Partitioning and Hierarchical Null Model Testing

Description

In additive diversity partitioning, mean values of alpha diversity at lower levels of a sampling hi-
erarchy are compared to the total diversity in the entire data set (gamma diversity). In hierarchical
null model testing, a statistic returned by a function is evaluated according to a nested hierarchical
sampling design (hiersimu).

Usage

adipart(...)
## Default S3 method:
adipart(y, x, index=c("richness", "shannon", "simpson"),

weights=c("unif", "prop"), relative = FALSE, nsimul=99, ...)
## S3 method for class ’formula’
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adipart(formula, data, index=c("richness", "shannon", "simpson"),
weights=c("unif", "prop"), relative = FALSE, nsimul=99, ...)

hiersimu(...)
## Default S3 method:
hiersimu(y, x, FUN, location = c("mean", "median"),

relative = FALSE, drop.highest = FALSE, nsimul=99, ...)
## S3 method for class ’formula’
hiersimu(formula, data, FUN, location = c("mean", "median"),

relative = FALSE, drop.highest = FALSE, nsimul=99, ...)

Arguments

y A community matrix.

x A matrix with same number of rows as in y, columns coding the levels of sam-
pling hierarchy. The number of groups within the hierarchy must decrease from
left to right. If x is missing, function performs an overall decomposition into
alpha, beta and gamma diversities.

formula A two sided model formula in the form y ~ x, where y is the community data
matrix with samples as rows and species as column. Right hand side (x) must
grouping vaiables referring to levels of sampling hierarchy, terms from right to
left will be treated as nested (first column is the lowest, last is the highest level,
at least two levels specified). Interaction terms are not allowed.

data A data frame where to look for variables defined in the right hand side of
formula. If missing, variables are looked in the global environment.

index Character, the diversity index to be calculated (see Details).

weights Character, "unif" for uniform weights, "prop" for weighting proportional to
sample abundances to use in weighted averaging of individual alpha values
within strata of a given level of the sampling hierarchy.

relative Logical, if TRUE then alpha and beta diversity values are given relative to the
value of gamma for function adipart.

nsimul Number of permutations to use if matr is not of class ’permat’. If nsimul = 0,
only the FUN argument is evaluated. It is thus possible to reuse the statistic values
without using a null model.

FUN A function to be used by hiersimu. This must be fully specified, because cur-
rently other arguments cannot be passed to this function via ....

location Character, identifies which function (mean or median) is to be used to calculate
location of the samples.

drop.highest Logical, to drop the highest level or not. When FUN evaluates only arrays with
at least 2 dimensions, highest level should be dropped, or not selected at all.

... Other arguments passed to functions, e.g. base of logarithm for Shannon diver-
sity, or method, thin or burnin arguments for oecosimu.
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Details

Additive diversity partitioning means that mean alpha and beta diversities add up to gamma diver-
sity, thus beta diversity is measured in the same dimensions as alpha and gamma (Lande 1996).
This additive procedure is then extended across multiple scales in a hierarchical sampling design
with i = 1, 2, 3, . . . ,m levels of sampling (Crist et al. 2003). Samples in lower hierarchical levels
are nested within higher level units, thus from i = 1 to i = m grain size is increasing under constant
survey extent. At each level i, αi denotes average diversity found within samples.

At the highest sampling level, the diversity components are calculated as

βm = γ − αm

For each lower sampling level as
βi = αi+1 − αi

Then, the additive partition of diversity is

γ = α1 +

m∑
i=1

βi

Average alpha components can be weighted uniformly (weight="unif") to calculate it as simple
average, or proportionally to sample abundances (weight="prop") to calculate it as weighted aver-
age as follows

αi =

ni∑
j=1

Dijwij

where Dij is the diversity index and wij is the weight calculated for the jth sample at the ith
sampling level.

The implementation of additive diversity partitioning in adipart follows Crist et al. 2003. It is
based on species richness (S, not S − 1), Shannon’s and Simpson’s diversity indices stated as the
index argument.

The expected diversity components are calculated nsimul times by individual based randomisation
of the community data matrix. This is done by the "r2dtable" method in oecosimu by default.

hiersimu works almost in the same way as adipart, but without comparing the actual statistic
values returned by FUN to the highest possible value (cf. gamma diversity). This is so, because in
most of the cases, it is difficult to ensure additive properties of the mean statistic values along the
hierarchy.

Value

An object of class "adipart" or "hiersimu" with same structure as oecosimu objects.

Author(s)

Péter Sólymos, <solymos@ualberta.ca>
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References

Crist, T.O., Veech, J.A., Gering, J.C. and Summerville, K.S. (2003). Partitioning species diversity
across landscapes and regions: a hierarchical analysis of α, β, and γ-diversity. Am. Nat., 162,
734–743.

Lande, R. (1996). Statistics and partitioning of species diversity, and similarity among multiple
communities. Oikos, 76, 5–13.

See Also

See oecosimu for permutation settings and calculating p-values.

Examples

## NOTE: ’nsimul’ argument usually needs to be >= 99
## here much lower value is used for demonstration

data(mite)
data(mite.xy)
data(mite.env)
## Function to get equal area partitions of the mite data
cutter <- function (x, cut = seq(0, 10, by = 2.5)) {

out <- rep(1, length(x))
for (i in 2:(length(cut) - 1))

out[which(x > cut[i] & x <= cut[(i + 1)])] <- i
return(out)}

## The hierarchy of sample aggregation
levsm <- data.frame(

l1=1:nrow(mite),
l2=cutter(mite.xy$y, cut = seq(0, 10, by = 2.5)),
l3=cutter(mite.xy$y, cut = seq(0, 10, by = 5)),
l4=cutter(mite.xy$y, cut = seq(0, 10, by = 10)))

## Let’s see in a map
par(mfrow=c(1,3))
plot(mite.xy, main="l1", col=as.numeric(levsm$l1)+1)
plot(mite.xy, main="l2", col=as.numeric(levsm$l2)+1)
plot(mite.xy, main="l3", col=as.numeric(levsm$l3)+1)
par(mfrow=c(1,1))
## Additive diversity partitioning
adipart(mite, index="richness", nsimul=19)
adipart(mite ~ ., levsm, index="richness", nsimul=19)
## Hierarchical null model testing
## diversity analysis (similar to adipart)
hiersimu(mite, FUN=diversity, relative=TRUE, nsimul=19)
hiersimu(mite ~., levsm, FUN=diversity, relative=TRUE, nsimul=19)
## Hierarchical testing with the Morisita index
morfun <- function(x) dispindmorisita(x)$imst
hiersimu(mite ~., levsm, morfun, drop.highest=TRUE, nsimul=19)
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adonis Permutational Multivariate Analysis of Variance Using Distance Ma-
trices

Description

Analysis of variance using distance matrices — for partitioning distance matrices among sources of
variation and fitting linear models (e.g., factors, polynomial regression) to distance matrices; uses a
permutation test with pseudo-F ratios.

Usage

adonis(formula, data, permutations = 999, method = "bray",
strata = NULL, contr.unordered = "contr.sum",
contr.ordered = "contr.poly", ...)

Arguments

formula a typical model formula such as Y ~ A + B*C, but where Y is either a dissimi-
larity object (inheriting from class "dist") or data frame or a matrix; A, B, and
C may be factors or continuous variables. If a dissimilarity object is supplied, no
species coefficients can be calculated (see Value below).

data the data frame from which A, B, and C would be drawn.

permutations number of replicate permutations used for the hypothesis tests (F tests).

method the name of any method used in vegdist to calculate pairwise distances if the
left hand side of the formula was a data frame or a matrix.

strata groups (strata) within which to constrain permutations.
contr.unordered, contr.ordered

contrasts used for the design matrix (default in R is dummy or treatment con-
trasts for unordered factors).

... Other arguments passed to vegdist.

Details

adonis is a function for the analysis and partitioning sums of squares using semimetric and metric
distance matrices. Insofar as it partitions sums of squares of a multivariate data set, it is directly
analogous to MANOVA (multivariate analysis of variance). M.J. Anderson (McArdle and Anderson
2001, Anderson 2001) refers to the method as “permutational manova” (formerly “nonparametric
manova”). Further, as its inputs are linear predictors, and a response matrix of an arbitrary number
of columns (2 to millions), it is a robust alternative to both parametric MANOVA and to ordination
methods for describing how variation is attributed to different experimental treatments or uncon-
trolled covariates. It is also analogous to redundancy analysis (Legendre and Anderson 1999).

Typical uses of adonis include analysis of ecological community data (samples X species matrices)
or genetic data where we might have a limited number of samples of individuals and thousands or
millions of columns of gene expression data (e.g. Zapala and Schork 2006).
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adonis is an alternative to AMOVA (nested analysis of molecular variance, Excoffier, Smouse, and
Quattro, 1992; amova in the ade4 package) for both crossed and nested factors.

If the experimental design has nestedness, then use strata to test hypotheses. For instance, imagine
we are testing whether a plant community is influenced by nitrate amendments, and we have two
replicate plots at each of two levels of nitrate (0, 10 ppm). We have replicated the experiment in
three fields with (perhaps) different average productivity. In this design, we would need to specify
strata = field so that randomizations occur only within each field and not across all fields . See
example below.

Like AMOVA (Excoffier et al. 1992), adonis relies on a long-understood phenomenon that allows
one to partition sums of squared deviations from a centroid in two different ways (McArdle and
Anderson 2001). The most widely recognized method, used, e.g., for ANOVA and MANOVA, is to
first identify the relevant centroids and then to calculated the squared deviations from these points.
For a centered n× p response matrix Y , this method uses the p× p inner product matrix Y ′Y . The
less appreciated method is to use the n × n outer product matrix Y Y ′. Both AMOVA and adonis
use this latter method. This allows the use of any semimetric (e.g. Bray-Curtis, aka Steinhaus,
Czekanowski, and Sørensen) or metric (e.g. Euclidean) distance matrix (McArdle and Anderson
2001). Using Euclidean distances with the second method results in the same analysis as the first
method.

Significance tests are done using F -tests based on sequential sums of squares from permutations of
the raw data, and not permutations of residuals. Permutations of the raw data may have better small
sample characteristics. Further, the precise meaning of hypothesis tests will depend upon precisely
what is permuted. The strata argument keeps groups intact for a particular hypothesis test where
one does not want to permute the data among particular groups. For instance, strata = B causes
permutations among levels of A but retains data within levels of B (no permutation among levels of
B). See permutations for additional details on permutation tests in Vegan.

The default contrasts are different than in R in general. Specifically, they use “sum” contrasts,
sometimes known as “ANOVA” contrasts. See a useful text (e.g. Crawley, 2002) for a transparent
introduction to linear model contrasts. This choice of contrasts is simply a personal pedagogical
preference. The particular contrasts can be set to any contrasts specified in R, including Helmert
and treatment contrasts.

Rules associated with formulae apply. See "An Introduction to R" for an overview of rules.

print.adonis shows the aov.tab component of the output.

Value

This function returns typical, but limited, output for analysis of variance (general linear models).

aov.tab Typical AOV table showing sources of variation, degrees of freedom, sequential
sums of squares, mean squares, F statistics, partial R2 and P values, based on
N permutations.

coefficients matrix of coefficients of the linear model, with rows representing sources of
variation and columns representing species; each column represents a fit of a
species abundance to the linear model. These are what you get when you fit one
species to your predictors. These are NOT available if you supply the distance
matrix in the formula, rather than the site x species matrix

coef.sites matrix of coefficients of the linear model, with rows representing sources of
variation and columns representing sites; each column represents a fit of a sites
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distances (from all other sites) to the linear model.These are what you get when
you fit distances of one site to your predictors.

f.perms anN bymmatrix of the null F statistics for each source of variation based onN
permutations of the data. The distribution of a single term can be inspected with
density.adonis function, or all terms simultaneously with densityplot.adonis.

model.matrix The model.matrix for the right hand side of the formula.

terms The terms component of the model.

Note

Anderson (2001, Fig. 4) warns that the method may confound location and dispersion effects:
significant differences may be caused by different within-group variation (dispersion) instead of
different mean values of the groups (see Warton et al. 2012 for a general analysis). However,
it seems that adonis is less sensitive to dispersion effects than some of its alternatives (anosim,
mrpp). Function betadisper is a sister function to adonis to study the differences in dispersion
within the same geometric framework.

Author(s)

Martin Henry H. Stevens <HStevens@muohio.edu>, adapted to vegan by Jari Oksanen.

References

Anderson, M.J. 2001. A new method for non-parametric multivariate analysis of variance. Austral
Ecology, 26: 32–46.

Crawley, M.J. 2002. Statistical Computing: An Introduction to Data Analysis Using S-PLUS

Excoffier, L., P.E. Smouse, and J.M. Quattro. 1992. Analysis of molecular variance inferred from
metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction
data. Genetics, 131:479–491.

Legendre, P. and M.J. Anderson. 1999. Distance-based redundancy analysis: Testing multispecies
responses in multifactorial ecological experiments. Ecological Monographs, 69:1–24.

McArdle, B.H. and M.J. Anderson. 2001. Fitting multivariate models to community data: A com-
ment on distance-based redundancy analysis. Ecology, 82: 290–297.

Warton, D.I., Wright, T.W., Wang, Y. 2012. Distance-based multivariate analyses confound location
and dispersion effects. Methods in Ecology and Evolution, 3, 89–101.

Zapala, M.A. and N.J. Schork. 2006. Multivariate regression analysis of distance matrices for
testing associations between gene expression patterns and related variables. Proceedings of the
National Academy of Sciences, USA, 103:19430–19435.

See Also

mrpp, anosim, mantel, varpart.
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Examples

data(dune)
data(dune.env)
adonis(dune ~ Management*A1, data=dune.env, permutations=99)

### Example of use with strata, for nested (e.g., block) designs.

dat <- expand.grid(rep=gl(2,1), NO3=factor(c(0,10)),field=gl(3,1) )
dat
Agropyron <- with(dat, as.numeric(field) + as.numeric(NO3)+2) +rnorm(12)/2
Schizachyrium <- with(dat, as.numeric(field) - as.numeric(NO3)+2) +rnorm(12)/2
total <- Agropyron + Schizachyrium
library(lattice)
dotplot(total ~ NO3, dat, jitter.x=TRUE, groups=field,

type=c(’p’,’a’), xlab="NO3", auto.key=list(columns=3, lines=TRUE) )

Y <- data.frame(Agropyron, Schizachyrium)
mod <- metaMDS(Y)
plot(mod)
### Hulls show treatment
ordihull(mod, group=dat$NO3, show="0")
ordihull(mod, group=dat$NO3, show="10", col=3)
### Spider shows fields
ordispider(mod, group=dat$field, lty=3, col="red")

### Correct hypothesis test (with strata)
adonis(Y ~ NO3, data=dat, strata=dat$field, perm=999)

### Incorrect (no strata)
adonis(Y ~ NO3, data=dat, perm=999)

anosim Analysis of Similarities

Description

Analysis of similarities (ANOSIM) provides a way to test statistically whether there is a significant
difference between two or more groups of sampling units.

Usage

anosim(dat, grouping, permutations = 999, distance = "bray", strata)

Arguments

dat Data matrix or data frame in which rows are samples and columns are response
variable(s), or a dissimilarity object or a symmetric square matrix of dissimilar-
ities.
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grouping Factor for grouping observations.

permutations Number of permutation to assess the significance of the ANOSIM statistic.

distance Choice of distance metric that measures the dissimilarity between two observa-
tions. See vegdist for options. This will be used if dat was not a dissimilarity
structure or a symmetric square matrix.

strata An integer vector or factor specifying the strata for permutation. If supplied,
observations are permuted only within the specified strata.

Details

Analysis of similarities (ANOSIM) provides a way to test statistically whether there is a significant
difference between two or more groups of sampling units. Function anosim operates directly on
a dissimilarity matrix. A suitable dissimilarity matrix is produced by functions dist or vegdist.
The method is philosophically allied with NMDS ordination (monoMDS), in that it uses only the rank
order of dissimilarity values.

If two groups of sampling units are really different in their species composition, then compositional
dissimilarities between the groups ought to be greater than those within the groups. The anosim
statistic R is based on the difference of mean ranks between groups (rB) and within groups (rW ):

R = (rB − rW )/(N(N − 1)/4)

The divisor is chosen so that R will be in the interval −1 . . . + 1, value 0 indicating completely
random grouping.

The statistical significance of observed R is assessed by permuting the grouping vector to obtain
the empirical distribution of R under null-model. See permutations for additional details on per-
mutation tests in Vegan. The distribution of simulated values can be inspected with the density
function.

The function has summary and plot methods. These both show valuable information to assess the
validity of the method: The function assumes that all ranked dissimilarities within groups have
about equal median and range. The plot method uses boxplot with options notch=TRUE and
varwidth=TRUE.

Value

The function returns a list of class "anosim" with following items:

call Function call.

statistic The value of ANOSIM statistic R

signif Significance from permutation.

perm Permutation values of R. The distribution of permutation values can be in-
spected with function density.anosim.

class.vec Factor with value Between for dissimilarities between classes and class name
for corresponding dissimilarity within class.

dis.rank Rank of dissimilarity entry.

dissimilarity The name of the dissimilarity index: the "method" entry of the dist object.
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Note

The anosim function can confound the differences between groups and dispersion within groups
and the results can be difficult to interpret (cf. Warton et al. 2012). The function returns a lot of
information to ease studying its performance. Most anosim models could be analysed with adonis
which seems to be a more robust alternative.

Author(s)

Jari Oksanen, with a help from Peter R. Minchin.

References

Clarke, K. R. (1993). Non-parametric multivariate analysis of changes in community structure.
Australian Journal of Ecology 18, 117–143.

Warton, D.I., Wright, T.W., Wang, Y. 2012. Distance-based multivariate analyses confound location
and dispersion effects. Methods in Ecology and Evolution, 3, 89–101

See Also

mrpp for a similar function using original dissimilarities instead of their ranks. dist and vegdist
for obtaining dissimilarities, and rank for ranking real values. For comparing dissimilarities against
continuous variables, see mantel. Function adonis is a more robust alternative that should pre-
ferred.

Examples

data(dune)
data(dune.env)
dune.dist <- vegdist(dune)
attach(dune.env)
dune.ano <- anosim(dune.dist, Management)
summary(dune.ano)
plot(dune.ano)

anova.cca Permutation Test for Constrained Correspondence Analysis, Redun-
dancy Analysis and Constrained Analysis of Principal Coordinates

Description

The function performs an ANOVA like permutation test for Constrained Correspondence Analysis
(cca), Redundancy Analysis (rda) or distance-based Redundancy Analysis (dbRDA, capscale) to
assess the significance of constraints.
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Usage

## S3 method for class ’cca’
anova(object, alpha=0.05, beta=0.01, step=100, perm.max=9999,

by = NULL, ...)

permutest(x, ...)

## S3 method for class ’cca’
permutest(x, permutations = 99,

model = c("reduced", "direct", "full"),
first = FALSE, strata, ...)

Arguments

object,x A result object from cca.

alpha Targeted Type I error rate.

beta Accepted Type II error rate.

step Number of permutations during one step.

perm.max Maximum number of permutations.

by Setting by = "axis" will assess significance for each constrained axis, and set-
ting by = "terms" will assess significance for each term (sequentially from first
to last), and setting by = "margin" will assess the marginal effects of the terms
(each marginal term analysed in a model with all other variables).

... Parameters passed to other functions. anova.cca passes all arguments to permutest.cca.
In anova with by = "axis" you can use argument cutoff (defaults 1) which
stops permutations after exceeding the given level.

permutations Number of permutations for assessing significance of constraints.

model Permutation model (partial match).

first Assess only the significance of the first constrained eigenvalue; will be passed
from anova.cca.

strata An integer vector or factor specifying the strata for permutation. If supplied,
observations are permuted only within the specified strata.

Details

Functions anova.cca and permutest.cca implement an ANOVA like permutation test for the joint
effect of constraints in cca, rda or capscale. Functions anova.cca and permutest.cca differ in
printout style and in interface. Function permutest.cca is the proper workhorse, but anova.cca
passes all parameters to permutest.cca.

The default test is for the sum of all constrained eigenvalues. Setting first = TRUE will perform
a test for the first constrained eigenvalue. Argument first can be set either in anova.cca or in
permutest.cca. It is also possible to perform significance tests for each axis or for each term (con-
straining variable) using argument by in anova.cca. Setting by = "axis" will perform separate
significance tests for each constrained axis. All previous constrained axes will be used as conditions
(“partialled out”) and a test for the first constrained eigenvalues is performed (Legendre et al. 2011).
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You can stop permutation tests after exceeding a given significance level with argument cutoff to
speed up calculations in large models. Setting by = "terms" will perform separate significance
test for each term (constraining variable). The terms are assessed sequentially from first to last,
and the order of the terms will influence their significances. Setting by = "margin" will perform
separate significance test for each marginal term in a model with all other terms. The marginal test
also accepts a scope argument for the drop.scope which can be a character vector of term labels
that are analysed, or a fitted model of lower scope. The marginal effects are also known as “Type
III” effects, but the current function only evaluates marginal terms. It will, for instance, ignore main
effects that are included in interaction terms. In calculating pseudo-F , all terms are compared to
the same residual of the full model. Permutations for all axes or terms will start from the same
.Random.seed, and the seed will be advanced to the value after the longest permutation at the exit
from the function.

In anova.cca the number of permutations is controlled by targeted “critical” P value (alpha) and
accepted Type II or rejection error (beta). If the results of permutations differ from the targeted
alpha at risk level given by beta, the permutations are terminated. If the current estimate of P
does not differ significantly from alpha of the alternative hypothesis, the permutations are con-
tinued with step new permutations (at the first step, the number of permutations is step - 1).
However, with by="terms" a fixed number of permutations will be used, and this is given by argu-
ment permutations, or if this is missing, by step.

Community data are permuted with choice model="direct", residuals after partial CCA/ RDA/
dbRDA with choice model="reduced" (default), and residuals after CCA/ RDA/ dbRDA under
choice model="full". If there is no partial CCA/ RDA/ dbRDA stage, model="reduced" simply
permutes the data and is equivalent to model="direct". The test statistic is “pseudo-F ”, which
is the ratio of constrained and unconstrained total Inertia (Chi-squares, variances or something
similar), each divided by their respective ranks. If there are no conditions (“partial” terms), the sum
of all eigenvalues remains constant, so that pseudo-F and eigenvalues would give equal results. In
partial CCA/ RDA/ dbRDA, the effect of conditioning variables (“covariables”) is removed before
permutation, and these residuals are added to the non-permuted fitted values of partial CCA (fitted
values of X ~ Z). Consequently, the total Chi-square is not fixed, and test based on pseudo-F would
differ from the test based on plain eigenvalues. CCA is a weighted method, and environmental data
are re-weighted at each permutation step using permuted weights.

Value

Function permutest.cca returns an object of class "permutest.cca", which has its own print
method. The distribution of permuted F values can be inspected with density.permutest.cca
function. The function anova.cca calls permutest.cca, fills an anova table and uses print.anova
for printing.

Note

Some cases of anova need access to the original data on constraints (at least by = "term" and
by = "margin"), and they may fail if data are unavailable.

The default permutation model changed from "direct" to "reduced" in vegan version 1.15-0, and
you must explicitly set model = "direct" for compatibility with the old version.

Tests by = "terms" and by = "margin" are consistent only when model = "direct".
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Author(s)

Jari Oksanen

References

Legendre, P. and Legendre, L. (2012). Numerical Ecology. 3rd English ed. Elsevier.

Legendre, P., Oksanen, J. and ter Braak, C.J.F. (2011). Testing the significance of canonical axes in
redundancy analysis. Methods in Ecology and Evolution 2, 269–277.

See Also

cca, rda, capscale to get something to analyse. Function drop1.cca calls anova.cca with
by = "margin", and add1.cca an analysis for single terms additions, which can be used in au-
tomatic or semiautomatic model building (see deviance.cca).

Examples

data(varespec)
data(varechem)
vare.cca <- cca(varespec ~ Al + P + K, varechem)
## overall test
anova(vare.cca)
## Test for axes
anova(vare.cca, by="axis", perm.max=500)
## Sequential test for terms
anova(vare.cca, by="terms", permu=200)
## Marginal or Type III effects
anova(vare.cca, by="margin")
## Marginal test knows ’scope’
anova(vare.cca, by = "m", scope="P")

as.mlm.cca Refit Constrained Ordination as a Multiple Response Linear Model

Description

Functions refit results of constrained ordination (cca, rda, capscale) as a multiple response linear
model (lm). This allows finding influence statistics (influence.measures). This also allows de-
riving several other statistics, but most of these are biased and misleading, since refitting ignores a
major component of variation in constrained ordination.

Usage

as.mlm(x)

Arguments

x Constrained ordination result.
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Details

Popular algorithm for constrained ordination is based on iteration with regression where weighted
averages of sites are used as dependent variables and constraints as independent variables. Statistics
of linear regression are a natural by-product in this algorithm. Constrained ordination in vegan uses
different algorithm, but to obtain linear regression statistics you can refit an ordination result as
a multiple response linear model (lm). This regression ignores residual unconstrained variation
in the data, and therefore estimates of standard error are strongly biased and much too low. You
can get statistics like t-values of coefficients, but you should not use these because of this bias.
Some useful information you can get with refitted models are statistics for detecting influential
observations (influence.measures including cooks.distance, hatvalues).

Value

Function returns an object of multiple response linear model of class "mlm" documented with lm.

Note

You can use these functions to find t-values of coefficients using summary.mlm, but you should not
do this because the method ignores unconstrained residual variation. You also can find several other
statistics for (multiple response) linear models with similar bias. This bias is not a unique feature
in vegan implementation, but also applies to implementations in other software.

Some statistics of linear models can be found without using these functions: coef.cca gives the
regression coefficients, spenvcor the species-environment correlation, intersetcor the interset
correlation, vif.cca the variance inflation factors.

Author(s)

Jari Oksanen

See Also

cca, rda, capscale, cca.object, lm, summary.mlm, influence.measures.

Examples

data(varespec)
data(varechem)
mod <- cca(varespec ~ Al + P + K, data=varechem)
lmod <- as.mlm(mod)
## Coefficients
lmod
coef(mod)
## Influential observations
influence.measures(lmod)
plot(mod, type = "n")
points(mod, cex = 10*hatvalues(lmod), pch=16, xpd = TRUE)
text(mod, display = "bp", col = "blue")
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BCI Barro Colorado Island Tree Counts

Description

Tree counts in 1-hectare plots in the Barro Colorado Island.

Usage

data(BCI)

Format

A data frame with 50 plots (rows) of 1 hectare with counts of trees on each plot with total of 225
species (columns). Full Latin names are used for tree species.

Details

Data give the numbers of trees at least 10 cm in diameter at breast height (1.3 m above the ground)
in each one hectare square of forest. Within each one hectare square, all individuals of all species
were tallied and are recorded in this table.

The data frame contains only the Barro Colorado Island subset of the original data.

The quadrats are located in a regular grid. See examples for the coordinates.

Source

http://www.sciencemag.org/cgi/content/full/295/5555/666/DC1

References

Condit, R, Pitman, N, Leigh, E.G., Chave, J., Terborgh, J., Foster, R.B., Nuñez, P., Aguilar, S.,
Valencia, R., Villa, G., Muller-Landau, H.C., Losos, E. & Hubbell, S.P. (2002). Beta-diversity in
tropical forest trees. Science 295, 666–669.

See Also

BCI.env in BiodiversityR package for environmental data (coordinates are given below in the
examples).

Examples

data(BCI)
## UTM Coordinates (in metres)
UTM.EW <- rep(seq(625754, 626654, by=100), each=5)
UTM.NS <- rep(seq(1011569, 1011969, by=100), len=50)

http://www.sciencemag.org/cgi/content/full/295/5555/666/DC1
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beals Beals Smoothing and Degree of Absence

Description

Beals smoothing replaces each entry in the community data with a probability of a target species
occurring in that particular site, based on the joint occurrences of the target species with the species
that actually occur in the site. Swan’s (1970) degree of absence applies Beals smoothing to zero
items so long that all zeros are replaced with smoothed values.

Usage

beals(x, species = NA, reference = x, type = 0, include = TRUE)
swan(x, maxit = Inf)

Arguments

x Community data frame or matrix.

species Column index used to compute Beals function for a single species. The default
(NA) indicates that the function will be computed for all species.

reference Community data frame or matrix to be used to compute joint occurrences. By
default, x is used as reference to compute the joint occurrences.

type Numeric. Specifies if and how abundance values have to be used in function
beals. See details for more explanation.

include This logical flag indicates whether the target species has to be included when
computing the mean of the conditioned probabilities. The original Beals (1984)
definition is equivalent to include=TRUE, while the formulation of Münzber-
gová and Herben is equal to include=FALSE.

maxit Maximum number of iterations. The default Inf means that iterations are con-
tinued until there are no zeros or the number of zeros does not change. Probably
only maxit = 1 makes sense in addition to the default.

Details

Beals smoothing is the estimated probability pij that species j occurs at site i. It is defined as pij =
1
Si

∑
k
NjkIik
Nk

, where Si is the number of species at site i, Njk is the number of joint occurrences
of species j and k, Nk is the number of occurrences of species k, and I is the incidence (0 or 1)
of species (this last term is usually omitted from the equation, but it is necessary). As Njk can be
interpreted as a mean of conditional probability, the beals function can be interpreted as a mean
of conditioned probabilities (De Cáceres & Legendre 2008). The present function is generalized to
abundance values (De Cáceres & Legendre 2008).

The type argument specifies if and how abundance values have to be used. type = 0 pres-
ence/absence mode. type = 1 abundances in reference (or x) are used to compute conditioned
probabilities. type = 2 abundances in x are used to compute weighted averages of conditioned



beals 23

probabilities. type = 3 abundances are used to compute both conditioned probabilities and weighted
averages.

Beals smoothing was originally suggested as a method of data transformation to remove excessive
zeros (Beals 1984, McCune 1994). However, it is not a suitable method for this purpose since
it does not maintain the information on species presences: a species may have a higher proba-
bility of occurrence at a site where it does not occur than at sites where it occurs. Moreover, it
regularizes data too strongly. The method may be useful in identifying species that belong to the
species pool (Ewald 2002) or to identify suitable unoccupied patches in metapopulation analysis
(Münzbergová & Herben 2004). In this case, the function should be called with include=FALSE
for cross-validation smoothing for species; argument species can be used if only one species is
studied.

Swan (1970) suggested replacing zero values with degrees of absence of a species in a community
data matrix. Swan expressed the method in terms of a similarity matrix, but it is equivalent to
applying Beals smoothing to zero values, at each step shifting the smallest initially non-zero item
to value one, and repeating this so many times that there are no zeros left in the data. This is
actually very similar to extended dissimilarities (implemented in function stepacross), but very
rarely used.

Value

The function returns a transformed data matrix or a vector if Beals smoothing is requested for a
single species.

Author(s)

Miquel De Cáceres and Jari Oksanen

References

Beals, E.W. 1984. Bray-Curtis ordination: an effective strategy for analysis of multivariate ecolog-
ical data. Pp. 1–55 in: MacFadyen, A. & E.D. Ford [eds.] Advances in Ecological Research, 14.
Academic Press, London.

De Cáceres, M. & Legendre, P. 2008. Beals smoothing revisited. Oecologia 156: 657–669.

Ewald, J. 2002. A probabilistic approach to estimating species pools from large compositional
matrices. J. Veg. Sci. 13: 191–198.

McCune, B. 1994. Improving community ordination with the Beals smoothing function. Eco-
science 1: 82–86.

Münzbergová, Z. & Herben, T. 2004. Identification of suitable unoccupied habitats in metapopula-
tion studies using co-occurrence of species. Oikos 105: 408–414.

Swan, J.M.A. 1970. An examination of some ordination problems by use of simulated vegetational
data. Ecology 51: 89–102.

See Also

decostand for proper standardization methods, specpool for an attempt to assess the size of
species pool. Function indpower assesses the power of each species to estimate the probabilities
predicted by beals.
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Examples

data(dune)
## Default
x <- beals(dune)
## Remove target species
x <- beals(dune, include = FALSE)
## Smoothed values against presence or absence of species
pa <- decostand(dune, "pa")
boxplot(as.vector(x) ~ unlist(pa), xlab="Presence", ylab="Beals")
## Remove the bias of tarbet species: Yields lower values.
beals(dune, type =3, include = FALSE)
## Uses abundance information.
## Vector with beals smoothing values corresponding to the first species
## in dune.
beals(dune, species=1, include=TRUE)

betadisper Multivariate homogeneity of groups dispersions (variances)

Description

Implements Marti Anderson’s PERMDISP2 procedure for the analysis of multivariate homogeneity
of group dispersions (variances). betadisper is a multivariate analogue of Levene’s test for homo-
geneity of variances. Non-euclidean distances between objects and group centroids are handled by
reducing the original distances to principal coordinates. This procedure has latterly been used as a
means of assessing beta diversity. There are anova, scores, plot and boxplot methods.

TukeyHSD.betadisper creates a set of confidence intervals on the differences between the mean
distance-to-centroid of the levels of the grouping factor with the specified family-wise probability
of coverage. The intervals are based on the Studentized range statistic, Tukey’s ’Honest Significant
Difference’ method.

Usage

betadisper(d, group, type = c("median","centroid"), bias.adjust = FALSE)

## S3 method for class ’betadisper’
anova(object, ...)

## S3 method for class ’betadisper’
scores(x, display = c("sites", "centroids"),

choices = c(1,2), ...)

## S3 method for class ’betadisper’
plot(x, axes = c(1,2), cex = 0.7, hull = TRUE,

ylab, xlab, main, sub, ...)

## S3 method for class ’betadisper’
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boxplot(x, ylab = "Distance to centroid", ...)

## S3 method for class ’betadisper’
TukeyHSD(x, which = "group", ordered = FALSE,

conf.level = 0.95, ...)

Arguments

d a distance structure such as that returned by dist, betadiver or vegdist.

group vector describing the group structure, usually a factor or an object that can be
coerced to a factor using as.factor. Can consist of a factor with a single level
(i.e., one group).

type the type of analysis to perform. Use the spatial median or the group centroid?
The spatial median is now the default.

bias.adjust logical: adjust for small sample bias in beta diversity estimates?

display character; partial match to access scores for "sites" or "species".

object, x an object of class "betadisper", the result of a call to betadisper.

choices, axes the principal coordinate axes wanted.

hull logical; should the convex hull for each group be plotted?
cex, ylab, xlab, main, sub

graphical parameters. For details, see plot.default.

which A character vector listing terms in the fitted model for which the intervals should
be calculated. Defaults to the grouping factor.

ordered Logical; see TukeyHSD.

conf.level A numeric value between zero and one giving the family-wise confidence level
to use.

... arguments, including graphical parameters (for plot.betadisper and boxplot.betadisper),
passed to other methods.

Details

One measure of multivariate dispersion (variance) for a group of samples is to calculate the average
distance of group members to the group centroid or spatial median (both referred to as ’centroid’
from now on unless stated otherwise) in multivariate space. To test if the dispersions (variances) of
one or more groups are different, the distances of group members to the group centroid are subject
to ANOVA. This is a multivariate analogue of Levene’s test for homogeneity of variances if the
distances between group members and group centroids is the Euclidean distance.

However, better measures of distance than the Euclidean distance are available for ecological data.
These can be accommodated by reducing the distances produced using any dissimilarity coefficient
to principal coordinates, which embeds them within a Euclidean space. The analysis then proceeds
by calculating the Euclidean distances between group members and the group centroid on the basis
of the principal coordinate axes rather than the original distances.

Non-metric dissimilarity coefficients can produce principal coordinate axes that have negative Eigen-
values. These correspond to the imaginary, non-metric part of the distance between objects. If
negative Eigenvalues are produced, we must correct for these imaginary distances.
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The distance to its centroid of a point is

zcij =
√

∆2(u+ij , c
+
i )−∆2(u−ij , c

−
i ),

where ∆2 is the squared Euclidean distance between uij , the principal coordinate for the jth point
in the ith group, and ci, the coordinate of the centroid for the ith group. The super-scripted ‘+’ and
‘−’ indicate the real and imaginary parts respectively. This is equation (3) in Anderson (2006). If
the imaginary part is greater in magnitude than the real part, then we would be taking the square root
of a negative value, resulting in NaN. From vegan 1.12-12 betadisper takes the absolute value of
the real distance minus the imaginary distance, before computing the square root. This is in line
with the behaviour of Marti Anderson’s PERMDISP2 programme.

To test if one or more groups is more variable than the others, ANOVA of the distances to group
centroids can be performed and parametric theory used to interpret the significance of F . An alter-
native is to use a permutation test. permutest.betadisper permutes model residuals to generate
a permutation distribution of F under the Null hypothesis of no difference in dispersion between
groups.

Pairwise comparisons of group mean dispersions can also be performed using permutest.betadisper.
An alternative to the classical comparison of group dispersions, is to calculate Tukey’s Honest
Significant Differences between groups, via TukeyHSD.betadisper. This is a simple wrapper to
TukeyHSD.aov. The user is directed to read the help file for TukeyHSD before using this function.
In particular, note the statement about using the function with unbalanced designs.

The results of the analysis can be visualised using the plot and boxplot methods.

One additional use of these functions is in assessing beta diversity (Anderson et al 2006). Function
betadiver provides some popular dissimilarity measures for this purpose.

As noted in passing by Anderson (2001) and in a related context by O’Neill (2000), estimates of
dispersion around a central location (median or centroid) that is calculated from the same data will
be biased downward. This bias matters most when comparing diversity among treatments with
small, unequal numbers of samples. Setting bias.adjust=TRUE when using betadisper imposes
a
√
n/(n− 1) correction (Stier et al. 2012).

Value

The anova method returns an object of class "anova" inheriting from class "data.frame".

The scores method returns a list with one or both of the components "sites" and "centroids".

The plot function invisibly returns an object of class "ordiplot", a plotting structure which can
be used by identify.ordiplot (to identify the points) or other functions in the ordiplot family.

The boxplot function invisibly returns a list whose components are documented in boxplot.

TukeyHSD.betadisper returns a list. See TukeyHSD for further details.

betadisper returns a list of class "betadisper" with the following components:

eig numeric; the eigenvalues of the principal coordinates analysis.

vectors matrix; the eigenvectors of the principal coordinates analysis.

distances numeric; the Euclidean distances in principal coordinate space between the sam-
ples and their respective group centroid.

group factor; vector describing the group structure
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centroids matrix; the locations of the group centroids on the principal coordinates.

call the matched function call.

Warning

Stewart Schultz noticed that the permutation test for type="centroid" had the wrong type I error
and was anti-conservative. As such, the default for type has been changed to "median", which uses
the spatial median as the group centroid. Tests suggests that the permutation test for this type of
analysis gives the correct error rates.

Note

If group consists of a single level or group, then the anova and permutest methods are not appro-
priate and if used on such data will stop with an error.

Missing values in either d or group will be removed prior to performing the analysis.

Author(s)

Gavin L. Simpson; bias correction by Adrian Stier and Ben Bolker.

References

Anderson, M. J. (2001) A new method for non-parametric multivariate analysis of variance. Austral
Ecology 26, 32–46.

Anderson, M.J. (2006) Distance-based tests for homogeneity of multivariate dispersions. Biomet-
rics 62, 245–253.

Anderson, M.J., Ellingsen, K.E. & McArdle, B.H. (2006) Multivariate dispersion as a measure of
beta diversity. Ecology Letters 9, 683–693.

O’Neill, M.E. (2000) A Weighted Least Squares Approach to Levene’s Test of Homogeneity of
Variance. Australian & New Zealand Journal of Statistics 42, 81-–100.

Stier, A.C., Geange, S.W., Hanson, K.M., & Bolker, B.M. (2012) Predator density and timing of
arrival affect reef fish community assembly. Ms. in revision, Oikos.

See Also

permutest.betadisper, anova.lm, scores, boxplot, TukeyHSD. Further measure of beta diver-
sity can be found in betadiver.

Examples

data(varespec)

## Bray-Curtis distances between samples
dis <- vegdist(varespec)

## First 16 sites grazed, remaining 8 sites ungrazed
groups <- factor(c(rep(1,16), rep(2,8)), labels = c("grazed","ungrazed"))

## Calculate multivariate dispersions
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mod <- betadisper(dis, groups)
mod

## Perform test
anova(mod)

## Permutation test for F
permutest(mod, pairwise = TRUE)

## Tukey’s Honest Significant Differences
(mod.HSD <- TukeyHSD(mod))
plot(mod.HSD)

## Plot the groups and distances to centroids on the
## first two PCoA axes
plot(mod)

## can also specify which axes to plot, ordering respected
plot(mod, axes = c(3,1))

## Draw a boxplot of the distances to centroid for each group
boxplot(mod)

## simulate missing values in ’d’ and ’group’
## using spatial medians
groups[c(2,20)] <- NA
dis[c(2, 20)] <- NA
mod2 <- betadisper(dis, groups) ## warnings
mod2
permutest(mod2, control = permControl(nperm = 100))
anova(mod2)
plot(mod2)
boxplot(mod2)
plot(TukeyHSD(mod2))

## Using group centroids
mod3 <- betadisper(dis, groups, type = "centroid")
mod3
permutest(mod3, control = permControl(nperm = 100))
anova(mod3)
plot(mod3)
boxplot(mod3)
plot(TukeyHSD(mod3))

## try out bias correction; compare with mod3
(mod3B <- betadisper(dis, groups, type = "median", bias.adjust=TRUE))

betadiver Indices of beta Diversity
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Description

The function estimates any of the 24 indices of beta diversity reviewed by Koleff et al. (2003).
Alternatively, it finds the co-occurrence frequencies for triangular plots (Koleff et al. 2003).

Usage

betadiver(x, method = NA, order = FALSE, help = FALSE, ...)
## S3 method for class ’betadiver’
plot(x, ...)
## S3 method for class ’betadiver’
scores(x, triangular = TRUE, ...)

Arguments

x Community data matrix, or the betadiver result for plot and scores functions.

method The index of beta diversity as defined in Koleff et al. (2003), Table 1. You can
use either the subscript of β or the number of the index. See argument help
below.

order Order sites by increasing number of species. This will influence the configura-
tion in the triangular plot and non-symmetric indices.

help Show the numbers, subscript names and the defining equations of the indices
and exit.

triangular Return scores suitable for triangular plotting of proportions. If FALSE, returns a
3-column matrix of raw counts.

... Other arguments to functions.

Details

The most commonly used index of beta diversity is βw = S/α − 1, where S is the total number
of species, and α is the average number of species per site (Whittaker 1960). A drawback of this
model is that S increases with sample size, but the expectation of α remains constant, and so the
beta diversity increases with sample size. A solution to this problem is to study the beta diversity
of pairs of sites. If we denote the number of species shared between two sites as a and the numbers
of unique species (not shared) as b and c, then S = a + b + c and α = (2a + b + c)/2 so that
βw = (b+ c)/(2a+ b+ c). This is the Sørensen dissimilarity as defined in vegan function vegdist
with argument binary = TRUE. Many other indices are dissimilarity indices as well.

Function betadiver finds all indices reviewed by Koleff et al. (2003). All these indices could
be found with function designdist, but the current function provides a conventional shortcut.
The function only finds the indices. The proper analysis must be done with functions such as
betadisper, adonis or mantel.

The indices are directly taken from Table 1 of Koleff et al. (2003), and they can be selected either
by the index number or the subscript name used by Koleff et al. The numbers, names and defining
equations can be seen using betadiver(help = TRUE). In all cases where there are two alternative
forms, the one with the term −1 is used. There are several duplicate indices, and the number of
distinct alternatives is much lower than 24 formally provided. The formulations used in functions
differ occasionally from those in Koleff et al. (2003), but they are still mathematically equivalent.
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With method = NA, no index is calculated, but instead an object of class betadiver is returned.
This is a list of elements a, b and c. Function plot can be used to display the proportions of these
elements in triangular plot as suggested by Koleff et al. (2003), and scores extracts the triangular
coordinates or the raw scores. Function plot returns invisibly the triangular coordinates as an
"ordiplot" object.

Value

With method = NA, the function returns an object of class "betadisper" with elements a, b, and
c. If method is specified, the function returns a "dist" object which can be used in any func-
tion analysing dissimilarities. For beta diversity, particularly useful functions are betadisper to
study the betadiversity in groups, adonis for any model, and mantel to compare beta diversities to
other dissimilarities or distances (including geographical distances). Although betadiver returns a
"dist" object, some indices are similarities and cannot be used as such in place of dissimilarities,
but that is a severe user error. Functions 10 ("j") and 11 ("sor") are two such similarity indices.

Warning

Some indices return similarities instead of dissimilarities.

Author(s)

Jari Oksanen

References

Baselga, A. (2010) Partitioning the turnover and nestedness components of beta diversity. Global
Ecology and Biogeography 19, 134–143.

Koleff, P., Gaston, K.J. and Lennon, J.J. (2003) Measuring beta diversity for presence-absence data.
Journal of Animal Ecology 72, 367–382.

Whittaker, R.H. (1960) Vegetation of Siskiyou mountains, Oregon and California. Ecological
Monographs 30, 279–338.

See Also

designdist for an alternative to implement all these functions, vegdist for some canned alterna-
tives, and betadisper, adonis, mantel for analysing beta diversity objects. Functions nestedbetasor
and nestedbetajac implement decomposition beta diversity measures (Sørensen and Jaccard) into
turnover and nestedness components following Baselga (2010).

Examples

## Raw data and plotting
data(sipoo)
m <- betadiver(sipoo)
plot(m)
## The indices
betadiver(help=TRUE)
## The basic Whittaker index
d <- betadiver(sipoo, "w")
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## This should be equal to Sorensen index (binary Bray-Curtis in
## vegan)
range(d - vegdist(sipoo, binary=TRUE))

bgdispersal Coefficients of Biogeographical Dispersal Direction

Description

This function computes coefficients of dispersal direction between geographically connected areas,
as defined by Legendre and Legendre (1984), and also described in Legendre and Legendre (2012,
section 13.3.4).

Usage

bgdispersal(mat, PAonly = FALSE, abc = FALSE)

Arguments

mat Data frame or matrix containing a community composition data table (species
presence-absence or abundance data).

PAonly FALSE if the four types of coefficients, DD1 to DD4, are requested; TRUE if DD1
and DD2 only are sought (see Details).

abc If TRUE, return tables a, b and c used in DD1 and DD2.

Details

The signs of the DD coefficients indicate the direction of dispersal, provided that the asymmetry is
significant. A positive sign indicates dispersal from the first (row in DD tables) to the second region
(column); a negative sign indicates the opposite. A McNemar test of asymmetry is computed from
the presence-absence data to test the hypothesis of a significant asymmetry between the two areas
under comparison.

In the input data table, the rows are sites or areas, the columns are taxa. Most often, the taxa
are species, but the coefficients can be computed from genera or families as well. DD1 and DD2
only are computed for presence-absence data. The four types of coefficients are computed for
quantitative data, which are converted to presence-absence for the computation of DD1 and DD2.
PAonly = FALSE indicates that the four types of coefficients are requested. PAonly = TRUE if DD1
and DD2 only are sought.

Value

Function bgdispersal returns a list containing the following matrices:

DD1 DD1j,k = (a(b− c))/((a+ b+ c)2)

DD2 DD2j,k = (2a(b − c))/((2a + b + c)(a + b + c)) where a, b, and c have the
same meaning as in the computation of binary similarity coefficients.

DD3 DD3j,k = W (A−B)/(A+B −W )2
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DD4 DD4j,k = 2W (A−B)/((A+B)(A+B−W )) where W = sum(pmin(vector1, vector2)),
A = sum(vector1), B = sum(vector2)

McNemar McNemar chi-square statistic of asymmetry (Sokal and Rohlf 1995): 2(b log(b)+
c log(c) − (b + c) log((b + c)/2))/q, where q = 1 + 1/(2(b + c)) (Williams
correction for continuity)

prob.McNemar probabilities associated with McNemar statistics, chi-square test. H0: no asym-
metry in (b− c).

Note

The function uses a more powerful alternative for the McNemar test than the classical formula. The
classical formula was constructed in the spirit of Pearson’s Chi-square, but the formula in this func-
tion was constructed in the spirit of Wilks Chi-square or the G statistic. Function mcnemar.test
uses the classical formula. The new formula was introduced in vegan version 1.10-11, and the older
implementations of bgdispersal used the classical formula.

Author(s)

Pierre Legendre, Departement de Sciences Biologiques, Universite de Montreal

References

Legendre, P. and V. Legendre. 1984. Postglacial dispersal of freshwater fishes in the Québec
peninsula. Can. J. Fish. Aquat. Sci. 41: 1781-1802.

Legendre, P. and L. Legendre. 2012. Numerical ecology, 3rd English edition. Elsevier Science BV,
Amsterdam.

Sokal, R. R. and F. J. Rohlf. 1995. Biometry. The principles and practice of statistics in biological
research. 3rd edn. W. H. Freeman, New York.

Examples

mat <- matrix(c(32,15,14,10,70,30,100,4,10,30,25,0,18,0,40,
0,0,20,0,0,0,0,4,0,30,20,0,0,0,0,25,74,42,1,45,89,5,16,16,20),
4, 10, byrow=TRUE)

bgdispersal(mat)

bioenv Best Subset of Environmental Variables with Maximum (Rank) Corre-
lation with Community Dissimilarities

Description

Function finds the best subset of environmental variables, so that the Euclidean distances of scaled
environmental variables have the maximum (rank) correlation with community dissimilarities.
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Usage

## Default S3 method:
bioenv(comm, env, method = "spearman", index = "bray",

upto = ncol(env), trace = FALSE, partial = NULL, ...)
## S3 method for class ’formula’
bioenv(formula, data, ...)

Arguments

comm Community data frame or a dissimilarity object or a square matrix that can be
interpreted as dissimilarities.

env Data frame of continuous environmental variables.

method The correlation method used in cor.

index The dissimilarity index used for community data (comm) in vegdist. This is
ignored if comm are dissimilarities.

upto Maximum number of parameters in studied subsets.

formula, data Model formula and data.

trace Trace the calculations

partial Dissimilarities partialled out when inspecting variables in env.

... Other arguments passed to cor.

Details

The function calculates a community dissimilarity matrix using vegdist. Then it selects all possi-
ble subsets of environmental variables, scales the variables, and calculates Euclidean distances for
this subset using dist. Then it finds the correlation between community dissimilarities and envi-
ronmental distances, and for each size of subsets, saves the best result. There are 2p − 1 subsets of
p variables, and an exhaustive search may take a very, very, very long time (parameter upto offers
a partial relief).

The function can be called with a model formula where the LHS is the data matrix and RHS
lists the environmental variables. The formula interface is practical in selecting or transforming
environmental variables.

With argument partial you can perform “partial” analysis. The partializing item must be a dis-
similarity object of class dist. The partial item can be used with any correlation method, but it
is strictly correct only for Pearson.

Clarke & Ainsworth (1993) suggested this method to be used for selecting the best subset of en-
vironmental variables in interpreting results of nonmetric multidimensional scaling (NMDS). They
recommended a parallel display of NMDS of community dissimilarities and NMDS of Euclidean
distances from the best subset of scaled environmental variables. They warned against the use of
Procrustes analysis, but to me this looks like a good way of comparing these two ordinations.

Clarke & Ainsworth wrote a computer program BIO-ENV giving the name to the current function.
Presumably BIO-ENV was later incorporated in Clarke’s PRIMER software (available for Win-
dows). In addition, Clarke & Ainsworth suggested a novel method of rank correlation which is not
available in the current function.
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Value

The function returns an object of class bioenv with a summary method.

Note

If you want to study the ‘significance’ of bioenv results, you can use function mantel or mantel.partial
which use the same definition of correlation. However, bioenv standardizes environmental vari-
ables to unit standard deviation using function scale and you must do the same in mantel for
comparable results. Further, bioenv selects variables to maximize the Mantel correlation, and sig-
nificance tests based on a priori selection of variables are biased.

Author(s)

Jari Oksanen

References

Clarke, K. R & Ainsworth, M. 1993. A method of linking multivariate community structure to
environmental variables. Marine Ecology Progress Series, 92, 205–219.

See Also

vegdist, dist, cor for underlying routines, monoMDS and metaMDS for ordination, procrustes
for Procrustes analysis, protest for an alternative, and rankindex for studying alternatives to the
default Bray-Curtis index.

Examples

# The method is very slow for large number of possible subsets.
# Therefore only 6 variables in this example.
data(varespec)
data(varechem)
sol <- bioenv(wisconsin(varespec) ~ log(N) + P + K + Ca + pH + Al, varechem)
sol
summary(sol)

biplot.rda PCA biplot

Description

Draws a PCA biplot with species scores indicated by biplot arrows

Usage

## S3 method for class ’rda’
biplot(x, choices = c(1, 2), scaling = 2,

display = c("sites", "species"), type, xlim, ylim, col = c(1,2),
const, ...)
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Arguments

x A rda result object.
choices Axes to show.
scaling Scaling for species and site scores. Either species (2) or site (1) scores are

scaled by eigenvalues, and the other set of scores is left unscaled, or with 3 both
are scaled symmetrically by square root of eigenvalues. With negative scaling
values in rda, species scores are divided by standard deviation of each species
and multiplied with an equalizing constant. Unscaled raw scores stored in the
result can be accessed with scaling = 0.

display Scores shown. These must some of the alternatives "species" for species
scores, and/or "sites" for site scores.

type Type of plot: partial match to text for text labels, points for points, and none
for setting frames only. If omitted, text is selected for smaller data sets, and
points for larger. Can be of length 2 (e.g. type = c("text", "points")), in
which case the first element describes how species scores are handled, and the
second how site scores are drawn.

xlim, ylim the x and y limits (min, max) of the plot.
col Colours used for sites and species (in this order). If only one colour is given, it

is used for both.
const General scaling constant for scores.rda.
... Other parameters for plotting functions.

Details

Produces a plot or biplot of the results of a call to rda. It is common for the "species" scores in a
PCA to be drawn as biplot arrows that point in the direction of increasing values for that variable.
The biplot.rda function provides a wrapper to plot.cca to allow the easy production of such a
plot.

biplot.rda is only suitable for unconstrained models. If used on an ordination object with con-
straints, an error is issued.

If species scores are drawn using "text", the arrows are drawn from the origin to 0.85 * species
score, whilst the labels are drawn at the species score. If the type used is "points", then no labels
are drawn and therefore the arrows are drawn from the origin to the actual species score.

Value

The plot function returns invisibly a plotting structure which can be used by identify.ordiplot
to identify the points or other functions in the ordiplot family.

Author(s)

Gavin Simpson, based on plot.cca by Jari Oksanen.

See Also

plot.cca, rda for something to plot, ordiplot for an alternative plotting routine and more support
functions, and text, points and arrows for the basic routines.
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Examples

data(dune)
mod <- rda(dune, scale = TRUE)
biplot(mod, scaling = 3)

## different type for species and site scores
biplot(mod, scaling = 3, type = c("text", "points"))

capscale [Partial] Constrained Analysis of Principal Coordinates or distance-
based RDA

Description

Constrained Analysis of Principal Coordinates (CAP) is an ordination method similar to Redun-
dancy Analysis (rda), but it allows non-Euclidean dissimilarity indices, such as Manhattan or
Bray–Curtis distance. Despite this non-Euclidean feature, the analysis is strictly linear and met-
ric. If called with Euclidean distance, the results are identical to rda, but capscale will be much
more inefficient. Function capscale is a constrained version of metric scaling, a.k.a. principal
coordinates analysis, which is based on the Euclidean distance but can be used, and is more useful,
with other dissimilarity measures. The function can also perform unconstrained principal coordi-
nates analysis, optionally using extended dissimilarities.

Usage

capscale(formula, data, distance = "euclidean", sqrt.dist = FALSE,
comm = NULL, add = FALSE, dfun = vegdist, metaMDSdist = FALSE,
na.action = na.fail, subset = NULL, ...)

Arguments

formula Model formula. The function can be called only with the formula interface.
Most usual features of formula hold, especially as defined in cca and rda. The
LHS must be either a community data matrix or a dissimilarity matrix, e.g., from
vegdist or dist. If the LHS is a data matrix, function vegdist will be used to
find the dissimilarities. The RHS defines the constraints. The constraints can be
continuous variables or factors, they can be transformed within the formula, and
they can have interactions as in a typical formula. The RHS can have a special
term Condition that defines variables to be “partialled out” before constraints,
just like in rda or cca. This allows the use of partial CAP.

data Data frame containing the variables on the right hand side of the model formula.

distance The name of the dissimilarity (or distance) index if the LHS of the formula is a
data frame instead of dissimilarity matrix.

sqrt.dist Take square roots of dissimilarities. See section Notes below.
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comm Community data frame which will be used for finding species scores when the
LHS of the formula was a dissimilarity matrix. This is not used if the LHS is
a data frame. If this is not supplied, the “species scores” are the axes of initial
metric scaling (cmdscale) and may be confusing.

add Logical indicating if an additive constant should be computed, and added to
the non-diagonal dissimilarities such that all eigenvalues are non-negative in the
underlying Principal Co-ordinates Analysis (see cmdscale for details). This
implements “correction method 2” of Legendre & Legendre (2012, p. 503).
The negative eigenvalues are caused by using semi-metric or non-metric dis-
similarities with basically metric cmdscale. They are harmless and ignored in
capscale, but you also can avoid warnings with this option.

dfun Distance or dissimilarity function used. Any function returning standard "dist"
and taking the index name as the first argument can be used.

metaMDSdist Use metaMDSdist similarly as in metaMDS. This means automatic data transfor-
mation and using extended flexible shortest path dissimilarities (function stepacross)
when there are many dissimilarities based on no shared species.

na.action Handling of missing values in constraints or conditions. The default (na.fail)
is to stop with missing values. Choices na.omit and na.exclude delete rows
with missing values, but differ in representation of results. With na.omit only
non-missing site scores are shown, but na.exclude gives NA for scores of miss-
ing observations. Unlike in rda, no WA scores are available for missing con-
straints or conditions.

subset Subset of data rows. This can be a logical vector which is TRUE for kept ob-
servations, or a logical expression which can contain variables in the working
environment, data or species names of the community data (if given in the for-
mula or as comm argument).

... Other parameters passed to rda or to metaMDSdist.

Details

Canonical Analysis of Principal Coordinates (CAP) is simply a Redundancy Analysis of results of
Metric (Classical) Multidimensional Scaling (Anderson & Willis 2003). Function capscale uses two
steps: (1) it ordinates the dissimilarity matrix using cmdscale and (2) analyses these results using
rda. If the user supplied a community data frame instead of dissimilarities, the function will find
the needed dissimilarity matrix using vegdist with specified distance. However, the method will
accept dissimilarity matrices from vegdist, dist, or any other method producing similar matrices.
The constraining variables can be continuous or factors or both, they can have interaction terms, or
they can be transformed in the call. Moreover, there can be a special term Condition just like in
rda and cca so that “partial” CAP can be performed.

The current implementation differs from the method suggested by Anderson & Willis (2003) in
three major points which actually make it similar to distance-based redundancy analysis (Legendre
& Anderson 1999):

1. Anderson & Willis used the orthonormal solution of cmdscale, whereas capscale uses axes
weighted by corresponding eigenvalues, so that the ordination distances are the best approx-
imations of original dissimilarities. In the original method, later “noise” axes are just as im-
portant as first major axes.
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2. Anderson & Willis take only a subset of axes, whereas capscale uses all axes with positive
eigenvalues. The use of subset is necessary with orthonormal axes to chop off some “noise”,
but the use of all axes guarantees that the results are the best approximation of original dis-
similarities.

3. Function capscale adds species scores as weighted sums of (residual) community matrix (if
the matrix is available), whereas Anderson & Willis have no fixed method for adding species
scores.

With these definitions, function capscale with Euclidean distances will be identical to rda in eigen-
values and in site, species and biplot scores (except for possible sign reversal). However, it makes
no sense to use capscale with Euclidean distances, since direct use of rda is much more efficient.
Even with non-Euclidean dissimilarities, the rest of the analysis will be metric and linear.

The function can be also used to perform ordinary metric scaling a.k.a. principal coordinates analy-
sis by using a formula with only a constant on the left hand side, or comm ~ 1. With metaMDSdist = TRUE,
the function can do automatic data standardization and use extended dissimilarities using function
stepacross similarly as in non-metric multidimensional scaling with metaMDS.

Value

The function returns an object of class capscale which is identical to the result of rda. At the
moment, capscale does not have specific methods, but it uses cca and rda methods plot.cca,
scores.rda etc. Moreover, you can use anova.cca for permutation tests of “significance” of the
results.

Note

The function produces negative eigenvalues with non-Euclidean dissimilarity indices. The non-
Euclidean component of inertia is given under the title Imaginary in the printed output. The
Total inertia is the sum of all eigenvalues, but the sum of all non-negative eigenvalues is given
as Real Total (which is higher than the Total). The ordination is based only on the real dimen-
sions with positive eigenvalues, and therefore the proportions of inertia components only apply to
the Real Total and ignore the Imaginary component. Permutation tests with anova.cca use
only the real solution of positive eigenvalues. Function adonis gives similar significance tests, but
it also handles the imaginary dimensions (negative eigenvalues) and therefore its results may differ
from permutation test results of capscale.

If the negative eigenvalues are disturbing, you can use argument add = TRUE passed to cmdscale,
or, preferably, a distance measure that does not cause these warnings. Alternatively, after square root
transformation of distances (argument sqrt.dist = TRUE) many indices do not produce negative
eigenvalues.

The inertia is named after the dissimilarity index as defined in the dissimilarity data, or as unknown distance
if such an information is missing. Function rda usually divides the ordination scores by number
of sites minus one. In this way, the inertia is variance instead of sum of squares, and the eigenval-
ues sum up to variance. Many dissimilarity measures are in the range 0 to 1, so they have already
made a similar division. If the largest original dissimilarity is less than or equal to 4 (allowing for
stepacross), this division is undone in capscale and original dissimilarities are used. Keyword
mean is added to the inertia in cases where division was made, e.g. in Euclidean and Manhattan dis-
tances. Inertia is based on squared index, and keyword squared is added to the name of distance,
unless data were square root transformed (argument sqrt.dist = TRUE). If an additive constant
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was used, keyword euclidified is added to the the name of inertia, and the value of the constant
is printed (argument add = TRUE).

Author(s)

Jari Oksanen

References

Anderson, M.J. & Willis, T.J. (2003). Canonical analysis of principal coordinates: a useful method
of constrained ordination for ecology. Ecology 84, 511–525.

Gower, J.C. (1985). Properties of Euclidean and non-Euclidean distance matrices. Linear Algebra
and its Applications 67, 81–97.

Legendre, P. & Anderson, M. J. (1999). Distance-based redundancy analysis: testing multispecies
responses in multifactorial ecological experiments. Ecological Monographs 69, 1–24.

Legendre, P. & Legendre, L. (2012). Numerical Ecology. 3rd English Edition. Elsevier

See Also

rda, cca, plot.cca, anova.cca, vegdist, dist, cmdscale.

The function returns similar result object as rda (see cca.object). This section for rda gives a
more complete list of functions that can be used to access and analyse capscale results.

Examples

data(varespec)
data(varechem)
## Basic Analysis
vare.cap <- capscale(varespec ~ N + P + K + Condition(Al), varechem,

dist="bray")
vare.cap
plot(vare.cap)
anova(vare.cap)
## Avoid negative eigenvalues with additive constant
capscale(varespec ~ N + P + K + Condition(Al), varechem,

dist="bray", add =TRUE)
## Avoid negative eigenvalues by taking square roots of dissimilarities
capscale(varespec ~ N + P + K + Condition(Al), varechem,

dist = "bray", sqrt.dist= TRUE)
## Principal coordinates analysis with extended dissimilarities
capscale(varespec ~ 1, dist="bray", metaMDS = TRUE)



40 cascadeKM

cascadeKM K-means partitioning using a range of values of K

Description

This function is a wrapper for the kmeans function. It creates several partitions forming a cascade
from a small to a large number of groups.

Usage

cascadeKM(data, inf.gr, sup.gr, iter = 100, criterion = "calinski")

cIndexKM(y, x, index = "all")

## S3 method for class ’cascadeKM’
plot(x, min.g, max.g, grpmts.plot = TRUE,

sortg = FALSE, gridcol = NA, ...)

Arguments

data The data matrix. The objects (samples) are the rows.

inf.gr The number of groups for the partition with the smallest number of groups of
the cascade (min).

sup.gr The number of groups for the partition with the largest number of groups of the
cascade (max).

iter The number of random starting configurations for each value of K.

criterion The criterion that will be used to select the best partition. The default value is
"calinski", which refers to the Calinski-Harabasz (1974) criterion. The simple
structure index ("ssi") is also available. Other indices are available in function
clustIndex (package cclust). In our experience, the two indices that work best
and are most likely to return their maximum value at or near the optimal number
of clusters are "calinski" and "ssi".

y Object of class "kmeans" returned by a clustering algorithm such as kmeans

x Data matrix where columns correspond to variables and rows to observations,
or the plotting object in plot

index The available indices are: "calinski" and "ssi". Type "all" to obtain both
indices. Abbreviations of these names are also accepted.

min.g, max.g The minimum and maximum numbers of groups to be displayed.

grpmts.plot Show the plot (TRUE or FALSE).

sortg Sort the objects as a function of their group membership to produce a more
easily interpretable graph. See Details. The original object names are kept; they
are used as labels in the output table x, although not in the graph. If there were
no row names, sequential row numbers are used to keep track of the original
order of the objects.
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gridcol The colour of the grid lines in the plots. NA, which is the default value, removes
the grid lines.

... Other parameters to the functions (ignored).

Details

The function creates several partitions forming a cascade from a small to a large number of groups
formed by kmeans. Most of the work is performed by function cIndex which is based on the
clustIndex function (package cclust). Some of the criteria were removed from this version be-
cause computation errors were generated when only one object was found in a group.

The default value is "calinski", which refers to the well-known Calinski-Harabasz (1974) cri-
terion. The other available index is the simple structure index "ssi" (Dolnicar et al. 1999). In
the case of groups of equal sizes, "calinski" is generally a good criterion to indicate the correct
number of groups. Users should not take its indications literally when the groups are not equal in
size. Type "all" to obtain both indices. The indices are defined as:

calinski: (SSB/(K − 1))/(SSW/(n −K)), where n is the number of data points and K is the
number of clusters. SSW is the sum of squares within the clusters while SSB is the sum of
squares among the clusters. This index is simply an F (ANOVA) statistic.

ssi: the “Simple Structure Index” multiplicatively combines several elements which influence the
interpretability of a partitioning solution. The best partition is indicated by the highest SSI
value.

In a simulation study, Milligan and Cooper (1985) found that the Calinski-Harabasz criterion re-
covered the correct number of groups the most often. We recommend this criterion because, if the
groups are of equal sizes, the maximum value of "calinski" usually indicates the correct number
of groups. Another available index is the simple structure index "ssi". Users should not take the
indications of these indices literally when the groups are not equal in size and explore the groups
corresponding to other values of K.

Function cascadeKM has a plot method. Two plots are produced. The graph on the left has the
objects in abscissa and the number of groups in ordinate. The groups are represented by colours.
The graph on the right shows the values of the criterion ("calinski" or "ssi") for determining the
best partition. The highest value of the criterion is marked in red. Points marked in orange, if any,
indicate partitions producing an increase in the criterion value as the number of groups increases;
they may represent other interesting partitions.

If sortg=TRUE, the objects are reordered by the following procedure: (1) a simple matching distance
matrix is computed among the objects, based on the table of K-means assignments to groups, from
K = min.g to K = max.g. (2) A principal coordinate analysis (PCoA, Gower 1966) is computed on
the centred distance matrix. (3) The first principal coordinate is used as the new order of the objects
in the graph. A simplified algorithm is used to compute the first principal coordinate only, using
the iterative algorithm described in Legendre & Legendre (2012). The full distance matrix among
objects is never computed; this avoids the problem of storing it when the number of objects is large.
Distance values are computed as they are needed by the algorithm.

Value

Function cascadeKM returns an object of class cascadeKM with items:
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partition Table with the partitions found for different numbers of groups K, from K =
inf.gr to K = sup.gr.

results Values of the criterion to select the best partition.

criterion The name of the criterion used.

size The number of objects found in each group, for all partitions (columns).

Function cIndex returns a vector with the index values. The maximum value of these indices is
supposed to indicate the best partition. These indices work best with groups of equal sizes. When
the groups are not of equal sizes, one should not put too much faith in the maximum of these indices,
and also explore the groups corresponding to other values of K.

Author(s)

Marie-Helene Ouellette <Marie-Helene.Ouellette@UMontreal.ca>, Sebastien Durand <Sebastien.Durand@UMontreal.ca>
and Pierre Legendre <Pierre.Legendre@UMontreal.ca>. Edited for vegan by Jari Oksanen.

References

Calinski, T. and J. Harabasz. 1974. A dendrite method for cluster analysis. Commun. Stat. 3: 1-27.

Dolnicar, S., K. Grabler and J. A. Mazanec. 1999. A tale of three cities: perceptual charting for
analyzing destination images. Pp. 39-62 in: Woodside, A. et al. [eds.] Consumer psychology of
tourism, hospitality and leisure. CAB International, New York.

Gower, J. C. 1966. Some distance properties of latent root and vector methods used in multivariate
analysis. Biometrika 53: 325-338.

Legendre, P. & L. Legendre. 2012. Numerical ecology, 3rd English edition. Elsevier Science BV,
Amsterdam.

Milligan, G. W. & M. C. Cooper. 1985. An examination of procedures for determining the number
of clusters in a data set. Psychometrika 50: 159-179.

Weingessel, A., Dimitriadou, A. and Dolnicar, S. An Examination Of Indexes For Determining The
Number Of Clusters In Binary Data Sets, http://www.wu-wien.ac.at/am/wp99.htm#29

See Also

kmeans, clustIndex.

Examples

# Partitioning a (10 x 10) data matrix of random numbers
mat <- matrix(runif(100),10,10)
res <- cascadeKM(mat, 2, 5, iter = 25, criterion = ’calinski’)
toto <- plot(res)

# Partitioning an autocorrelated time series
vec <- sort(matrix(runif(30),30,1))
res <- cascadeKM(vec, 2, 5, iter = 25, criterion = ’calinski’)
toto <- plot(res)

# Partitioning a large autocorrelated time series

http://www.wu-wien.ac.at/am/wp99.htm#29
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# Note that we remove the grid lines
vec <- sort(matrix(runif(1000),1000,1))
res <- cascadeKM(vec, 2, 7, iter = 10, criterion = ’calinski’)
toto <- plot(res, gridcol=NA)

cca [Partial] [Constrained] Correspondence Analysis and Redundancy
Analysis

Description

Function cca performs correspondence analysis, or optionally constrained correspondence anal-
ysis (a.k.a. canonical correspondence analysis), or optionally partial constrained correspondence
analysis. Function rda performs redundancy analysis, or optionally principal components analysis.
These are all very popular ordination techniques in community ecology.

Usage

## S3 method for class ’formula’
cca(formula, data, na.action = na.fail, subset = NULL,
...)

## Default S3 method:
cca(X, Y, Z, ...)
## S3 method for class ’formula’
rda(formula, data, scale=FALSE, na.action = na.fail,
subset = NULL, ...)

## Default S3 method:
rda(X, Y, Z, scale=FALSE, ...)

Arguments

formula Model formula, where the left hand side gives the community data matrix, right
hand side gives the constraining variables, and conditioning variables can be
given within a special function Condition.

data Data frame containing the variables on the right hand side of the model formula.
X Community data matrix.
Y Constraining matrix, typically of environmental variables. Can be missing.
Z Conditioning matrix, the effect of which is removed (‘partialled out’) before

next step. Can be missing.
scale Scale species to unit variance (like correlations).
na.action Handling of missing values in constraints or conditions. The default (na.fail)

is to stop with missing value. Choice na.omit removes all rows with missing
values. Choice na.exclude keeps all observations but gives NA for results that
cannot be calculated. The WA scores of rows may be found also for missing
values in constraints. Missing values are never allowed in dependent community
data.
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subset Subset of data rows. This can be a logical vector which is TRUE for kept ob-
servations, or a logical expression which can contain variables in the working
environment, data or species names of the community data.

... Other arguments for print or plot functions (ignored in other functions).

Details

Since their introduction (ter Braak 1986), constrained, or canonical, correspondence analysis and
its spin-off, redundancy analysis, have been the most popular ordination methods in community
ecology. Functions cca and rda are similar to popular proprietary software Canoco, although the
implementation is completely different. The functions are based on Legendre & Legendre’s (2012)
algorithm: in cca Chi-square transformed data matrix is subjected to weighted linear regression on
constraining variables, and the fitted values are submitted to correspondence analysis performed via
singular value decomposition (svd). Function rda is similar, but uses ordinary, unweighted linear
regression and unweighted SVD. Legendre & Legendre (2012), Table 11.5 (p. 650) give a skeleton
of the RDA algorithm of vegan. The algorithm of CCA is similar, but involves standardization by
row and column weights.

The functions can be called either with matrix-like entries for community data and constraints, or
with formula interface. In general, the formula interface is preferred, because it allows a better
control of the model and allows factor constraints.

In the following sections, X, Y and Z, although referred to as matrices, are more commonly data
frames.

In the matrix interface, the community data matrix X must be given, but the other data matrices
may be omitted, and the corresponding stage of analysis is skipped. If matrix Z is supplied, its
effects are removed from the community matrix, and the residual matrix is submitted to the next
stage. This is called ‘partial’ correspondence or redundancy analysis. If matrix Y is supplied, it
is used to constrain the ordination, resulting in constrained or canonical correspondence analysis,
or redundancy analysis. Finally, the residual is submitted to ordinary correspondence analysis (or
principal components analysis). If both matrices Z and Y are missing, the data matrix is analysed by
ordinary correspondence analysis (or principal components analysis).

Instead of separate matrices, the model can be defined using a model formula. The left hand side
must be the community data matrix (X). The right hand side defines the constraining model. The
constraints can contain ordered or unordered factors, interactions among variables and functions
of variables. The defined contrasts are honoured in factor variables. The constraints can also
be matrices (but not data frames). The formula can include a special term Condition for condi-
tioning variables (“covariables”) “partialled out” before analysis. So the following commands are
equivalent: cca(X, Y, Z), cca(X ~ Y + Condition(Z)), where Y and Z refer to constraints and
conditions matrices respectively.

Constrained correspondence analysis is indeed a constrained method: CCA does not try to display
all variation in the data, but only the part that can be explained by the used constraints. Conse-
quently, the results are strongly dependent on the set of constraints and their transformations or
interactions among the constraints. The shotgun method is to use all environmental variables as
constraints. However, such exploratory problems are better analysed with unconstrained meth-
ods such as correspondence analysis (decorana, corresp) or non-metric multidimensional scaling
(metaMDS) and environmental interpretation after analysis (envfit, ordisurf). CCA is a good
choice if the user has clear and strong a priori hypotheses on constraints and is not interested in the
major structure in the data set.
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CCA is able to correct the curve artefact commonly found in correspondence analysis by forcing
the configuration into linear constraints. However, the curve artefact can be avoided only with a
low number of constraints that do not have a curvilinear relation with each other. The curve can
reappear even with two badly chosen constraints or a single factor. Although the formula interface
makes easy to include polynomial or interaction terms, such terms often produce curved artefacts
(that are difficult to interpret), these should probably be avoided.

According to folklore, rda should be used with “short gradients” rather than cca. However, this
is not based on research which finds methods based on Euclidean metric as uniformly weaker than
those based on Chi-squared metric. However, standardized Euclidean distance may be an appropri-
ate measures (see Hellinger standardization in decostand in particular).

Partial CCA (pCCA; or alternatively partial RDA) can be used to remove the effect of some condi-
tioning or “background” or “random” variables or “covariables” before CCA proper. In fact, pCCA
compares models cca(X ~ Z) and cca(X ~ Y + Z) and attributes their difference to the effect of
Y cleansed of the effect of Z. Some people have used the method for extracting “components of
variance” in CCA. However, if the effect of variables together is stronger than sum of both sepa-
rately, this can increase total Chi-square after “partialling out” some variation, and give negative
“components of variance”. In general, such components of “variance” are not to be trusted due to
interactions between two sets of variables.

The functions have summary and plot methods which are documented separately (see plot.cca,
summary.cca).

Value

Function cca returns a huge object of class cca, which is described separately in cca.object.

Function rda returns an object of class rda which inherits from class cca and is described in
cca.object. The scaling used in rda scores is described in a separate vignette with this pack-
age.

Author(s)

The responsible author was Jari Oksanen, but the code borrows heavily from Dave Roberts (http:
//labdsv.nr.usu.edu/).

References

The original method was by ter Braak, but the current implementations follows Legendre and Leg-
endre.

Legendre, P. and Legendre, L. (2012) Numerical Ecology. 3rd English ed. Elsevier.

McCune, B. (1997) Influence of noisy environmental data on canonical correspondence analysis.
Ecology 78, 2617-2623.

Palmer, M. W. (1993) Putting things in even better order: The advantages of canonical correspon-
dence analysis. Ecology 74,2215-2230.

Ter Braak, C. J. F. (1986) Canonical Correspondence Analysis: a new eigenvector technique for
multivariate direct gradient analysis. Ecology 67, 1167-1179.
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See Also

This help page describes two constrained ordination functions, cca and rda. A related method,
distance-based redundancy analysis (dbRDA) is described separately (capscale). All these func-
tions return similar objects (described in cca.object). There are numerous support functions that
can be used to access the result object. In the list below, functions of type cca will handle all three
constrained ordination objects, and functions of rda only handle rda and capscale results.

The main plotting functions are plot.cca for all methods, and biplot.rda for RDA and dbRDA.
However, generic vegan plotting functions can also handle the results. The scores can be accessed
and scaled with scores.cca, and summarized with summary.cca. The eigenvalues can be accessed
with eigenvals.cca and the regression coefficients for constraints with coef.cca. The eigenval-
ues can be plotted with screeplot.cca, and the (adjusted)R2 can be found with RsquareAdj.rda.
The scores can be also calculated for new data sets with predict.cca which allows adding points to
ordinations. The values of constraints can be inferred from ordination and community composition
with calibrate.cca.

Diagnostic statistics can be found with goodness.cca, inertcomp, spenvcor, intersetcor, tolerance.cca,
and vif.cca. Function as.mlm.cca refits the result object as a multiple lm object, and this allows
finding influence statistics (lm.influence, cooks.distance etc.).

Permutation based signficance for the overall model, single constraining variables or axes can
be found with anova.cca. Automatic model building with R step function is possible with
deviance.cca, add1.cca and drop1.cca. Functions ordistep and ordiR2step (for RDA) are
special functions for constrained ordination. Randomized data sets can be generated with simulate.cca.

Separate methods based on constrained ordination model are principal response curves (prc) and
variance partioning between several components (varpart).

Design decisions are explained in vignette ‘decision-vegan’ which also can be accessed with
vegandocs.

Package ade4 provides alternative constrained ordination functions cca and pcaiv.

Examples

data(varespec)
data(varechem)
## Common but bad way: use all variables you happen to have in your
## environmental data matrix
vare.cca <- cca(varespec, varechem)
vare.cca
plot(vare.cca)
## Formula interface and a better model
vare.cca <- cca(varespec ~ Al + P*(K + Baresoil), data=varechem)
vare.cca
plot(vare.cca)
## ‘Partialling out’ and ‘negative components of variance’
cca(varespec ~ Ca, varechem)
cca(varespec ~ Ca + Condition(pH), varechem)
## RDA
data(dune)
data(dune.env)
dune.Manure <- rda(dune ~ Manure, dune.env)
plot(dune.Manure)
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## For further documentation:
## Not run:
vegandocs("decision")

## End(Not run)

cca.object Result Object from Constrained Ordination with cca, rda or capscale

Description

Ordination methods cca, rda and capscale return similar result objects. Function capscale
inherits from rda and rda inherits from cca. This inheritance structure is due to historic rea-
sons: cca was the first of these implemented in vegan. Hence the nomenclature in cca.object
reflects cca. This help page describes the internal structure of the cca object for programmers.

Value

A cca object has the following elements:

call the function call.
colsum, rowsum, rowsum.excluded

Column and row sums in cca. In rda, item colsum contains standard deviations
of species and rowsum is NA. If some data were removed in na.action, the row
sums of excluded observations are in item rowsum.excluded in cca (but not in
rda). The rowsum.excluded add to the total (one) of rowsum.

grand.total Grand total of community data in cca and NA in rda.

inertia Text used as the name of inertia.

method Text used as the name of the ordination method.

terms The terms component of the formula. This is missing if the ordination was not
called with formula.

terminfo Further information on terms with three subitems: terms which is like the terms
component above, but lists conditions and constraints similarly; xlev which lists
the factor levels, and ordered which is TRUE to ordered factors. This is produced
by vegan internal function ordiTerminfo, and it is needed in predict.cca with
newdata. This is missing if the ordination was not called with formula.

tot.chi Total inertia or the sum of all eigenvalues.

na.action The result of na.action if missing values in constraints were handled by na.omit
or na.exclude (or NULL if there were no missing values). This is a vector of in-
dices of missing value rows in the original data and a class of the action, usually
either "omit" or "exclude".

pCCA, CCA, CA Actual ordination results for conditioned (partial), constrained and unconstrained
components of the model. If constraints or conditions are not given, the corre-
sponding components CCA and pCCA are NULL. If they are specified but have zero
rank and zero eigenvalue (e.g., due to aliasing), they have a standard structure
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like described below, but the result scores have zero columns, but the correct
number of rows. The residual component is never NULL, and if there is no resid-
ual variation (like in overdefined model), its scores have zero columns. The
standard print command does not show NULL components, but it prints zeros
for zeroed components. Items pCCA, CCA and CA contain following items:

alias The names of the aliased constraints or conditions. Function alias.cca
does not access this item directly, but it finds the aliased variables and their
defining equations from the QR item.

biplot Biplot scores of constraints. Only in CCA.
centroids (Weighted) centroids of factor levels of constraints. Only in CCA.

Missing if the ordination was not called with formula.
eig Eigenvalues of axes. In CCA and CA.
envcentre (Weighted) means of the original constraining or conditioning vari-

ables. In pCCA and in CCA.
Fit The fitted values of standardized data matrix after fitting conditions. Only

in pCCA.
QR The QR decomposition of explanatory variables as produced by qr. The

constrained ordination algorithm is based on QR decomposition of con-
straints and conditions (environmental data). The environmental data are
first centred in rda or weighted and centred in cca. The QR decomposi-
tion is used in many functions that access cca results, and it can be used
to find many items that are not directly stored in the object. For exam-
ples, see coef.cca, coef.rda, vif.cca, permutest.cca, predict.cca,
predict.rda, calibrate.cca. For possible uses of this component, see
qr. In pCCA and CCA.

rank The rank of the ordination component.
qrank The rank of the constraints which is the difference of the ranks of QR

decompositions in pCCA and CCA components. Only in CCA.
tot.chi Total inertia or the sum of all eigenvalues of the component.
imaginary.chi, imaginary.rank The sum and rank (number) of negative eigen-

values in capscale. Only in CA and only if negative eigenvalues were found
in capscale.

u (Weighted) orthonormal site scores. Please note that scaled scores are not
stored in the cca object, but they are made when the object is accessed
with functions like scores.cca, summary.cca or plot.cca, or their rda
variants. Only in CCA and CA. In the CCA component these are the so-called
linear combination scores.

u.eig u scaled by eigenvalues. There is no guarantee that any .eig variants of
scores will be kept in the future releases.

v (Weighted) orthonormal species scores. If missing species were omitted from
the analysis, this will contain attribute na.action that lists the omitted
species. Only in CCA and CA.

v.eig v weighted by eigenvalues.
wa Site scores found as weighted averages (cca) or weighted sums (rda) of

v with weights Xbar, but the multiplying effect of eigenvalues removed.
These often are known as WA scores in cca. Only in CCA.
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wa.eig The direct result of weighted averaging or weighted summation (matrix
multiplication) with the resulting eigenvalue inflation.

wa.excluded, u.excluded WA scores for rows removed by na.action = na.exclude
in CCA and CA components if these could be calculated.

Xbar The standardized data matrix after previous stages of analysis. In CCA this
is after possible pCCA or after partialling out the effects of conditions, and
in CA after both pCCA and CCA. In cca the standardization is Chi-square, and
in rda centring and optional scaling by species standard deviations using
function scale.

NA Action and Subset

If the constraints had missing values or subsets, and na.action was set to na.exclude or na.omit,
the result will have some extra items:

subset subset evaluated as a logical vector (TRUE for included cases).

na.action The object returned by na.action which is a named vector of indices of removed
items. The class of the vector is either "omit" or "exclude" as set by na.action. The
na.action is applied after subset so that the indices refer to the subset data.

residuals.zombie A zombie vector of the length of number of rows in the residual ordination.
R versions before 2.13.0 may use this vector to find the number of valid observations, and it
is provided for their use although this is useless in R 2.13.0 and in vegan. Currently R uses
nobs.cca to find the number of observations.

rowsum.excluded Row sums of removed observations. Only in cca.

CCA$wa.excluded The WA scores for sites (found from community data) in constrained ordination
if na.action was na.exclude and the scores could be calculated. The scores cannot be found
for capscale and in partial ordination.

CA$u.excluded Row scores for sites in unconstrained ordination with identical conditions as above.

capscale

Function capscale may add some items depending on its arguments:

metaMDSdist The data set name if metaMDSdist = TRUE.

ac Additive constant used if add = TRUE.

adjust Adjustment of dissimilarities: see capscale, section “Notes”.

Author(s)

Jari Oksanen

References

Legendre, P. and Legendre, L. (2012) Numerical Ecology. 3rd English ed. Elsevier.
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See Also

The description here provides a hacker’s interface. User level functions for further analysis and han-
dling of cca objects are described in this section in cca. Also for a hacker interface, it may be better
to use following low level functions to access the results: scores.cca (which also scales results),
predict.cca (which can also use newdata), fitted.cca, residuals.cca, alias.cca, coef.cca,
model.frame.cca, model.matrix.cca, deviance.cca, eigenvals.cca, RsquareAdj.cca, weights.cca,
nobs.cca, or rda variants of these functions. You can use as.mlm to cast a cca.object into re-
sult of multiple response linear model (lm) in order to more easily find some statistics (which in
principle could be directly found from the cca object as well).

This section in cca gives a more complete list of methods to handle the constrained ordination result
object.

Examples

# Some species will be missing in the analysis, because only a subset
# of sites is used below.
data(dune)
data(dune.env)
mod <- cca(dune[1:15,] ~ ., dune.env[1:15,])
# Look at the names of missing species
attr(mod$CCA$v, "na.action")
# Look at the names of the aliased variables:
mod$CCA$alias
# Access directly constrained weighted orthonormal species and site
# scores, constrained eigenvalues and margin sums.
spec <- mod$CCA$v
sites <- mod$CCA$u
eig <- mod$CCA$eig
rsum <- mod$rowsum
csum <- mod$colsum

CCorA Canonical Correlation Analysis

Description

Canonical correlation analysis, following Brian McArdle’s unpublished graduate course notes, plus
improvements to allow the calculations in the case of very sparse and collinear matrices, and per-
mutation test of Pillai’s trace statistic.

Usage

CCorA(Y, X, stand.Y=FALSE, stand.X=FALSE, nperm = 0, ...)

## S3 method for class ’CCorA’
biplot(x, plot.type="ov", xlabs, plot.axes = 1:2, int=0.5,

col.Y="red", col.X="blue", cex=c(0.7,0.9), ...)
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Arguments

Y Left matrix (object class: matrix or data.frame).

X Right matrix (object class: matrix or data.frame).

stand.Y Logical; should Y be standardized?

stand.X Logical; should X be standardized?

nperm Numeric; number of permutations to evaluate the significance of Pillai’s trace,
e.g. nperm=99 or nperm=999.

x CCoaR result object.

plot.type A character string indicating which of the following plots should be produced:
"objects", "variables", "ov" (separate graphs for objects and variables), or
"biplots". Any unambiguous subset containing the first letters of these names
can be used instead of the full names.

xlabs Row labels. The default is to use row names, NULL uses row numbers instead,
and NA suppresses plotting row names completely.

plot.axes A vector with 2 values containing the order numbers of the canonical axes to be
plotted. Default: first two axes.

int Radius of the inner circles plotted as visual references in the plots of the vari-
ables. Default: int=0.5. With int=0, no inner circle is plotted.

col.Y Color used for objects and variables in the first data table (Y) plots. In biplots,
the objects are in black.

col.X Color used for objects and variables in the second data table (X) plots.

cex A vector with 2 values containing the size reduction factors for the object and
variable names, respectively, in the plots. Default values: cex=c(0.7,0.9).

... Other arguments passed to these functions. The function biplot.CCorA passes
graphical arguments to biplot and biplot.default. CCorA currently ignores
extra arguments.

Details

Canonical correlation analysis (Hotelling 1936) seeks linear combinations of the variables of Y that
are maximally correlated to linear combinations of the variables of X. The analysis estimates the re-
lationships and displays them in graphs. Pillai’s trace statistic is computed and tested parametrically
(F-test); a permutation test is also available.

Algorithmic note – The blunt approach would be to read the two matrices, compute the covari-
ance matrices, then the matrix S12 %*% inv(S22) %*% t(S12) %*% inv(S11). Its trace is Pil-
lai’s trace statistic. This approach may fail, however, when there is heavy multicollinearity in very
sparse data matrices. The safe approach is to replace all data matrices by their PCA object scores.

The function can produce different types of plots depending on the option chosen: "objects"
produces two plots of the objects, one in the space of Y, the second in the space of X; "variables"
produces two plots of the variables, one of the variables of Y in the space of Y, the second of
the variables of X in the space of X; "ov" produces four plots, two of the objects and two of the
variables; "biplots" produces two biplots, one for the first matrix (Y) and one for second matrix
(X) solutions. For biplots, the function passes all arguments to biplot.default; consult its help
page for configuring biplots.
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Value

Function CCorA returns a list containing the following elements:

Pillai Pillai’s trace statistic = sum of the canonical eigenvalues.

Eigenvalues Canonical eigenvalues. They are the squares of the canonical correlations.

CanCorr Canonical correlations.

Mat.ranks Ranks of matrices Y and X.

RDA.Rsquares Bimultivariate redundancy coefficients (R-squares) of RDAs of Y|X and X|Y.

RDA.adj.Rsq RDA.Rsquares adjusted for n and the number of explanatory variables.

nperm Number of permutations.

p.Pillai Parametric probability value associated with Pillai’s trace.

p.perm Permutational probability associated with Pillai’s trace.

Cy Object scores in Y biplot.

Cx Object scores in X biplot.

corr.Y.Cy Scores of Y variables in Y biplot, computed as cor(Y,Cy).

corr.X.Cx Scores of X variables in X biplot, computed as cor(X,Cx).

corr.Y.Cx cor(Y,Cy) available for plotting variables Y in space of X manually.

corr.X.Cy cor(X,Cx) available for plotting variables X in space of Y manually.

call Call to the CCorA function.

Author(s)

Pierre Legendre, Departement de Sciences Biologiques, Universite de Montreal. Implemented in
vegan with the help of Jari Oksanen.

References

Hotelling, H. 1936. Relations between two sets of variates. Biometrika 28: 321-377.

Legendre, P. 2005. Species associations: the Kendall coefficient of concordance revisited. Journal
of Agricultural, Biological, and Environmental Statistics 10: 226-245.

Examples

# Example using two mite groups. The mite data are available in vegan
data(mite)
# Two mite species associations (Legendre 2005, Fig. 4)
group.1 <- c(1,2,4:8,10:15,17,19:22,24,26:30)
group.2 <- c(3,9,16,18,23,25,31:35)
# Separate Hellinger transformations of the two groups of species
mite.hel.1 <- decostand(mite[,group.1], "hel")
mite.hel.2 <- decostand(mite[,group.2], "hel")
rownames(mite.hel.1) = paste("S",1:nrow(mite),sep="")
rownames(mite.hel.2) = paste("S",1:nrow(mite),sep="")
out <- CCorA(mite.hel.1, mite.hel.2)
out
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biplot(out, "ob") # Two plots of objects
biplot(out, "v", cex=c(0.7,0.6)) # Two plots of variables
biplot(out, "ov", cex=c(0.7,0.6)) # Four plots (2 for objects, 2 for variables)
biplot(out, "b", cex=c(0.7,0.6)) # Two biplots
biplot(out, xlabs = NA, plot.axes = c(3,5)) # Plot axes 3, 5. No object names
biplot(out, plot.type="biplots", xlabs = NULL) # Replace object names by numbers

# Example using random numbers. No significant relationship is expected
mat1 <- matrix(rnorm(60),20,3)
mat2 <- matrix(rnorm(100),20,5)
out2 = CCorA(mat1, mat2, nperm=99)
out2
biplot(out2, "b")

clamtest Multinomial Species Classification Method (CLAM)

Description

The CLAM statistical approach for classifying generalists and specialists in two distinct habitats is
described in Chazdon et al. (2011).

Usage

clamtest(comm, groups, coverage.limit = 10, specialization = 2/3,
npoints = 20, alpha = 0.05/20)

## S3 method for class ’clamtest’
summary(object, ...)
## S3 method for class ’clamtest’
plot(x, xlab, ylab, main, pch = 21:24, col.points = 1:4,

col.lines = 2:4, lty = 1:3, position = "bottomright", ...)

Arguments

comm Community matrix, consisting of counts.

groups A vector identifying the two habitats. Must have exactly two unique values or
levels. Habitat IDs in the grouping vector must match corresponding rows in the
community matrix comm.

coverage.limit Integer, below this limit the sample coverage based correction is applied to
rare species. Sample coverage is calculated separately for the two habitats.
Sample relative abundances are used for species with higher than or equal to
coverage.limit total counts per habitat.

specialization Numeric, specialization threshold value between 0 and 1. The value of 2/3 rep-
resents ‘supermajority’ rule, while a value of 1/2 represents a ‘simple majority’
rule to assign shared species as habitat specialists.

npoints Integer, number of points used to determine the boundary lines in the plots.
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alpha Numeric, nominal significance level for individual tests. The default value re-
duces the conventional limit of 0.05 to account for overdispersion and multiple
testing for several species simultaneously. However, the is no firm reason for
exactly this limit.

x, object Fitted model object of class "clamtest".

xlab, ylab Labels for the plot axes.

main Main title of the plot.
pch, col.points

Symbols and colors used in plotting species groups.

lty, col.lines Line types and colors for boundary lines in plot to separate species groups.

position Position of figure legend, see legend for specification details. Legend not shown
if position = NULL.

... Additional arguments passed to methods.

Details

The method uses a multinomial model based on estimated species relative abundance in two habitats
(A, B). It minimizes bias due to differences in sampling intensities between two habitat types as
well as bias due to insufficient sampling within each habitat. The method permits a robust statistical
classification of habitat specialists and generalists, without excluding rare species a priori (Chazdon
et al. 2011). Based on a user-defined specialization threshold, the model classifies species into
one of four groups: (1) generalists; (2) habitat A specialists; (3) habitat B specialists; and (4) too
rare to classify with confidence.

Value

A data frame (with class attribute "clamtest"), with columns:

• Species: species name (column names from comm),

• Total_*A*: total count in habitat A,

• Total_*B*: total count in habitat B,

• Classes: species classification, a factor with levels Generalist, Specialist_*A*, Specialist_*B*,
and Too_rare.

*A* and *B* are placeholders for habitat names/labels found in the data.

The summary method returns descriptive statistics of the results. The plot method returns values in-
visibly and produces a bivariate scatterplot of species total abundances in the two habitats. Symbols
and boundary lines are shown for species groups.

Note

The code was tested against standalone CLAM software provided on the website of Anne Chao
(http://chao.stat.nthu.edu.tw/softwarece.html); minor inconsistencies were found, espe-
cially for finding the threshold for ’too rare’ species. These inconsistencies are probably due to
numerical differences between the two implementation. The current R implementation uses root
finding for iso-lines instead of iterative search.

The original method (Chazdon et al. 2011) has two major problems:

http://chao.stat.nthu.edu.tw/softwarece.html
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1. It assumes that the error distribution is multinomial. This is a justified choice if individuals
are freely distributed, and there is no over-dispersion or clustering of individuals. In most
ecological data, the variance is much higher than multinomial assumption, and therefore test
statistic are too optimistic.

2. The original authors suggest that multiple testing adjustment for multiple testing should be
based on the number of points (npoints) used to draw the critical lines on the plot, whereas
the adjustment should be based on the number tests (i.e, tested species). The function uses
the same numerical values as the original paper, but there is no automatic connection between
npoints and alpha arguments, but you must work out the adjustment yourself.

Author(s)

Peter Solymos <solymos@ualberta.ca>

References

Chazdon, R. L., Chao, A., Colwell, R. K., Lin, S.-Y., Norden, N., Letcher, S. G., Clark, D. B.,
Finegan, B. and Arroyo J. P.(2011). A novel statistical method for classifying habitat generalists
and specialists. Ecology 92, 1332–1343.

Examples

data(mite)
data(mite.env)
sol <- clamtest(mite, mite.env$Shrub=="None", alpha=0.005)
summary(sol)
head(sol)
plot(sol)

contribdiv Contribution Diversity Approach

Description

The contribution diversity approach is based in the differentiation of within-unit and among-unit
diversity by using additive diversity partitioning and unit distinctiveness.

Usage

contribdiv(comm, index = c("richness", "simpson"),
relative = FALSE, scaled = TRUE, drop.zero = FALSE)

## S3 method for class ’contribdiv’
plot(x, sub, xlab, ylab, ylim, col, ...)
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Arguments

comm The community data matrix with samples as rows and species as column.

index Character, the diversity index to be calculated.

relative Logical, if TRUE then contribution diversity values are expressed as their signed
deviation from their mean. See details.

scaled Logical, if TRUE then relative contribution diversity values are scaled by the sum
of gamma values (if index = "richness") or by sum of gamma values times
the number of rows in comm (if index = "simpson"). See details.

drop.zero Logical, should empty rows dropped from the result? If empty rows are not
dropped, their corresponding results will be NAs.

x An object of class "contribdiv".

sub, xlab, ylab, ylim, col

Graphical arguments passed to plot.

... Other arguments passed to plot.

Details

This approach was proposed by Lu et al. (2007). Additive diversity partitioning (see adipart for
more references) deals with the relation of mean alpha and the total (gamma) diversity. Although
alpha diversity values often vary considerably. Thus, contributions of the sites to the total diversity
are uneven. This site specific contribution is measured by contribution diversity components. A
unit that has e.g. many unique species will contribute more to the higher level (gamma) diversity
than another unit with the same number of species, but all of which common.

Distinctiveness of species j can be defined as the number of sites where it occurs (nj), or the sum
of its relative frequencies (pj). Relative frequencies are computed sitewise and sumjpijs at site i
sum up to 1.

The contribution of site i to the total diversity is given by alphai = sumj(1/nij) when dealing
with richness and alphai = sum(pij ∗ (1− pij)) for the Simpson index.

The unit distinctiveness of site i is the average of the species distinctiveness, averaging only those
species which occur at site i. For species richness: alphai = mean(ni) (in the paper, the second
equation contains a typo, n is without index). For the Simpson index: alphai = mean(ni).

The Lu et al. (2007) gives an in-depth description of the different indices.

Value

An object of class "contribdiv" in heriting from data frame.

Returned values are alpha, beta and gamma components for each sites (rows) of the community
matrix. The "diff.coef" attribute gives the differentiation coefficient (see Examples).

Author(s)

Péter Sólymos, <solymos@ualberta.ca>
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References

Lu, H. P., Wagner, H. H. and Chen, X. Y. 2007. A contribution diversity approach to evaluate
species diversity. Basic and Applied Ecology, 8, 1–12.

See Also

adipart, diversity

Examples

## Artificial example given in
## Table 2 in Lu et al. 2007
x <- matrix(c(
1/3,1/3,1/3,0,0,0,
0,0,1/3,1/3,1/3,0,
0,0,0,1/3,1/3,1/3),
3, 6, byrow = TRUE,
dimnames = list(LETTERS[1:3],letters[1:6]))
x
## Compare results with Table 2
contribdiv(x, "richness")
contribdiv(x, "simpson")
## Relative contribution (C values), compare with Table 2
(cd1 <- contribdiv(x, "richness", relative = TRUE, scaled = FALSE))
(cd2 <- contribdiv(x, "simpson", relative = TRUE, scaled = FALSE))
## Differentiation coefficients
attr(cd1, "diff.coef") # D_ST
attr(cd2, "diff.coef") # D_DT
## BCI data set
data(BCI)
opar <- par(mfrow=c(2,2))
plot(contribdiv(BCI, "richness"), main = "Absolute")
plot(contribdiv(BCI, "richness", relative = TRUE), main = "Relative")
plot(contribdiv(BCI, "simpson"))
plot(contribdiv(BCI, "simpson", relative = TRUE))
par(opar)

decorana Detrended Correspondence Analysis and Basic Reciprocal Averaging

Description

Performs detrended correspondence analysis and basic reciprocal averaging or orthogonal corre-
spondence analysis.
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Usage

decorana(veg, iweigh=0, iresc=4, ira=0, mk=26, short=0,
before=NULL, after=NULL)

## S3 method for class ’decorana’
plot(x, choices=c(1,2), origin=TRUE,

display=c("both","sites","species","none"),
cex = 0.8, cols = c(1,2), type, xlim, ylim, ...)

## S3 method for class ’decorana’
text(x, display = c("sites", "species"), labels,

choices = 1:2, origin = TRUE, select, ...)

## S3 method for class ’decorana’
points(x, display = c("sites", "species"),

choices=1:2, origin = TRUE, select, ...)

## S3 method for class ’decorana’
summary(object, digits=3, origin=TRUE,

display=c("both", "species","sites","none"), ...)

## S3 method for class ’summary.decorana’
print(x, head = NA, tail = head, ...)

downweight(veg, fraction = 5)

## S3 method for class ’decorana’
scores(x, display=c("sites","species"), choices=1:4,

origin=TRUE, ...)

Arguments

veg Community data, a matrix-like object.

iweigh Downweighting of rare species (0: no).

iresc Number of rescaling cycles (0: no rescaling).

ira Type of analysis (0: detrended, 1: basic reciprocal averaging).

mk Number of segments in rescaling.

short Shortest gradient to be rescaled.

before Hill’s piecewise transformation: values before transformation.

after Hill’s piecewise transformation: values after transformation – these must corre-
spond to values in before.

x, object A decorana result object.

choices Axes shown.

origin Use true origin even in detrended correspondence analysis.

display Display only sites, only species, both or neither.
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cex Plot character size.

cols Colours used for sites and species.

type Type of plots, partial match to "text", "points" or "none".

labels Optional text to be used instead of row names.

select Items to be displayed. This can either be a logical vector which is TRUE for
displayed items or a vector of indices of displayed items.

xlim, ylim the x and y limits (min,max) of the plot.

digits Number of digits in summary output.

head, tail Number of rows printed from the head and tail of species and site scores. Default
NA prints all.

fraction Abundance fraction where downweighting begins.

... Other arguments for plot function.

Details

In late 1970s, correspondence analysis became the method of choice for ordination in vegetation
science, since it seemed better able to cope with non-linear species responses than principal compo-
nents analysis. However, even correspondence analysis can produce an arc-shaped configuration of
a single gradient. Mark Hill developed detrended correspondence analysis to correct two assumed
‘faults’ in correspondence analysis: curvature of straight gradients and packing of sites at the ends
of the gradient.

The curvature is removed by replacing the orthogonalization of axes with detrending. In orthog-
onalization successive axes are made non-correlated, but detrending should remove all systematic
dependence between axes. Detrending is performed using a five-segment smoothing window with
weights (1,2,3,2,1) on mk segments — which indeed is more robust than the suggested alternative
of detrending by polynomials. The packing of sites at the ends of the gradient is undone by rescal-
ing the axes after extraction. After rescaling, the axis is supposed to be scaled by ‘SD’ units, so
that the average width of Gaussian species responses is supposed to be one over whole axis. Other
innovations were the piecewise linear transformation of species abundances and downweighting of
rare species which were regarded to have an unduly high influence on ordination axes.

It seems that detrending actually works by twisting the ordination space, so that the results look
non-curved in two-dimensional projections (‘lolly paper effect’). As a result, the points usually
have an easily recognized triangular or diamond shaped pattern, obviously an artefact of detrend-
ing. Rescaling works differently than commonly presented, too. decorana does not use, or even
evaluate, the widths of species responses. Instead, it tries to equalize the weighted variance of
species scores on axis segments (parameter mk has only a small effect, since decorana finds the
segment number from the current estimate of axis length). This equalizes response widths only
for the idealized species packing model, where all species initially have unit width responses and
equally spaced modes.

The summary method prints the ordination scores, possible prior weights used in downweighting,
and the marginal totals after applying these weights. The plot method plots species and site scores.
Classical decorana scaled the axes so that smallest site score was 0 (and smallest species score was
negative), but summary, plot and scores use the true origin, unless origin = FALSE.

In addition to proper eigenvalues, the function also reports ‘decorana values’ in detrended analysis.
These ‘decorana values’ are the values that the legacy code of decorana returns as ‘eigenvalues’.
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They are estimated internally during iteration, and it seems that detrending interferes the estimation
so that these values are generally too low and have unclear interpretation. Moreover, ‘decorana
values’ are estimated before rescaling which will change the eigenvalues. The proper eigenvalues
are estimated after extraction of the axes and they are the ratio of biased weighted variances of site
and species scores even in detrended and rescaled solutions. The ‘decorana values’ are provided
only for the compatibility with legacy software, and they should not be used.

Value

decorana returns an object of class "decorana", which has print, summary and plot methods.

Note

decorana uses the central numerical engine of the original Fortran code (which is in the public
domain), or about 1/3 of the original program. I have tried to implement the original behaviour,
although a great part of preparatory steps were written in R language, and may differ somewhat
from the original code. However, well-known bugs are corrected and strict criteria used (Oksanen
& Minchin 1997).

Please note that there really is no need for piecewise transformation or even downweighting within
decorana, since there are more powerful and extensive alternatives in R, but these options are
included for compliance with the original software. If a different fraction of abundance is needed
in downweighting, function downweight must be applied before decorana. Function downweight
indeed can be applied prior to correspondence analysis, and so it can be used together with cca, too.

The function finds only four axes: this is not easily changed.

Author(s)

Mark O. Hill wrote the original Fortran code, the R port was by Jari Oksanen.

References

Hill, M.O. and Gauch, H.G. (1980). Detrended correspondence analysis: an improved ordination
technique. Vegetatio 42, 47–58.

Oksanen, J. and Minchin, P.R. (1997). Instability of ordination results under changes in input data
order: explanations and remedies. Journal of Vegetation Science 8, 447–454.

See Also

For unconstrained ordination, non-metric multidimensional scaling in monoMDS may be more robust
(see also metaMDS). Constrained (or ‘canonical’) correspondence analysis can be made with cca.
Orthogonal correspondence analysis can be made with corresp, or with decorana or cca, but
the scaling of results vary (and the one in decorana corresponds to scaling = -1 in cca.). See
predict.decorana for adding new points to an ordination.

Examples

data(varespec)
vare.dca <- decorana(varespec)
vare.dca



decostand 61

summary(vare.dca)
plot(vare.dca)

### the detrending rationale:
gaussresp <- function(x,u) exp(-(x-u)^2/2)
x <- seq(0,6,length=15) ## The gradient
u <- seq(-2,8,len=23) ## The optima
pack <- outer(x,u,gaussresp)
matplot(x, pack, type="l", main="Species packing")
opar <- par(mfrow=c(2,2))
plot(scores(prcomp(pack)), asp=1, type="b", main="PCA")
plot(scores(decorana(pack, ira=1)), asp=1, type="b", main="CA")
plot(scores(decorana(pack)), asp=1, type="b", main="DCA")
plot(scores(cca(pack ~ x), dis="sites"), asp=1, type="b", main="CCA")

### Let’s add some noise:
noisy <- (0.5 + runif(length(pack)))*pack
par(mfrow=c(2,1))
matplot(x, pack, type="l", main="Ideal model")
matplot(x, noisy, type="l", main="Noisy model")
par(mfrow=c(2,2))
plot(scores(prcomp(noisy)), type="b", main="PCA", asp=1)
plot(scores(decorana(noisy, ira=1)), type="b", main="CA", asp=1)
plot(scores(decorana(noisy)), type="b", main="DCA", asp=1)
plot(scores(cca(noisy ~ x), dis="sites"), asp=1, type="b", main="CCA")
par(opar)

decostand Standardization Methods for Community Ecology

Description

The function provides some popular (and effective) standardization methods for community ecolo-
gists.

Usage

decostand(x, method, MARGIN, range.global, logbase = 2, na.rm=FALSE, ...)

wisconsin(x)

Arguments

x Community data, a matrix-like object.

method Standardization method. See Details for available options.

MARGIN Margin, if default is not acceptable. 1 = rows, and 2 = columns of x.

range.global Matrix from which the range is found in method = "range". This allows using
same ranges across subsets of data. The dimensions of MARGIN must match with
x.
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logbase The logarithm base used in method = "log".

na.rm Ignore missing values in row or column standardizations.

... Other arguments to the function (ignored).

Details

The function offers following standardization methods for community data:

• total: divide by margin total (default MARGIN = 1).

• max: divide by margin maximum (default MARGIN = 2).

• freq: divide by margin maximum and multiply by the number of non-zero items, so that the
average of non-zero entries is one (Oksanen 1983; default MARGIN = 2).

• normalize: make margin sum of squares equal to one (default MARGIN = 1).

• range: standardize values into range 0 . . . 1 (default MARGIN = 2). If all values are constant,
they will be transformed to 0.

• standardize: scale x to zero mean and unit variance (default MARGIN = 2).

• pa: scale x to presence/absence scale (0/1).

• chi.square: divide by row sums and square root of column sums, and adjust for square
root of matrix total (Legendre & Gallagher 2001). When used with the Euclidean distance,
the distances should be similar to the Chi-square distance used in correspondence analysis.
However, the results from cmdscale would still differ, since CA is a weighted ordination
method (default MARGIN = 1).

• hellinger: square root of method = "total" (Legendre & Gallagher 2001).

• log: logarithmic transformation as suggested by Anderson et al. (2006): logb(x) + 1 for
x > 0, where b is the base of the logarithm; zeros are left as zeros. Higher bases give less
weight to quantities and more to presences, and logbase = Inf gives the presence/absence
scaling. Please note this is not log(x + 1). Anderson et al. (2006) suggested this for their
(strongly) modified Gower distance (implemented as method = "altGower" in vegdist),
but the standardization can be used independently of distance indices.

Standardization, as contrasted to transformation, means that the entries are transformed relative to
other entries.

All methods have a default margin. MARGIN=1 means rows (sites in a normal data set) and MARGIN=2
means columns (species in a normal data set).

Command wisconsin is a shortcut to common Wisconsin double standardization where species
(MARGIN=2) are first standardized by maxima (max) and then sites (MARGIN=1) by site totals (tot).

Most standardization methods will give nonsense results with negative data entries that normally
should not occur in the community data. If there are empty sites or species (or constant with
method = "range"), many standardization will change these into NaN.

Value

Returns the standardized data frame, and adds an attribute "decostand" giving the name of applied
standardization "method".
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Note

Common transformations can be made with standard R functions.

Author(s)

Jari Oksanen and Etienne Laliberté (method = "log").

References

Anderson, M.J., Ellingsen, K.E. & McArdle, B.H. (2006) Multivariate dispersion as a measure of
beta diversity. Ecology Letters 9, 683–693.

Legendre, P. & Gallagher, E.D. (2001) Ecologically meaningful transformations for ordination of
species data. Oecologia 129, 271–280.

Oksanen, J. (1983) Ordination of boreal heath-like vegetation with principal component analysis,
correspondence analysis and multidimensional scaling. Vegetatio 52, 181–189.

Examples

data(varespec)
sptrans <- decostand(varespec, "max")
apply(sptrans, 2, max)
sptrans <- wisconsin(varespec)

## Chi-square: PCA similar but not identical to CA.
## Use wcmdscale for weighted analysis and identical results.
sptrans <- decostand(varespec, "chi.square")
plot(procrustes(rda(sptrans), cca(varespec)))

density.adonis Kernel Density Estimation for Permutation Results in Vegan

Description

The density functions can directly access the permutation results of vegan functions, and plot
can display the densities. The densityplot method can access and display the permutation results
of functions that return permutations of several statistics simultaneously.

Usage

## S3 method for class ’adonis’
density(x, ...)
## S3 method for class ’vegandensity’
plot(x, main = NULL, xlab = NULL, ylab = "Density",

type = "l", zero.line = TRUE, obs.line = TRUE, ...)
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Arguments

x The object to be handled. For density and densityplot this is an object con-
taining permutations. For plot this is a result of vegan density function.

main, xlab, ylab, type, zero.line

Arguments of plot.density and densityplot functions.

obs.line Draw vertical line for the observed statistic. Logical value TRUE draws a red
line, and FALSE draws nothing. Alternatively, obs.line can be a definition of
the colour used for the line, either as a numerical value from the palette or as
the name of the colour, or other normal definition of the colour.

... Other arguments passed to the function. In density these are passed to density.default.

Details

The density and densityplot function can directly access permutation results of most vegan
functions. The density function is identical to density.default and takes all its arguments, but
adds the observed statistic to the result as item "observed". The observed statistic is also put
among the permuted values so that the results are consistent with significance tests. The plot
method is similar to the default plot.density, but can also add the observed statistic to the graph
as a vertical line. The densityplot function is based on the same function in the lattice package
(see densityplot).

The density methods are available for vegan functions adonis, anosim, mantel, mantel.partial,
mrpp, permutest.cca, and protest. The density function for oecosimu is documented sepa-
rately, and it is also used for adipart, hiersimu and multipart.

All vegan density functions return an object of class "vegandensity" inheriting from density,
and can be plotted with its plot method. This is identical to the standard plot of densiy objects,
but can also add a vertical line for the observed statistic.

Functions that can return several permuted statistics simultaenously also have densityplot method
(adonis, oecosimu and diversity partioning functions based on oecosimu). The standard density
can only handle univariate data, and a warning is issued if the function is used for a model with
several observed statistics. The densityplot method is available for adonis and oecosimu (docu-
mented separately). NB, there is no density method for anova.cca, but only for permutest.cca.

Value

The density function returns the standard density result object with one new item: "observed"
for the observed value of the statistic. The functions have a specific plot method, but otherwise
they use methods for density.default, such as print and lines.

Author(s)

Jari Oksanen

See Also

density.default.
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Examples

data(dune)
data(dune.env)
mod <- adonis(dune ~ Management, data = dune.env)
plot(density(mod))
library(lattice)
mod <- adonis(dune ~ Management * Moisture, dune.env)
densityplot(mod)

designdist Design your own Dissimilarities

Description

You can define your own dissimilarities using terms for shared and total quantities, number of rows
and number of columns. The shared and total quantities can be binary, quadratic or minimum
terms. In binary terms, the shared component is number of shared species, and totals are numbers
of species on sites. The quadratic terms are cross-products and sums of squares, and minimum
terms are sums of parallel minima and row totals.

Usage

designdist(x, method = "(A+B-2*J)/(A+B)",
terms = c("binary", "quadratic", "minimum"),
abcd = FALSE, name)

Arguments

x Input data.

method Equation for your dissimilarities. This can use terms J for shared quantity, A and
B for totals, N for the number of rows (sites) and P for the number of columns
(species). The equation can also contain any R functions that accepts vector
arguments and returns vectors of the same length.

terms How shared and total components are found. For vectors x and y the "quadratic"
terms are J = sum(x*y), A = sum(x^2), B = sum(y^2), and "minimum" terms
are J = sum(pmin(x,y)), A = sum(x) and B = sum(y), and "binary" terms
are either of these after transforming data into binary form (shared number of
species, and number of species for each row).

abcd Use 2x2 contingency table notation for binary data: a is the number of shared
species, b and c are the numbers of species occurring only one of the sites but
not in both, and d is the number of species that occur on neither of the sites.

name The name you want to use for your index. The default is to combine the method
equation and terms argument.
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Details

Most popular dissimilarity measures in ecology can be expressed with the help of terms J, A and B,
and some also involve matrix dimensions N and P. Some examples you can define in designdist
are:

A+B-2*J "quadratic" squared Euclidean
A+B-2*J "minimum" Manhattan
(A+B-2*J)/(A+B) "minimum" Bray-Curtis
(A+B-2*J)/(A+B) "binary" Sørensen
(A+B-2*J)/(A+B-J) "binary" Jaccard
(A+B-2*J)/(A+B-J) "minimum" Ružička
(A+B-2*J)/(A+B-J) "quadratic" (dis)similarity ratio
1-J/sqrt(A*B) "binary" Ochiai
1-J/sqrt(A*B) "quadratic" cosine complement
1-phyper(J-1, A, P-A, B) "binary" Raup-Crick (but see raupcrick)

The function designdist can implement most dissimilarity indices in vegdist or elsewhere, and
it can also be used to implement many other indices, amongst them, most of those described in
Legendre & Legendre (2012). It can also be used to implement all indices of beta diversity described
in Koleff et al. (2003), but there also is a specific function betadiver for the purpose.

If you want to implement binary dissimilarities based on the 2x2 contingency table notation, you
can set abcd = TRUE. In this notation a = J, b = A-J, c = B-J, d = P-A-B+J. This notation is
often used instead of the more more tangible default notation for reasons that are opaque to me.

Value

designdist returns an object of class dist.

Note

designdist does not use compiled code, and may be slow or use plenty of memory in large data
sets. It is very easy to make errors when defining a function by hand. If an index is available in a
function using compiled code, it is better to use the canned alternative.

Author(s)

Jari Oksanen

References

Koleff, P., Gaston, K.J. and Lennon, J.J. (2003) Measuring beta diversity for presence–absence data.
J. Animal Ecol. 72, 367–382.

Legendre, P. and Legendre, L. (2012) Numerical Ecology. 3rd English ed. Elsevier

See Also

vegdist, betadiver, dist.
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Examples

## Arrhenius dissimilarity: the value of z in the species-area model
## S = c*A^z when combining two sites of equal areas, where S is the
## number of species, A is the area, and c and z are model parameters.
## The A below is not the area (which cancels out), but number of
## species in one of the sites, as defined in designdist().
data(BCI)
dis <- designdist(BCI, "(log(A+B-J)-log(A+B)+log(2))/log(2)")
## This can be used in clustering or ordination...
ordiplot(cmdscale(dis))
## ... or in analysing beta diversity (without gradients)
summary(dis)

deviance.cca Statistics Resembling Deviance and AIC for Constrained Ordination

Description

The functions extract statistics that resemble deviance and AIC from the result of constrained cor-
respondence analysis cca or redundancy analysis rda. These functions are rarely needed directly,
but they are called by step in automatic model building. Actually, cca and rda do not have AIC
and these functions are certainly wrong.

Usage

## S3 method for class ’cca’
deviance(object, ...)

## S3 method for class ’cca’
extractAIC(fit, scale = 0, k = 2, ...)

Arguments

object the result of a constrained ordination (cca or rda).

fit fitted model from constrained ordination.

scale optional numeric specifying the scale parameter of the model, see scale in
step.

k numeric specifying the "weight" of the equivalent degrees of freedom (=:edf)
part in the AIC formula.

... further arguments.



68 deviance.cca

Details

The functions find statistics that resemble deviance and AIC in constrained ordination. Actually,
constrained ordination methods do not have a log-Likelihood, which means that they cannot have
AIC and deviance. Therefore you should not use these functions, and if you use them, you should
not trust them. If you use these functions, it remains as your responsibility to check the adequacy
of the result.

The deviance of cca is equal to the Chi-square of the residual data matrix after fitting the constraints.
The deviance of rda is defined as the residual sum of squares. The deviance function of rda is also
used for capscale. Function extractAIC mimics extractAIC.lm in translating deviance to AIC.

There is little need to call these functions directly. However, they are called implicitly in step
function used in automatic selection of constraining variables. You should check the resulting
model with some other criteria, because the statistics used here are unfounded. In particular, the
penalty k is not properly defined, and the default k = 2 is not justified theoretically. If you have only
continuous covariates, the step function will base the model building on magnitude of eigenvalues,
and the value of k only influences the stopping point (but the variables with the highest eigenvalues
are not necessarily the most significant in permutation tests in anova.cca). If you also have multi-
class factors, the value of k will have a capricious effect in model building. The step function will
pass arguments to add1.cca and drop1.cca, and setting test = "permutation" will provide
permutation tests of each deletion and addition which can help in judging the validity of the model
building.

Value

The deviance functions return “deviance”, and extractAIC returns effective degrees of freedom
and “AIC”.

Note

These functions are unfounded and untested and they should not be used directly or implicitly.
Moreover, usual caveats in using step are very valid.

Author(s)

Jari Oksanen

References

Godínez-Domínguez, E. & Freire, J. (2003) Information-theoretic approach for selection of spatial
and temporal models of community organization. Marine Ecology Progress Series 253, 17–24.

See Also

cca, rda, anova.cca, step, extractAIC, add1.cca, drop1.cca.

Examples

# The deviance of correspondence analysis equals Chi-square
data(dune)
data(dune.env)
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chisq.test(dune)
deviance(cca(dune))
# Stepwise selection (forward from an empty model "dune ~ 1")
ord <- cca(dune ~ ., dune.env)
step(cca(dune ~ 1, dune.env), scope = formula(ord))

dispindmorisita Morisita index of intraspecific aggregation

Description

Calculates the Morisita index of dispersion, standardized index values, and the so called clumped-
ness and uniform indices.

Usage

dispindmorisita(x, unique.rm = FALSE, crit = 0.05, na.rm = FALSE)

Arguments

x community data matrix, with sites (samples) as rows and species as columns.

unique.rm logical, if TRUE, unique species (occurring in only one sample) are removed from
the result.

crit two-sided p-value used to calculate critical Chi-squared values.

na.rm logical. Should missing values (including NaN) be omitted from the calculations?

Details

The Morisita index of dispersion is defined as (Morisita 1959, 1962):

Imor = n * (sum(xi^2) - sum(xi)) / (sum(xi)^2 - sum(xi))

where xi is the count of individuals in sample i, and n is the number of samples (i = 1, 2, . . . , n).
Imor has values from 0 to n. In uniform (hyperdispersed) patterns its value falls between 0 and 1,
in clumped patterns it falls between 1 and n. For increasing sample sizes (i.e. joining neighbouring
quadrats), Imor goes to n as the quadrat size approaches clump size. For random patterns, Imor =
1 and counts in the samples follow Poisson frequency distribution.

The deviation from random expectation (null hypothesis) can be tested using criticalvalues of the
Chi-squared distribution with n − 1 degrees of freedom. Confidence intervals around 1 can be
calculated by the clumped Mclu and uniform Muni indices (Hairston et al. 1971, Krebs 1999)
(Chi2Lower and Chi2Upper refers to e.g. 0.025 and 0.975 quantile values of the Chi-squared dis-
tribution with n− 1 degrees of freedom, respectively, for crit = 0.05):

Mclu = (Chi2Lower - n + sum(xi)) / (sum(xi) - 1)

Muni = (Chi2Upper - n + sum(xi)) / (sum(xi) - 1)

Smith-Gill (1975) proposed scaling of Morisita index from [0, n] interval into [-1, 1], and setting
up -0.5 and 0.5 values as confidence limits around random distribution with rescaled value 0. To
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rescale the Morisita index, one of the following four equations apply to calculate the standardized
index Imst:

(a) Imor >= Mclu > 1: Imst = 0.5 + 0.5 (Imor - Mclu) / (n - Mclu),

(b) Mclu > Imor >= 1: Imst = 0.5 (Imor - 1) / (Mclu - 1),

(c) 1 > Imor > Muni: Imst = -0.5 (Imor - 1) / (Muni - 1),

(d) 1 > Muni > Imor: Imst = -0.5 + 0.5 (Imor - Muni) / Muni.

Value

Returns a data frame with as many rows as the number of columns in the input data, and with four
columns. Columns are: imor the unstandardized Morisita index, mclu the clumpedness index, muni
the uniform index, imst the standardized Morisita index, pchisq the Chi-squared based probability
for the null hypothesis of random expectation.

Note

A common error found in several papers is that when standardizing as in the case (b), the denom-
inator is given as Muni - 1. This results in a hiatus in the [0, 0.5] interval of the standardized
index. The root of this typo is the book of Krebs (1999), see the Errata for the book (Page 217,
http://www.zoology.ubc.ca/~krebs/downloads/errors_2nd_printing.pdf).

Author(s)

Péter Sólymos, <solymos@ualberta.ca>

References

Morisita, M. 1959. Measuring of the dispersion of individuals and analysis of the distributional
patterns. Mem. Fac. Sci. Kyushu Univ. Ser. E 2, 215–235.

Morisita, M. 1962. Id-index, a measure of dispersion of individuals. Res. Popul. Ecol. 4, 1–7.

Smith-Gill, S. J. 1975. Cytophysiological basis of disruptive pigmentary patterns in the leopard
frog, Rana pipiens. II. Wild type and mutant cell specific patterns. J. Morphol. 146, 35–54.

Hairston, N. G., Hill, R. and Ritte, U. 1971. The interpretation of aggregation patterns. In: Patil,
G. P., Pileou, E. C. and Waters, W. E. eds. Statistical Ecology 1: Spatial Patterns and Statistical
Distributions. Penn. State Univ. Press, University Park.

Krebs, C. J. 1999. Ecological Methodology. 2nd ed. Benjamin Cummings Publishers.

Examples

data(dune)
x <- dispindmorisita(dune)
x
y <- dispindmorisita(dune, unique.rm = TRUE)
y
dim(x) ## with unique species
dim(y) ## unique species removed

http://www.zoology.ubc.ca/~krebs/downloads/errors_2nd_printing.pdf
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distconnected Connectedness of Dissimilarities

Description

Function distconnected finds groups that are connected disregarding dissimilarities that are at or
above a threshold or NA. The function can be used to find groups that can be ordinated together
or transformed by stepacross. Function no.shared returns a logical dissimilarity object, where
TRUE means that sites have no species in common. This is a minimal structure for distconnected
or can be used to set missing values to dissimilarities.

Usage

distconnected(dis, toolong = 1, trace = TRUE)

no.shared(x)

Arguments

dis Dissimilarity data inheriting from class dist or a an object, such as a matrix,
that can be converted to a dissimilarity matrix. Functions vegdist and dist are
some functions producing suitable dissimilarity data.

toolong Shortest dissimilarity regarded as NA. The function uses a fuzz factor, so that dis-
similarities close to the limit will be made NA, too. If toolong = 0 (or negative),
no dissimilarity is regarded as too long.

trace Summarize results of distconnected

x Community data.

Details

Data sets are disconnected if they have sample plots or groups of sample plots which share no
species with other sites or groups of sites. Such data sets cannot be sensibly ordinated by any
unconstrained method because these subsets cannot be related to each other. For instance, corre-
spondence analysis will polarize these subsets with eigenvalue 1. Neither can such dissimilarities be
transformed with stepacross, because there is no path between all points, and result will contain
NAs. Function distconnected will find such subsets in dissimilarity matrices. The function will
return a grouping vector that can be used for sub-setting the data. If data are connected, the result
vector will be all 1s. The connectedness between two points can be defined either by a threshold
toolong or using input dissimilarities with NAs.

Function no.shared returns a dist structure having value TRUE when two sites have nothing in
common, and value FALSE when they have at least one shared species. This is a minimal structure
that can be analysed with distconnected. The function can be used to select dissimilarities with
no shared species in indices which do not have a fixed upper limit.

Function distconnected uses depth-first search (Sedgewick 1990).
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Value

Function distconnected returns a vector for observations using integers to identify connected
groups. If the data are connected, values will be all 1. Function no.shared returns an object of
class dist.

Author(s)

Jari Oksanen

References

Sedgewick, R. (1990). Algorithms in C. Addison Wesley.

See Also

vegdist or dist for getting dissimilarities, stepacross for a case where you may need distconnected,
and for connecting points spantree.

Examples

## There are no disconnected data in vegan, and the following uses an
## extremely low threshold limit for connectedness. This is for
## illustration only, and not a recommended practice.
data(dune)
dis <- vegdist(dune)
gr <- distconnected(dis, toolong=0.4)
# Make sites with no shared species as NA in Manhattan dissimilarities
dis <- vegdist(dune, "manhattan")
is.na(dis) <- no.shared(dune)

diversity Ecological Diversity Indices and Rarefaction Species Richness

Description

Shannon, Simpson, and Fisher diversity indices and rarefied species richness for community ecolo-
gists.

Usage

diversity(x, index = "shannon", MARGIN = 1, base = exp(1))
rarefy(x, sample, se = FALSE, MARGIN = 1)
rrarefy(x, sample)
drarefy(x, sample)
rarecurve(x, step = 1, sample, xlab = "Sample Size", ylab = "Species",

label = TRUE, ...)
fisher.alpha(x, MARGIN = 1, se = FALSE, ...)
specnumber(x, groups, MARGIN = 1)
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Arguments

x Community data, a matrix-like object or a vector.

index Diversity index, one of "shannon", "simpson" or "invsimpson".

MARGIN Margin for which the index is computed.

base The logarithm base used in shannon.

sample Subsample size for rarefying community, either a single value or a vector.

se Estimate standard errors.

step Step size for sample sizes in rarefaction curves.

xlab, ylab Axis labels in plots of rarefaction curves.

label Label rarefaction curves by rownames of x (logical).

groups A grouping factor: if given, finds the total number of species in each group.

... Parameters passed to nlm, or to plot, lines and ordilabel in rarecurve.

Details

Shannon or Shannon–Weaver (or Shannon–Wiener) index is defined as H ′ = −
∑
i pi logb pi,

where pi is the proportional abundance of species i and b is the base of the logarithm. It is most
popular to use natural logarithms, but some argue for base b = 2 (which makes sense, but no real
difference).

Both variants of Simpson’s index are based on D =
∑
p2i . Choice simpson returns 1 − D and

invsimpson returns 1/D.

Function rarefy gives the expected species richness in random subsamples of size sample from
the community. The size of sample should be smaller than total community size, but the function
will silently work for larger sample as well and return non-rarefied species richness (and standard
error = 0). If sample is a vector, rarefaction of all observations is performed for each sample size
separately. Rarefaction can be performed only with genuine counts of individuals. The function
rarefy is based on Hurlbert’s (1971) formulation, and the standard errors on Heck et al. (1975).

Function rrarefy generates one randomly rarefied community data frame or vector of given sample
size. The sample can be a vector giving the sample sizes for each row, and its values must be less
or equal to observed number of individuals. The random rarefaction is made without replacement
so that the variance of rarefied communities is rather related to rarefaction proportion than to to the
size of the sample.

Function drarefy returns probabilities that species occur in a rarefied community of size sample.
The sample can be a vector giving the sample sizes for each row.

Function rarecurve draws a rarefaction curve for each row of the input data. The rarefaction curves
are evaluated using the interval of step sample sizes, always including 1 and total sample size. If
sample is specified, a vertical line is drawn at sample with horizontal lines for the rarefied species
richnesses.

fisher.alpha estimates the α parameter of Fisher’s logarithmic series (see fisherfit). The es-
timation is possible only for genuine counts of individuals. The function can optionally return
standard errors of α. These should be regarded only as rough indicators of the accuracy: the con-
fidence limits of α are strongly non-symmetric and the standard errors cannot be used in Normal
inference.
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Function specnumber finds the number of species. With MARGIN = 2, it finds frequencies of
species. If groups is given, finds the total number of species in each group (see example on finding
one kind of beta diversity with this option).

Better stories can be told about Simpson’s index than about Shannon’s index, and still grander
narratives about rarefaction (Hurlbert 1971). However, these indices are all very closely related
(Hill 1973), and there is no reason to despise one more than others (but if you are a graduate student,
don’t drag me in, but obey your Professor’s orders). In particular, the exponent of the Shannon index
is linearly related to inverse Simpson (Hill 1973) although the former may be more sensitive to rare
species. Moreover, inverse Simpson is asymptotically equal to rarefied species richness in sample
of two individuals, and Fisher’s α is very similar to inverse Simpson.

Value

A vector of diversity indices or rarefied species richness values. With a single sample and se = TRUE,
function rarefy returns a 2-row matrix with rarefied richness (S) and its standard error (se). If
sample is a vector in rarefy, the function returns a matrix with a column for each sample size, and
if se = TRUE, rarefied richness and its standard error are on consecutive lines.

Function rarecurve returns invisible list of rarefy results corresponding each drawn curve.

With option se = TRUE, function fisher.alpha returns a data frame with items for α (alpha),
its approximate standard errors (se), residual degrees of freedom (df.residual), and the code
returned by nlm on the success of estimation.

Author(s)

Jari Oksanen and Bob O’Hara (fisher.alpha).

References

Fisher, R.A., Corbet, A.S. & Williams, C.B. (1943). The relation between the number of species
and the number of individuals in a random sample of animal population. Journal of Animal Ecology
12, 42–58.

Heck, K.L., van Belle, G. & Simberloff, D. (1975). Explicit calculation of the rarefaction diversity
measurement and the determination of sufficient sample size. Ecology 56, 1459–1461.

Hurlbert, S.H. (1971). The nonconcept of species diversity: a critique and alternative parameters.
Ecology 52, 577–586.

See Also

Function renyi for generalized Rényi diversity and Hill numbers.

Examples

data(BCI)
H <- diversity(BCI)
simp <- diversity(BCI, "simpson")
invsimp <- diversity(BCI, "inv")
## Unbiased Simpson of Hurlbert 1971 (eq. 5):
unbias.simp <- rarefy(BCI, 2) - 1
## Fisher alpha
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alpha <- fisher.alpha(BCI)
## Plot all
pairs(cbind(H, simp, invsimp, unbias.simp, alpha), pch="+", col="blue")
## Species richness (S) and Pielou’s evenness (J):
S <- specnumber(BCI) ## rowSums(BCI > 0) does the same...
J <- H/log(S)
## beta diversity defined as gamma/alpha - 1:
data(dune)
data(dune.env)
alpha <- with(dune.env, tapply(specnumber(dune), Management, mean))
gamma <- with(dune.env, specnumber(dune, Management))
gamma/alpha - 1
## Rarefaction
(raremax <- min(rowSums(BCI)))
Srare <- rarefy(BCI, raremax)
plot(S, Srare, xlab = "Observed No. of Species", ylab = "Rarefied No. of Species")
abline(0, 1)
rarecurve(BCI, step = 20, sample = raremax, col = "blue", cex = 0.6)

dune Vegetation and Environment in Dutch Dune Meadows.

Description

The dune meadow vegetation data, dune, has cover class values of 30 species on 20 sites. The
corresponding environmental data frame dune.env has following entries:

Usage

data(dune)
data(dune.env)

Format

For dune, a data frame of observations of 30 species at 20 sites.

For dune.env, a data frame of 20 observations on the following 5 variables:

A1: a numeric vector of thickness of soil A1 horizon.

Moisture: an ordered factor with levels: 1 < 2 < 4 < 5.

Management: a factor with levels: BF (Biological farming), HF (Hobby farming), NM (Nature Con-
servation Management), and SF (Standard Farming).

Use: an ordered factor of land-use with levels: Hayfield < Haypastu < Pasture.

Manure: an ordered factor with levels: 0 < 1 < 2 < 3 < 4.

Source

Jongman, R.H.G, ter Braak, C.J.F & van Tongeren, O.F.R. (1987). Data Analysis in Community
and Landscape Ecology. Pudoc, Wageningen.
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Examples

data(dune)

data(dune.env)

dune.taxon Taxonomic Classification of Dune Meadow Species

Description

Classification table of the species in the dune data set.

Usage

data(dune.taxon)

Format

A data frame with 30 species (rows) classified into five taxonomic levels (columns).

Details

The classification of vascular plants is adapted from AGP (2003), and that of mosses from Hill et
al. (2006).

Note

The data set was made to demonstrate taxondive, and will probably be removed after a better
example is found.

References

AGP [Angiosperm Phylogeny Group] (2003) An update of the Angiosperm Phylogeny Group clas-
sification for the orders and families of flowering plants: AGP II. Bot. J. Linnean Soc. 141: 399–
436.

Hill, M.O et al. (2006) An annotated checklist of the mosses of Europe and Macaronesia. J.
Bryology 28: 198–267.

Examples

data(dune.taxon)
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eigenvals Extract Eigenvalues from an Ordination Object

Description

Function extracts eigenvalues from an object that has them. Many multivariate methods return such
objects.

Usage

eigenvals(x, ...)
## S3 method for class ’cca’
eigenvals(x, constrained = FALSE, ...)
## S3 method for class ’eigenvals’
summary(object, ...)

Arguments

x An object from which to extract eigenvalues.

object An eigenvals result object.

constrained Return only constrained eigenvalues.

... Other arguments to the functions (usually ignored)

Details

This is a generic function that has methods for cca, wcmdscale, pcnm, prcomp, princomp, dudi
(of ade4), and pca and pco (of labdsv) result objects. The default method also extracts eigen-
values if the result looks like being from eigen or svd. Functions prcomp and princomp contain
square roots of eigenvalues that all called standard deviations, but eigenvals function returns their
squares. Function svd contains singular values, but function eigenvals returns their squares. For
constrained ordination methods cca, rda and capscale the function returns the both constrained
and unconstrained eigenvalues concatenated in one vector, but the partial component will be ig-
nored. However, with argument constrained = TRUE only constrained eigenvalues are returned.

The summary of eigenvals result returns eigenvalues, proportion explained and cumulative propor-
tion explained. The result object can have some negative eigenvalues (wcmdscale, capscale, pcnm)
which correspond to imaginary axes of Euclidean mapping of non-Euclidean distances (Gower
1985). In these cases, the sum of absolute values of eigenvalues is used in calculating the propor-
tions explained, and real axes (corresponding to positive eigenvalues) will only explain a part of
total variation (Mardia et al. 1979, Gower 1985).

Value

An object of class "eigenvals" which is a vector of eigenvalues.

Author(s)

Jari Oksanen.
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References

Gower, J. C. (1985). Properties of Euclidean and non-Euclidean distance matrices. Linear Algebra
and its Applications 67, 81–97.

Mardia, K. V., Kent, J. T. and Bibby, J. M. (1979). Chapter 14 of Multivariate Analysis, London:
Academic Press.

See Also

eigen, svd, prcomp, princomp, cca, rda, capscale, wcmdscale, cca.object.

Examples

data(varespec)
data(varechem)
mod <- cca(varespec ~ Al + P + K, varechem)
ev <- eigenvals(mod)
ev
summary(ev)

envfit Fits an Environmental Vector or Factor onto an Ordination

Description

The function fits environmental vectors or factors onto an ordination. The projections of points
onto vectors have maximum correlation with corresponding environmental variables, and the factors
show the averages of factor levels.

Usage

## Default S3 method:
envfit(ord, env, permutations = 999, strata, choices=c(1,2),

display = "sites", w = weights(ord), na.rm = FALSE, ...)
## S3 method for class ’formula’
envfit(formula, data, ...)
## S3 method for class ’envfit’
plot(x, choices = c(1,2), labels, arrow.mul, at = c(0,0),

axis = FALSE, p.max = NULL, col = "blue", bg, add = TRUE, ...)
## S3 method for class ’envfit’
scores(x, display, choices, ...)
vectorfit(X, P, permutations = 0, strata, w, ...)
factorfit(X, P, permutations = 0, strata, w, ...)
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Arguments

ord An ordination object or other structure from which the ordination scores can
be extracted (including a data frame or matrix of scores).

env Data frame, matrix or vector of environmental variables. The variables can be
of mixed type (factors, continuous variables) in data frames.

X Matrix or data frame of ordination scores.

P Data frame, matrix or vector of environmental variable(s). These must be con-
tinuous for vectorfit and factors or characters for factorfit.

permutations Number of permutations for assessing significance of vectors or factors. Set to
0 to skip permutations.

formula, data Model formula and data.

na.rm Remove points with missing values in ordination scores or environmental vari-
ables. The operation is casewise: the whole row of data is removed if there is a
missing value and na.rm = TRUE.

x A result object from envfit.

choices Axes to plotted.

labels Change plotting labels. The argument should be a list with elements vectors
and factors which give the new plotting labels. If either of these elements is
omitted, the default labels will be used. If there is only one type of elements
(only vectors or only factors), the labels can be given as vector. The default
labels can be displayed with labels command.

arrow.mul Multiplier for vector lengths. The arrows are automatically scaled similarly as
in plot.cca if this is not given and add = TRUE.

at The origin of fitted arrows in the plot. If you plot arrows in other places then
origin, you probably have to specify arrrow.mul.

axis Plot axis showing the scaling of fitted arrows.

p.max Maximum estimated P value for displayed variables. You must calculate P
values with setting permutations to use this option.

col Colour in plotting.

bg Background colour for labels. If bg is set, the labels are displayed with ordilabel
instead of text. See Examples for using semitransparent background.

add Results added to an existing ordination plot.

strata An integer vector or factor specifying the strata for permutation. If supplied,
observations are permuted only within the specified strata.

display In fitting functions these are ordinary site scores or linear combination scores
("lc") in constrained ordination (cca, rda, capscale). In scores function they
are either "vectors" or "factors" (with synonyms "bp" or "cn", resp.).

w Weights used in fitting (concerns mainly cca and decorana results which have
nonconstant weights).

... Parameters passed to scores.
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Details

Function envfit finds vectors or factor averages of environmental variables. Function plot.envfit
adds these in an ordination diagram. If X is a data.frame, envfit uses factorfit for factor vari-
ables and vectorfit for other variables. If X is a matrix or a vector, envfit uses only vectorfit.
Alternatively, the model can be defined a simplified model formula, where the left hand side must
be an ordination result object or a matrix of ordination scores, and right hand side lists the envi-
ronmental variables. The formula interface can be used for easier selection and/or transformation
of environmental variables. Only the main effects will be analysed even if interaction terms were
defined in the formula.

The printed output of continuous variables (vectors) gives the direction cosines which are the co-
ordinates of the heads of unit length vectors. In plot these are scaled by their correlation (square
root of the column r2) so that “weak” predictors have shorter arrows than “strong” predictors.
You can see the scaled relative lengths using command scores. The plotted (and scaled) arrows
are further adjusted to the current graph using a constant multiplier: this will keep the relative
r2-scaled lengths of the arrows but tries to fill the current plot. You can see the multiplier using
vegan:::ordiArrowMul(result_of_envfit), and set it with the argument arrow.mul.

Functions vectorfit and factorfit can be called directly. Function vectorfit finds directions
in the ordination space towards which the environmental vectors change most rapidly and to which
they have maximal correlations with the ordination configuration. Function factorfit finds aver-
ages of ordination scores for factor levels. Function factorfit treats ordered and unordered factors
similarly.

If permutations > 0, the ‘significance’ of fitted vectors or factors is assessed using permutation
of environmental variables. The goodness of fit statistic is squared correlation coefficient (r2). For
factors this is defined as r2 = 1− ssw/sst, where ssw and sst are within-group and total sums of
squares. See permutations for additional details on permutation tests in Vegan.

User can supply a vector of prior weights w. If the ordination object has weights, these will be
used. In practise this means that the row totals are used as weights with cca or decorana results.
If you do not like this, but want to give equal weights to all sites, you should set w = NULL. The
weighted fitting gives similar results to biplot arrows and class centroids in cca. For complete
similarity between fitted vectors and biplot arrows, you should set display = "lc" (and possibly
scaling = 2).

The lengths of arrows for fitted vectors are automatically adjusted for the physical size of the plot,
and the arrow lengths cannot be compared across plots. For similar scaling of arrows, you must
explicitly set the arrow.mul argument in the plot command.

The results can be accessed with scores.envfit function which returns either the fitted vectors
scaled by correlation coefficient or the centroids of the fitted environmental variables.

Value

Functions vectorfit and factorfit return lists of classes vectorfit and factorfit which have
a print method. The result object have the following items:

arrows Arrow endpoints from vectorfit. The arrows are scaled to unit length.

centroids Class centroids from factorfit.

r Goodness of fit statistic: Squared correlation coefficient

permutations Number of permutations.
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pvals Empirical P-values for each variable.

Function envfit returns a list of class envfit with results of vectorfit and envfit as items.

Function plot.envfit scales the vectors by correlation.

Note

Fitted vectors have become the method of choice in displaying environmental variables in ordi-
nation. Indeed, they are the optimal way of presenting environmental variables in Constrained
Correspondence Analysis cca, since there they are the linear constraints. In unconstrained ordi-
nation the relation between external variables and ordination configuration may be less linear, and
therefore other methods than arrows may be more useful. The simplest is to adjust the plotting
symbol sizes (cex, symbols) by environmental variables. Fancier methods involve smoothing and
regression methods that abound in R, and ordisurf provides a wrapper for some.

Author(s)

Jari Oksanen. The permutation test derives from the code suggested by Michael Scroggie.

See Also

A better alternative to vectors may be ordisurf.

Examples

data(varespec)
data(varechem)
library(MASS)
ord <- metaMDS(varespec)
(fit <- envfit(ord, varechem, perm = 999))
scores(fit, "vectors")
plot(ord)
plot(fit)
plot(fit, p.max = 0.05, col = "red")
## Adding fitted arrows to CCA. We use "lc" scores, and hope
## that arrows are scaled similarly in cca and envfit plots
ord <- cca(varespec ~ Al + P + K, varechem)
plot(ord, type="p")
fit <- envfit(ord, varechem, perm = 999, display = "lc")
plot(fit, p.max = 0.05, col = "red")
## Class variables, formula interface, and displaying the
## inter-class variability with ‘ordispider’, and semitransparent
## white background for labels (semitransparent colours are not
## supported by all graphics devices)
data(dune)
data(dune.env)
attach(dune.env)
ord <- cca(dune)
fit <- envfit(ord ~ Moisture + A1, dune.env, perm = 0)
plot(ord, type = "n")
ordispider(ord, Moisture, col="skyblue")
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points(ord, display = "sites", col = as.numeric(Moisture), pch=16)
plot(fit, cex=1.2, axis=TRUE, bg = rgb(1, 1, 1, 0.5))
## Use shorter labels for factor centroids
labels(fit)
plot(ord)
plot(fit, labels=list(factors = paste("M", c(1,2,4,5), sep = "")),

bg = rgb(1,1,0,0.5))

eventstar Scale Parameter at the Minimum of the Tsallis Evenness Profile

Description

The function eventstar finds the minimum (q∗) of the evenness profile based on the Tsallis en-
tropy. This scale factor of the entropy represents a specific weighting of species relative frequencies
that leads to minimum evenness of the community (Mendes et al. 2008).

Usage

eventstar(x, qmax = 5)

Arguments

x A community matrix or a numeric vector.

qmax Maximum scale parameter of the Tsallis entropy to be used in finding the mini-
mum of Tsallis based evenness in the range c(0, qmax).

Details

The function eventstar finds a characteristic value of the scale parameter q of the Tsallis entropy
corresponding to minimum of the evenness (equitability) profile based on Tsallis entropy. This
value was proposed by Mendes et al. (2008) as q∗.

The q∗ index represents the scale parameter of the one parameter Tsallis diversity family that leads
to the greatest deviation from the maximum equitability given the relative abundance vactor of a
community.

The value of q∗ is found by identifying the minimum of the evenness profile over scaling factor
q by one-dimensional minimization. Because evenness profile is known to be a convex function,
it is guaranteed that underlying optimize function will find a unique solution if it is in the range
c(0, qmax).

The scale parameter value q∗ is used to find corresponding values of diversity (Hq∗ ), evenness
(Hq∗(max)), and numbers equivalent (Dq∗ ). For calculation details, see tsallis and Examples
below.

Mendes et al. (2008) advocated the use of q∗ and corresponding diversity, evenness, and Hill num-
bers, because it is a unique value representing the diversity profile, and is is positively associated
with rare species in the community, thus it is a potentially useful indicator of certain relative abun-
dance distributions of the communities.
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Value

A data frame with columns:

• qstar scale parameter value q∗ corresponding to minimum value of Tsallis based evenness
profile.

• Estar Value of evenness based on normalized Tsallis entropy at q∗.

• Hstar Value of Tsallis entropy at q∗.

• Dstar Value of Tsallis entropy at q∗ converted to numbers equivalents (also called as Hill
numbers, effective number of species, ‘true’ diversity; cf. Jost 2007).

See tsallis for calculation details.

Note

Values for q∗ found by Mendes et al. (2008) ranged from 0.56 and 1.12 presenting low variability,
so an interval between 0 and 5 should safely encompass the possibly expected q∗ values in practice,
but profiling the evenness and changing the value of the qmax argument is advised if output values
near the range limits are found.

Author(s)

Eduardo Ribeiro Cunha <edurcunha@gmail.com> and Heloisa Beatriz Antoniazi Evangelista <helobeatriz@gmail.com>,
with technical input of Péter Sólymos.

References

Mendes, R.S., Evangelista, L.R., Thomaz, S.M., Agostinho, A.A. and Gomes, L.C. (2008) A unified
index to measure ecological diversity and species rarity. Ecography 31, 450–456.

Jost, L. (2007) Partitioning diversity into independent alpha and beta components. Ecology 88,
2427–2439.

Tsallis, C. (1988) Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phis. 52, 479–487.

See Also

Tsallis entropy: tsallis

Examples

data(BCI)
(x <- eventstar(BCI[1:5,]))
## profiling
y <- as.numeric(BCI[10,])
(z <- eventstar(y))
q <- seq(0, 2, 0.05)
Eprof <- tsallis(y, scales=q, norm=TRUE)
Hprof <- tsallis(y, scales=q)
Dprof <- tsallis(y, scales=q, hill=TRUE)
opar <- par(mfrow=c(3,1))
plot(q, Eprof, type="l", main="Evenness")
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abline(v=z$qstar, h=tsallis(y, scales=z$qstar, norm=TRUE), col=2)
plot(q, Hprof, type="l", main="Diversity")
abline(v=z$qstar, h=tsallis(y, scales=z$qstar), col=2)
plot(q, Dprof, type="l", main="Effective number of species")
abline(v=z$qstar, h=tsallis(y, scales=z$qstar, hill=TRUE), col=2)
par(opar)

fisherfit Fit Fisher’s Logseries and Preston’s Lognormal Model to Abundance
Data

Description

Function fisherfit fits Fisher’s logseries to abundance data. Function prestonfit groups species
frequencies into doubling octave classes and fits Preston’s lognormal model, and function prestondistr
fits the truncated lognormal model without pooling the data into octaves.

Usage

fisherfit(x, ...)
## S3 method for class ’fisherfit’
confint(object, parm, level = 0.95, ...)
## S3 method for class ’fisherfit’
profile(fitted, alpha = 0.01, maxsteps = 20, del = zmax/5,

...)
prestonfit(x, tiesplit = TRUE, ...)
prestondistr(x, truncate = -1, ...)
## S3 method for class ’prestonfit’
plot(x, xlab = "Frequency", ylab = "Species", bar.col = "skyblue",

line.col = "red", lwd = 2, ...)
## S3 method for class ’prestonfit’
lines(x, line.col = "red", lwd = 2, ...)
veiledspec(x, ...)
as.fisher(x, ...)
## S3 method for class ’fisher’
plot(x, xlab = "Frequency", ylab = "Species", bar.col = "skyblue",

kind = c("bar", "hiplot", "points", "lines"), add = FALSE, ...)
as.preston(x, tiesplit = TRUE, ...)
## S3 method for class ’preston’
plot(x, xlab = "Frequency", ylab = "Species", bar.col = "skyblue", ...)
## S3 method for class ’preston’
lines(x, xadjust = 0.5, ...)

Arguments

x Community data vector for fitting functions or their result object for plot func-
tions.
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object, fitted Fitted model.

parm Not used.

level The confidence level required.

alpha The extend of profiling as significance.

maxsteps Maximum number of steps in profiling.

del Step length.

tiesplit Split frequencies 1, 2, 4, 8 etc between adjacent octaves.

truncate Truncation point for log-Normal model, in log2 units. Default value −1 cor-
responds to the left border of zero Octave. The choice strongly influences the
fitting results.

xlab, ylab Labels for x and y axes.

bar.col Colour of data bars.

line.col Colour of fitted line.

lwd Width of fitted line.

kind Kind of plot to drawn: "bar" is similar bar plot as in plot.fisherfit, "hiplot"
draws vertical lines as with plot(..., type="h"), and "points" and "lines"
are obvious.

add Add to an existing plot.

xadjust Adjustment of horizontal positions in octaves.

... Other parameters passed to functions. Ignored in prestonfit and tiesplit
passed to as.preston in prestondistr.

Details

In Fisher’s logarithmic series the expected number of species f with n observed individuals is
fn = αxn/n (Fisher et al. 1943). The estimation follows Kempton & Taylor (1974) and uses
function nlm. The estimation is possible only for genuine counts of individuals. The parameter α
is used as a diversity index, and α and its standard error can be estimated with a separate function
fisher.alpha. The parameter x is taken as a nuisance parameter which is not estimated separately
but taken to be n/(n + α). Helper function as.fisher transforms abundance data into Fisher
frequency table.

Function fisherfit estimates the standard error of α. However, the confidence limits cannot
be directly estimated from the standard errors, but you should use function confint based on
profile likelihood. Function confint uses function confint.glm of the MASS package, using
profile.fisherfit for the profile likelihood. Function profile.fisherfit follows profile.glm
and finds the τ parameter or signed square root of two times log-Likelihood profile. The profile can
be inspected with a plot function which shows the τ and a dotted line corresponding to the Normal
assumption: if standard errors can be directly used in Normal inference these two lines are similar.

Preston (1948) was not satisfied with Fisher’s model which seemed to imply infinite species rich-
ness, and postulated that rare species is a diminishing class and most species are in the middle of
frequency scale. This was achieved by collapsing higher frequency classes into wider and wider
“octaves” of doubling class limits: 1, 2, 3–4, 5–8, 9–16 etc. occurrences. It seems that Preston
regarded frequencies 1, 2, 4, etc.. as “tied” between octaves (Williamson & Gaston 2005). This
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means that only half of the species with frequency 1 are shown in the lowest octave, and the rest
are transferred to the second octave. Half of the species from the second octave are transferred to
the higher one as well, but this is usually not as large a number of species. This practise makes
data look more lognormal by reducing the usually high lowest octaves. This can be achieved by
setting argument tiesplit = TRUE. With tiesplit = FALSE the frequencies are not split, but all
ones are in the lowest octave, all twos in the second, etc. Williamson & Gaston (2005) discuss
alternative definitions in detail, and they should be consulted for a critical review of log-Normal
model.

Any logseries data will look like lognormal when plotted in Preston’s way. The expected fre-
quency f at abundance octave o is defined by fo = S0 exp(−(log2(o) − µ)2/2/σ2), where µ is
the location of the mode and σ the width, both in log2 scale, and S0 is the expected number of
species at mode. The lognormal model is usually truncated on the left so that some rare species
are not observed. Function prestonfit fits the truncated lognormal model as a second degree log-
polynomial to the octave pooled data using Poisson (when tiesplit = FALSE) or quasi-Poisson
(when tiesplit = TRUE) error. Function prestondistr fits left-truncated Normal distribution to
log2 transformed non-pooled observations with direct maximization of log-likelihood. Function
prestondistr is modelled after function fitdistr which can be used for alternative distribution
models.

The functions have common print, plot and lines methods. The lines function adds the fitted
curve to the octave range with line segments showing the location of the mode and the width (sd)
of the response. Function as.preston transforms abundance data to octaves. Argument tiesplit
will not influence the fit in prestondistr, but it will influence the barplot of the octaves.

The total extrapolated richness from a fitted Preston model can be found with function veiledspec.
The function accepts results both from prestonfit and from prestondistr. If veiledspec is
called with a species count vector, it will internally use prestonfit. Function specpool provides
alternative ways of estimating the number of unseen species. In fact, Preston’s lognormal model
seems to be truncated at both ends, and this may be the main reason why its result differ from
lognormal models fitted in Rank–Abundance diagrams with functions rad.lognormal.

Value

The function prestonfit returns an object with fitted coefficients, and with observed (freq)
and fitted (fitted) frequencies, and a string describing the fitting method. Function prestondistr
omits the entry fitted. The function fisherfit returns the result of nlm, where item estimate is
α. The result object is amended with the following items:

df.residuals Residual degrees of freedom.
nuisance Parameter x.
fisher Observed data from as.fisher.

Author(s)

Bob O’Hara (fisherfit) and Jari Oksanen.

References

Fisher, R.A., Corbet, A.S. & Williams, C.B. (1943). The relation between the number of species
and the number of individuals in a random sample of animal population. Journal of Animal Ecology
12: 42–58.
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Kempton, R.A. & Taylor, L.R. (1974). Log-series and log-normal parameters as diversity discrimi-
nators for Lepidoptera. Journal of Animal Ecology 43: 381–399.

Preston, F.W. (1948) The commonness and rarity of species. Ecology 29, 254–283.

Williamson, M. & Gaston, K.J. (2005). The lognormal distribution is not an appropriate null hy-
pothesis for the species–abundance distribution. Journal of Animal Ecology 74, 409–422.

See Also

diversity, fisher.alpha, radfit, specpool. Function fitdistr of MASS package was used
as the model for prestondistr. Function density can be used for smoothed “non-parametric”
estimation of responses, and qqplot is an alternative, traditional and more effective way of studying
concordance of observed abundances to any distribution model.

Examples

data(BCI)
mod <- fisherfit(BCI[5,])
mod
plot(profile(mod))
confint(mod)
# prestonfit seems to need large samples
mod.oct <- prestonfit(colSums(BCI))
mod.ll <- prestondistr(colSums(BCI))
mod.oct
mod.ll
plot(mod.oct)
lines(mod.ll, line.col="blue3") # Different
## Smoothed density
den <- density(log2(colSums(BCI)))
lines(den$x, ncol(BCI)*den$y, lwd=2) # Fairly similar to mod.oct
## Extrapolated richness
veiledspec(mod.oct)
veiledspec(mod.ll)

goodness.cca Diagnostic Tools for [Constrained] Ordination (CCA, RDA, DCA, CA,
PCA)

Description

Functions goodness and inertcomp can be used to assess the goodness of fit for individual sites
or species. Function vif.cca and alias.cca can be used to analyse linear dependencies among
constraints and conditions. In addition, there are some other diagnostic tools (see ’Details’).
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Usage

## S3 method for class ’cca’
goodness(object, display = c("species", "sites"), choices,

model = c("CCA", "CA"), statistic = c("explained", "distance"),
summarize = FALSE, ...)

inertcomp(object, display = c("species", "sites"),
statistic = c("explained", "distance"), proportional = FALSE)

spenvcor(object)
intersetcor(object)
vif.cca(object)
## S3 method for class ’cca’
alias(object, names.only = FALSE, ...)

Arguments

object A result object from cca, rda, capscale or decorana.

display Display "species" or "sites".

choices Axes shown. Default is to show all axes of the "model".

model Show constrained ("CCA") or unconstrained ("CA") results.

statistic Statistic used: "explained" gives the cumulative percentage accounted for,
"distance" shows the residual distances. Distances are not available for sites
in constrained or partial analyses.

summarize Show only the accumulated total.

proportional Give the inertia components as proportional for the corresponding total.

names.only Return only names of aliased variable(s) instead of defining equations.

... Other parameters to the functions.

Details

Function goodness gives the diagnostic statistics for species or sites. The alternative statistics
are the cumulative proportion of inertia accounted for by the axes, and the residual distance left
unaccounted for. The conditional (“partialled out”) constraints are always regarded as explained
and included in the statistics.

Function inertcomp decomposes the inertia into partial, constrained and unconstrained components
for each site or species. Instead of inertia, the function can give the total dispersion or distances
from the centroid for each component.

Function spenvcor finds the so-called “species – environment correlation” or (weighted) correla-
tion of weighted average scores and linear combination scores. This is a bad measure of goodness
of ordination, because it is sensitive to extreme scores (like correlations are), and very sensitive to
overfitting or using too many constraints. Better models often have poorer correlations. Function
ordispider can show the same graphically.

Function intersetcor finds the so-called “interset correlation” or (weighted) correlation of weighted
averages scores and constraints. The defined contrasts are used for factor variables. This is a bad
measure since it is a correlation. Further, it focuses on correlations between single contrasts and sin-
gle axes instead of looking at the multivariate relationship. Fitted vectors (envfit) provide a better
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alternative. Biplot scores (see scores.cca) are a multivariate alternative for (weighted) correlation
between linear combination scores and constraints.

Function vif.cca gives the variance inflation factors for each constraint or contrast in factor con-
straints. In partial ordination, conditioning variables are analysed together with constraints. Vari-
ance inflation is a diagnostic tool to identify useless constraints. A common rule is that values over
10 indicate redundant constraints. If later constraints are complete linear combinations of condi-
tions or previous constraints, they will be completely removed from the estimation, and no biplot
scores or centroids are calculated for these aliased constraints. A note will be printed with default
output if there are aliased constraints. Function alias will give the linear coefficients defining the
aliased constraints, or only their names with argument names.only = TRUE.

Value

The functions return matrices or vectors as is appropriate.

Note

It is a common practise to use goodness statistics to remove species from ordination plots, but this
may not be a good idea, as the total inertia is not a meaningful concept in cca, in particular for rare
species.

Function vif is defined as generic in package car (vif), but if you have not loaded that package you
must specify the call as vif.cca. Variance inflation factor is useful diagnostic tool for detecting
nearly collinear constraints, but these are not a problem with algorithm used in this package to fit a
constrained ordination.

Author(s)

Jari Oksanen. The vif.cca relies heavily on the code by W. N. Venables. alias.cca is a simplified
version of alias.lm.

References

Greenacre, M. J. (1984). Theory and applications of correspondence analysis. Academic Press,
London.

Gross, J. (2003). Variance inflation factors. R News 3(1), 13–15.

See Also

cca, rda, capscale, decorana, vif.

Examples

data(dune)
data(dune.env)
mod <- cca(dune ~ A1 + Management + Condition(Moisture), data=dune.env)
goodness(mod)
goodness(mod, summ = TRUE)
# Inertia components
inertcomp(mod, prop = TRUE)
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inertcomp(mod, stat="d")
# vif.cca
vif.cca(mod)
# Aliased constraints
mod <- cca(dune ~ ., dune.env)
mod
vif.cca(mod)
alias(mod)
with(dune.env, table(Management, Manure))
# The standard correlations (not recommended)
spenvcor(mod)
intersetcor(mod)

goodness.metaMDS Goodness of Fit and Shepard Plot for Nonmetric Multidimensional
Scaling

Description

Function goodness.metaMDS find goodness of fit measure for points in nonmetric multidimensional
scaling, and function stressplot makes a Shepard diagram.

Usage

## S3 method for class ’metaMDS’
goodness(object, dis, ...)
## Default S3 method:
stressplot(object, dis, pch, p.col = "blue", l.col = "red",

lwd = 2, ...)

Arguments

object A result object from metaMDS, monoMDS or isoMDS.

dis Dissimilarities. This should not be used with metaMDS or monoMDS, but must be
used with isoMDS.

pch Plotting character for points. Default is dependent on the number of points.

p.col, l.col Point and line colours.

lwd Line width. For monoMDS the default is lwd = 1 if more than two lines are
drawn, and lwd = 2 otherwise.

... Other parameters to functions, e.g. graphical parameters.

Details

Function goodness.metaMDS finds a goodness of fit statistic for observations (points). This is
defined so that sum of squared values is equal to squared stress. Large values indicate poor fit. The
absolute values of the goodness statistic depend on the definition of the stress: isoMDS expresses
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stress in percents, and therefore its goodness values are 100 times higher than those of monoMDS
which expresses the stress as a proportion.

Function stressplot draws a Shepard diagram which is a plot of ordination distances and mono-
tone or linear fit line against original dissimilarities. In addition, it displays two correlation-like
statistics on the goodness of fit in the graph. The nonmetric fit is based on stress S and defined
as R2 = 1 − S2. The “linear fit” is the squared correlation between fitted values and ordination
distances. For monoMDS, the “linear fit” and R2 from “stress type 2” are equal.

Both functions can be used with metaMDS, monoMDS and isoMDS. The original dissimilarities should
not be given for monoMDS or metaMDS results (the latter tries to reconstruct the dissimilarities using
metaMDSredist if isoMDS was used as its engine). With isoMDS the dissimilarities must be given.
In either case, the functions inspect that dissimilarities are consistent with current ordination, and
refuse to analyse inconsistent dissimilarities. Function goodness.metaMDS is generic in vegan, but
you must spell its name completely with isoMDS which has no class.

Value

Function goodness returns a vector of values. Function stressplot returns invisibly an object
with itmes for original dissimilarities, ordination distances and fitted values.

Author(s)

Jari Oksanen.

See Also

metaMDS, monoMDS, isoMDS, Shepard.

Examples

data(varespec)
mod <- metaMDS(varespec)
stressplot(mod)
gof <- goodness(mod)
gof
plot(mod, display = "sites", type = "n")
points(mod, display = "sites", cex = 2*gof/mean(gof))

humpfit No-interaction Model for Hump-backed Species Richness vs. Biomass

Description

Function humpfit fits a no-interaction model for species richness vs. biomass data (Oksanen 1996).
This is a null model that produces a hump-backed response as an artifact of plant size and density.
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Usage

humpfit(mass, spno, family = poisson, start)
## S3 method for class ’humpfit’
summary(object, ...)
## S3 method for class ’humpfit’
predict(object, newdata = NULL, ...)
## S3 method for class ’humpfit’
plot(x, xlab = "Biomass", ylab = "Species Richness", lwd = 2,

l.col = "blue", p.col = 1, type = "b", ...)
## S3 method for class ’humpfit’
points(x, ...)
## S3 method for class ’humpfit’
lines(x, segments=101, ...)
## S3 method for class ’humpfit’
profile(fitted, parm = 1:3, alpha = 0.01, maxsteps = 20, del = zmax/5, ...)

Arguments

mass Biomass.

spno Species richness.

start Vector of starting values for all three parameters.

family Family of error distribution. Any family can be used, but the link function is
always Fisher’s diversity model, and other link functions are silently ignored.

x, object, fitted

Result object of humpfit

newdata Values of mass used in predict. The original data values are used if missing.

xlab,ylab Axis labels in plot

lwd Line width

l.col, p.col Line and point colour in plot

type Type of plot: "p" for observed points, "l" for fitted lines, "b" for both, and
"n" for only setting axes.

segments Number of segments used for fitted lines.

parm Profiled parameters.
alpha, maxsteps, del

Parameters for profiling range and density.

... Other parameters to functions.

Details

The no-interaction model assumes that the humped species richness pattern along biomass gradient
is an artifact of plant size and density (Oksanen 1996). For low-biomass sites, it assumes that
plants have a fixed size, and biomass increases with increasing number of plants. When the sites
becomes crowded, the number of plants and species richness reaches the maximum. Higher biomass
is reached by increasing the plant size, and then the number of plants and species richness will
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decrease. At biomasses below the hump, plant number and biomass are linearly related, and above
the hump, plant number is proportional to inverse squared biomass. The number of plants is related
to the number of species by the relationship (link function) from Fisher’s log-series (Fisher et al.
1943).

The parameters of the model are:

1. hump: the location of the hump on the biomass gradient.

2. scale: an arbitrary multiplier to translate the biomass into virtual number of plants.

3. alpha: Fisher’s α to translate the virtual number of plants into number of species.

The parameters scale and alpha are intermingled and this function should not be used for esti-
mating Fisher’s α. Probably the only meaningful and interesting parameter is the location of the
hump.

Function may be very difficult to fit and easily gets trapped into local solutions, or fails with non-
Poisson families, and function profile should be used to inspect the fitted models. If you have
loaded package MASS, you can use functions plot.profile, pairs.profile for graphical in-
spection of the profiles, and confint.profile.glm for the profile based confidence intervals.

The original model intended to show that there is no need to speculate about ‘competition’ and
‘stress’ (Al-Mufti et al. 1977), but humped response can be produced as an artifact of using fixed
plot size for varying plant sizes and densities.

Value

The function returns an object of class "humpfit" inheriting from class "glm". The result object
has specific summary, predict, plot, points and lines methods. In addition, it can be accessed
by the following methods for glm objects: AIC, extractAIC, deviance, coef, residuals.glm
(except type = "partial"), fitted, and perhaps some others. In addition, function ellipse.glm
(package ellipse) can be used to draw approximate confidence ellipses for pairs of parameters, if
the normal assumptions look appropriate.

Note

The function is a replacement for the original GLIM4 function at the archive of Journal of Ecol-
ogy. There the function was represented as a mixed glm with one non-linear parameter (hump) and
a special one-parameter link function from Fisher’s log-series. The current function directly ap-
plies non-linear maximum likelihood fitting using function nlm. Some expected problems with the
current approach are:

• The function is discontinuous at hump and may be difficult to optimize in some cases (the lines
will always join, but the derivative jumps).

• The function does not try very hard to find sensible starting values and can fail. The user may
supply starting values in argument start if fitting fails.

• The estimation is unconstrained, but both scale and alpha should always be positive. Perhaps
they should be fitted as logarithmic. Fitting Gamma family models might become easier, too.

Author(s)

Jari Oksanen
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References

Al-Mufti, M.M., Sykes, C.L, Furness, S.B., Grime, J.P & Band, S.R. (1977) A quantitative analysis
of shoot phenology and dominance in herbaceous vegetation. Journal of Ecology 65,759–791.

Fisher, R.A., Corbet, A.S. & Williams, C.B. (1943) The relation between the number of species
and the number of individuals in a random sample of of an animal population. Journal of Animal
Ecology 12, 42–58.

Oksanen, J. (1996) Is the humped relationship between species richness and biomass an artefact
due to plot size? Journal of Ecology 84, 293–295.

See Also

fisherfit, profile.glm, confint.glm.

Examples

##
## Data approximated from Al-Mufti et al. (1977)
##
mass <- c(140,230,310,310,400,510,610,670,860,900,1050,1160,1900,2480)
spno <- c(1, 4, 3, 9, 18, 30, 20, 14, 3, 2, 3, 2, 5, 2)
sol <- humpfit(mass, spno)
summary(sol) # Almost infinite alpha...
plot(sol)
# confint is in MASS, and impicitly calls profile.humpfit.
# Parameter 3 (alpha) is too extreme for profile and confint, and we
# must use only "hump" and "scale".
library(MASS)
plot(profile(sol, parm=1:2))
confint(sol, parm=c(1,2))

indpower Indicator Power of Species

Description

Indicator power calculation of Halme et al. (2009) or the congruence between indicator and target
species.

Usage

indpower(x, type = 0)

Arguments

x Community data frame or matrix.

type The type of statistic to be returned. See Details for explanation.
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Details

Halme et al. (2009) described an index of indicator power defined as IPI =
√
a× b, where a =

S/OI and b = 1 − (OT − S)/(N − OI). N is the number of sites, S is the number of shared
occurrences of the indicator (I) and the target (T ) species. OI and OT are number of occurrences
of the indicator and target species. The type argument in the function call enables to choose which
statistic to return. type = 0 returns IPI , type = 1 returns a, type = 2 returns b. Total indicator
power (TIP) of an indicator species is the column mean (without its own value, see examples).
Halme et al. (2009) explain how to calculate confidence intervals for these statistics, see Examples.

Value

A matrix with indicator species as rows and target species as columns (this is indicated by the first
letters of the row/column names).

Author(s)

Peter Solymos

References

Halme, P., Mönkkönen, M., Kotiaho, J. S, Ylisirniö, A-L. 2009. Quantifying the indicator power of
an indicator species. Conservation Biology 23: 1008–1016.

See Also

indval (package labdsv) for the indicator species analysis of Dufrêne & Legendre. Function beals
estimates individual cell probabilities of species occurrences.

Examples

data(dune)
## IP values
ip <- indpower(dune)
## and TIP values
diag(ip) <- NA
(TIP <- rowMeans(ip, na.rm=TRUE))

## p value calculation for a species
## from Halme et al. 2009
## i is ID for the species
i <- 1
fun <- function(x, i) indpower(x)[i,-i]
## ’c0’ randomizes species occurrences
os <- oecosimu(dune, fun, "c0", i=i, nsimul=99)
## get z values from oecosimu output
z <- os$oecosimu$z
## p-value
(p <- sum(z) / sqrt(length(z)))
## ’heterogeneity’ measure
(chi2 <- sum((z - mean(z))^2))
pchisq(chi2, df=length(z)-1)
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## Halme et al.’s suggested output
out <- c(TIP=TIP[i],

significance=p,
heterogeneity=chi2,
minIP=min(fun(dune, i=i)),
varIP=sd(fun(dune, i=i)^2))

out

isomap Isometric Feature Mapping Ordination

Description

The function performs isometric feature mapping which consists of three simple steps: (1) retain
only some of the shortest dissimilarities among objects, (2) estimate all dissimilarities as shortest
path distances, and (3) perform metric scaling (Tenenbaum et al. 2000).

Usage

isomap(dist, ndim=10, ...)
isomapdist(dist, epsilon, k, path = "shortest", fragmentedOK =FALSE, ...)
## S3 method for class ’isomap’
summary(object, axes = 4, ...)
## S3 method for class ’isomap’
plot(x, net = TRUE, n.col = "gray", type = "points", ...)
rgl.isomap(x, web = "white", ...)

Arguments

dist Dissimilarities.
ndim Number of axes in metric scaling (argument k in cmdscale).
epsilon Shortest dissimilarity retained.
k Number of shortest dissimilarities retained for a point. If both epsilon and k

are given, epsilon will be used.
path Method used in stepacross to estimate the shortest path, with alternatives

"shortest" and "extended".
fragmentedOK What to do if dissimilarity matrix is fragmented. If TRUE, analyse the largest

connected group, otherwise stop with error.
x, object An isomap result object.
axes Number of axes displayed.
net Draw the net of retained dissimilarities.
n.col Colour of drawn net segments.
type Plot observations either as "points", "text" or use "none" to plot no ob-

servations. The "text" will use ordilabel if net = TRUE and ordiplot if
net = FALSE, and pass extra arguments to these functions.

web Colour of the web in rgl graphics.
... Other parameters passed to functions.
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Details

The function isomap first calls function isomapdist for dissimilarity transformation, and then per-
forms metric scaling for the result. All arguments to isomap are passed to isomapdist. The func-
tions are separate so that the isompadist transformation could be easily used with other functions
than simple linear mapping of cmdscale.

Function isomapdist retains either dissimilarities equal or shorter to epsilon, or if epsilon is
not given, at least k shortest dissimilarities for a point. Then a complete dissimilarity matrix is
reconstructed using stepacross using either flexible shortest paths or extended dissimilarities (for
details, see stepacross).

De’ath (1999) actually published essentially the same method before Tenenbaum et al. (2000),
and De’ath’s function is available in xdiss in package mvpart. The differences are that isomap
introduced the k criterion, whereas De’ath only used epsilon criterion. In practice, De’ath also
retains higher proportion of dissimilarities than typical isomap.

The plot function uses internally ordiplot, except that it adds text over net using ordilabel.
The plot function passes extra arguments to these functions. In addition, function rgl.isomap can
make dynamic 3D plots that can be rotated on the screen. The functions is based on ordirgl, but it
adds the connecting lines. The function passes extra arguments to scores or ordirgl functions so
that you can select axes, or define colours and sizes of points.

Value

Function isomapdist returns a dissimilarity object similar to dist. Function isomap returns an
object of class isomap with plot and summary methods. The plot function returns invisibly an
object of class ordiplot. Function scores can extract the ordination scores.

Note

Tenenbaum et al. (2000) justify isomap as a tool of unfolding a manifold (e.g. a ’Swiss Roll’).
Even with a manifold structure, the sampling must be even and dense so that dissimilarities along a
manifold are shorter than across the folds. If data do not have such a manifold structure, the results
are very sensitive to parameter values.

Author(s)

Jari Oksanen

References

De’ath, G. (1999) Extended dissimilarity: a method of robust estimation of ecological distances
from high beta diversity data. Plant Ecology 144, 191–199

Tenenbaum, J.B., de Silva, V. & Langford, J.C. (2000) A global network framework for nonlinear
dimensionality reduction. Science 290, 2319–2323.

See Also

The underlying functions that do the proper work are stepacross, distconnected and cmdscale.
Package mvpart provides a parallel (but a bit different) implementation (xdiss). Moreover, vegan
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function metaMDS may trigger stepacross transformation, but usually only for longest dissimi-
larities. The plot method of vegan minimum spanning tree function (spantree) has even more
extreme way of isomapping things.

Examples

## The following examples also overlay minimum spanning tree to
## the graphics in red.
op <- par(mar=c(4,4,1,1)+0.2, mfrow=c(2,2))
data(BCI)
dis <- vegdist(BCI)
tr <- spantree(dis)
pl <- ordiplot(cmdscale(dis), main="cmdscale")
lines(tr, pl, col="red")
ord <- isomap(dis, k=3)
ord
pl <- plot(ord, main="isomap k=3")
lines(tr, pl, col="red")
pl <- plot(isomap(dis, k=5), main="isomap k=5")
lines(tr, pl, col="red")
pl <- plot(isomap(dis, epsilon=0.45), main="isomap epsilon=0.45")
lines(tr, pl, col="red")
par(op)
## The following command requires user interaction
## Not run:
rgl.isomap(ord, size=4, color="hotpink")

## End(Not run)

kendall.global Kendall coefficient of concordance

Description

Function kendall.global computes and tests the coefficient of concordance among several judges
(variables, species) through a permutation test.

Function kendall.post carries out a posteriori tests of the contributions of individual judges (vari-
ables, species) to the overall concordance of their group through permutation tests.

If several groups of judges are identified in the data table, coefficients of concordance (kendall.global)
or a posteriori tests (kendall.post) will be computed for each group separately. Use in ecology:
to identify significant species associations.

Usage

kendall.global(Y, group, nperm = 999, mult = "holm")
kendall.post(Y, group, nperm = 999, mult = "holm")
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Arguments

Y Data file (data frame or matrix) containing quantitative or semiquantitative data.
Rows are objects and columns are judges (variables). In community ecology,
that table is often a site-by-species table.

group A vector defining how judges should be divided into groups. See example below.
If groups are not explicitly defined, all judges in the data file will be considered
as forming a single group.

nperm Number of permutations to be performed. Default is 999.

mult Correct P-values for multiple testing using the alternatives described in p.adjust
and in addition "sidak" (see Details). The Bonferroni correction is overly con-
servative; it is not recommended. It is included to allow comparisons with the
other methods.

Details

Y must contain quantitative data. They will be transformed to ranks within each column before
computation of the coefficient of concordance.

The search for species associations described in Legendre (2005) proceeds in 3 steps:

(1) Correlation analysis of the species. A possible method is to compute Ward’s agglomerative
clustering of a matrix of correlations among the species. In detail: (1.1) compute a Pearson or
Spearman correlation matrix (correl.matrix) among the species; (1.2) turn it into a distance
matrix: mat.D = as.dist(1-correl.matrix); (1.3) carry out Ward’s hierarchical clustering of
that matrix using hclust: clust.ward = hclust(mat.D, "ward"); (1.4) plot the dendrogram:
plot(clust.ward, hang=-1); (1.5) cut the dendrogram in two groups, retrieve the vector of
species membership: group.2 = cutree(clust.ward, k=2). (1.6) After steps 2 and 3 below,
you may have to come back and try divisions of the species into k = 3, 4, 5, . . . groups.

(2) Compute global tests of significance of the 2 (or more) groups using the function kendall.global
and the vector defining the groups. Groups that are not globally significant must be refined or aban-
doned.

(3) Compute a posteriori tests of the contribution of individual species to the concordance of their
group using the function kendall.post and the vector defining the groups. If some species have
negative values for "Spearman.mean", this means that these species clearly do not belong to the
group, hence that group is too inclusive. Go back to (1.5) and cut the dendrogram more finely. The
left and right groups can be cut separately, independently of the levels along the dendrogram; write
your own vector of group membership if cutree does not produce the desired groups.

The corrections used for multiple testing are applied to the list of P-values (P); they take into ac-
count the number of tests (k) carried out simultaneously (number of groups in kendall.global, or
number of species in kendall.post). The corrections are performed using function p.adjust; see
that function for the description of the correction methods. In addition, there is Šidák correction
which defined as Pcorr = 1− (1− P )k.

Value

A table containing the following information in rows. The columns correspond to the groups of
"judges" defined in vector "group". When function Kendall.post is used, there are as many tables
as the number of predefined groups.
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W Kendall’s coefficient of concordance, W.

F F statistic. F = W*(m-1)/(1-W) where m is the number of judges.

Prob.F Probability associated with the F statistic, computed from the F distribution with
nu1 = n-1-(2/m) and nu2 = nu1*(m-1); n is the number of objects.

Corrected prob.F

Probabilities associated with F, corrected using the method selected in parameter
mult. Shown only if there are more than one group.

Chi2 Friedman’s chi-square statistic (Friedman 1937) used in the permutation test of
W.

Prob.perm Permutational probabilities, uncorrected.
Corrected prob.perm

Permutational probabilities corrected using the method selected in parameter
mult. Shown only if there are more than one group.

Spearman.mean Mean of the Spearman correlations between the judge under test and all the other
judges in the same group.

W.per.species Contribution of the judge under test to the overall concordance statistic for that
group.

Author(s)

F. Guillaume Blanchet, University of Alberta, and Pierre Legendre, Université de Montréal

References

Friedman, M. 1937. The use of ranks to avoid the assumption of normality implicit in the analysis
of variance. Journal of the American Statistical Association 32: 675-701.

Kendall, M. G. and B. Babington Smith. 1939. The problem of m rankings. Annals of Mathematical
Statistics 10: 275-287.

Legendre, P. 2005. Species associations: the Kendall coefficient of concordance revisited. Journal
of Agricultural, Biological, and Environmental Statistics 10: 226-245.

Legendre, P. 2009. Coefficient of concordance. In: Encyclopedia of Research Design. SAGE
Publications (in press).

Siegel, S. and N. J. Castellan, Jr. 1988. Nonparametric statistics for the behavioral sciences. 2nd
edition. McGraw-Hill, New York.

See Also

cor, friedman.test, hclust, cutree, kmeans, cascadeKM, indval

Examples

data(mite)
mite.hel <- decostand(mite, "hel")

# Reproduce the results shown in Table 2 of Legendre (2005), a single group
mite.small <- mite.hel[c(4,9,14,22,31,34,45,53,61,69),c(13:15,23)]
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kendall.global(mite.small, nperm=49)
kendall.post(mite.small, mult="holm", nperm=49)

# Reproduce the results shown in Tables 3 and 4 of Legendre (2005), 2 groups
group <-c(1,1,2,1,1,1,1,1,2,1,1,1,1,1,1,2,1,2,1,1,1,1,2,1,2,1,1,1,1,1,2,2,2,2,2)
kendall.global(mite.hel, group=group, nperm=49)
kendall.post(mite.hel, group=group, mult="holm", nperm=49)

# NOTE: ’nperm’ argument usually needs to be larger than 49.
# It was set to this low value for demonstration purposes.

linestack Plots One-dimensional Diagrams without Overwriting Labels

Description

Function linestack plots vertical one-dimensional plots for numeric vectors. The plots are always
labelled, but the labels are moved vertically to avoid overwriting.

Usage

linestack(x, labels, cex = 0.8, side = "right", hoff = 2, air = 1.1,
at = 0, add = FALSE, axis = FALSE, ...)

Arguments

x Numeric vector to be plotted.

labels Text labels used instead of default (names of x).

cex Size of the labels.

side Put labels to the "right" or "left" of the axis.

hoff Distance from the vertical axis to the label in units of the width of letter “m”.

air Multiplier to string height to leave empty space between labels.

at Position of plot in horizontal axis.

add Add to an existing plot.

axis Add axis to the plot.

... Other graphical parameters to labels.

Value

The function returns invisibly the shifted positions of labels in user coordinates.

Note

The function always draws labelled diagrams. If you want to have unlabelled diagrams, you can
use, e.g., plot, stripchart or rug.
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Author(s)

Jari Oksanen

Examples

## First DCA axis
data(dune)
ord <- decorana(dune)
linestack(scores(ord, choices=1, display="sp"))
linestack(scores(ord, choices=1, display="si"), side="left", add=TRUE)
title(main="DCA axis 1")

make.cepnames Abbreviates a Botanical or Zoological Latin Name into an Eight-
character Name

Description

A standard CEP name has four first letters of the generic name and four first letters of the specific
epithet of a Latin name. The last epithet, that may be a subspecific name, is used in the current func-
tion. If the name has only one component, it is abbreviated to eight characters (see abbreviate).
The returned names are made unique with function make.unique which adds numbers to the end
of CEP names if needed.

Usage

make.cepnames(names, seconditem = FALSE)

Arguments

names The names to be formatted into CEP names.

seconditem Take always the second item of the original name to the abbreviated name in-
stead of the last original item (default).

Details

Cornell Ecology Programs (CEP) used eight-letter abbreviations for species and site names. In
species, the names were formed by taking four first letters of the generic name and four first let-
ters of the specific or subspecific epithet. The current function first makes valid R names using
make.names, and then splits these into elemets. The CEP name is made by taking the four first
letters of the first element, and four first letters of the last (default) or the second element (with
seconditem = TRUE). If there was only one name element, it is abbreviated to eight letters. Fi-
nally, the names are made unique which may add numbers to duplicated names.

The CEP names were originally used, because old FORTRAN IV did not have CHARACTER data type,
but text had to be stored in numerical variables, which in popular computers could hold four charac-
ters. In modern times, there is no reason for this limitation, but ecologists are used to these names,
and they may be practical to avoid congestion in ordination plots.
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Value

Function returns CEP names.

Note

The function is simpleminded and rigid. You must write a better one if you need.

Author(s)

Jari Oksanen

See Also

make.names, strsplit, substring, paste, abbreviate.

Examples

make.cepnames(c("Aa maderoi", "Poa sp.", "Cladina rangiferina",
"Cladonia cornuta", "Cladonia cornuta var. groenlandica",
"Cladonia rangiformis", "Bryoerythrophyllum"))
data(BCI)
colnames(BCI) <- make.cepnames(colnames(BCI))

mantel Mantel and Partial Mantel Tests for Dissimilarity Matrices

Description

Function mantel finds the Mantel statistic as a matrix correlation between two dissimilarity matri-
ces, and function mantel.partial finds the partial Mantel statistic as the partial matrix correlation
between three dissimilarity matrices. The significance of the statistic is evaluated by permuting
rows and columns of the first dissimilarity matrix.

Usage

mantel(xdis, ydis, method="pearson", permutations=999, strata,
na.rm = FALSE)

mantel.partial(xdis, ydis, zdis, method = "pearson", permutations = 999,
strata, na.rm = FALSE)

Arguments

xdis, ydis, zdis

Dissimilarity matrices or a dist objects.

method Correlation method, as accepted by cor: "pearson", "spearman" or "kendall".

permutations Number of permutations in assessing significance.
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strata An integer vector or factor specifying the strata for permutation. If supplied,
observations are permuted only within the specified strata.

na.rm Remove missing values in calculation of Mantel correlation. Use this option
with care: Permutation tests can be biased, in particular if two matrices had
missing values in matching positions.

Details

Mantel statistic is simply a correlation between entries of two dissimilarity matrices (some use cross
products, but these are linearly related). However, the significance cannot be directly assessed,
because there are N(N − 1)/2 entries for just N observations. Mantel developed asymptotic test,
but here we use permutations of N rows and columns of dissimilarity matrix. See permutations
for additional details on permutation tests in Vegan.

Partial Mantel statistic uses partial correlation conditioned on the third matrix. Only the first matrix
is permuted so that the correlation structure between second and first matrices is kept constant.
Although mantel.partial silently accepts other methods than "pearson", partial correlations will
probably be wrong with other methods.

The function uses cor, which should accept alternatives pearson for product moment correlations
and spearman or kendall for rank correlations.

Value

The function returns a list of class mantel with following components:

Call Function call.

method Correlation method used, as returned by cor.test.

statistic The Mantel statistic.

signif Empirical significance level from permutations.

perm A vector of permuted values. The distribution of permuted values can be in-
spected with density.mantel function.

permutations Number of permutations.

Note

Legendre & Legendre (2012, Box 10.4) warn against using partial Mantel correlations.

Author(s)

Jari Oksanen

References

The test is due to Mantel, of course, but the current implementation is based on Legendre and
Legendre.

Legendre, P. and Legendre, L. (2012) Numerical Ecology. 3rd English Edition. Elsevier.
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See Also

cor for correlation coefficients, protest (“Procrustes test”) for an alternative with ordination di-
agrams, anosim and mrpp for comparing dissimilarities against classification. For dissimilarity
matrices, see vegdist or dist. See bioenv for selecting environmental variables.

Examples

## Is vegetation related to environment?
data(varespec)
data(varechem)
veg.dist <- vegdist(varespec) # Bray-Curtis
env.dist <- vegdist(scale(varechem), "euclid")
mantel(veg.dist, env.dist)
mantel(veg.dist, env.dist, method="spear")

mantel.correlog Mantel Correlogram

Description

Function mantel.correlog computes a multivariate Mantel correlogram. Proposed by Sokal (1986)
and Oden and Sokal (1986), the method is also described in Legendre and Legendre (2012, pp. 819–
821).

Usage

mantel.correlog(D.eco, D.geo=NULL, XY=NULL, n.class=0, break.pts=NULL,
cutoff=TRUE, r.type="pearson", nperm=999, mult="holm", progressive=TRUE)
## S3 method for class ’mantel.correlog’
plot(x, alpha=0.05, ...)

Arguments

D.eco An ecological distance matrix, with class either dist or matrix.

D.geo A geographic distance matrix, with class either dist or matrix. Provide either
D.geo or XY. Default: D.geo=NULL.

XY A file of Cartesian geographic coordinates of the points. Default: XY=NULL.

n.class Number of classes. If n.class=0, the Sturges equation will be used unless break
points are provided.

break.pts Vector containing the break points of the distance distribution. Provide (n.class+1)
breakpoints, that is, a list with a beginning and an ending point. Default: break.pts=NULL.

cutoff For the second half of the distance classes, cutoff = TRUE limits the correl-
ogram to the distance classes that include all points. If cutoff = FALSE, the
correlogram includes all distance classes.
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r.type Type of correlation in calculation of the Mantel statistic. Default: r.type="pearson".
Other choices are r.type="spearman" and r.type="kendall", as in functions
cor and mantel.

nperm Number of permutations for the tests of significance. Default: nperm=999. For
large data files, permutation tests are rather slow.

mult Correct P-values for multiple testing. The correction methods are "holm" (de-
fault), "hochberg", "sidak", and other methods available in the p.adjust
function: "bonferroni" (best known, but not recommended because it is overly
conservative), "hommel", "BH", "BY", "fdr", and "none".

progressive Default: progressive=TRUE for progressive correction of multiple-testing, as
described in Legendre and Legendre (1998, p. 721). Test of the first distance
class: no correction; second distance class: correct for 2 simultaneous tests;
distance class k: correct for k simultaneous tests. progressive=FALSE: correct
all tests for n.class simultaneous tests.

x Output of mantel.correlog.
alpha Significance level for the points drawn with black symbols in the correlogram.

Default: alpha=0.05.
... Other parameters passed from other functions.

Details

A correlogram is a graph in which spatial correlation values are plotted, on the ordinate, as a func-
tion of the geographic distance classes among the study sites along the abscissa. In a Mantel correl-
ogram, a Mantel correlation (Mantel 1967) is computed between a multivariate (e.g. multi-species)
distance matrix of the user’s choice and a design matrix representing each of the geographic dis-
tance classes in turn. The Mantel statistic is tested through a permutational Mantel test performed
by vegan’s mantel function.

When a correction for multiple testing is applied, more permutations are necessary than in the no-
correction case, to obtain significant p-values in the higher correlogram classes.

The print.mantel.correlog function prints out the correlogram. See examples.

Value

mantel.res A table with the distance classes as rows and the class indices, number of dis-
tances per class, Mantel statistics (computed using Pearson’s r, Spearman’s r, or
Kendall’s tau), and p-values as columns. A positive Mantel statistic indicates
positive spatial correlation. An additional column with p-values corrected for
multiple testing is added unless mult="none".

n.class The n umber of distance classes.
break.pts The break points provided by the user or computed by the program.
mult The name of the correction for multiple testing. No correction: mult="none".
progressive A logical (TRUE, FALSE) value indicating whether or not a progressive correction

for multiple testing was requested.
n.tests The number of distance classes for which Mantel tests have been computed and

tested for significance.
call The function call.
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Author(s)

Pierre Legendre, Université de Montréal

References

Legendre, P. and L. Legendre. 2012. Numerical ecology, 3rd English edition. Elsevier Science BV,
Amsterdam.

Mantel, N. 1967. The detection of disease clustering and a generalized regression approach. Cancer
Res. 27: 209-220.

Oden, N. L. and R. R. Sokal. 1986. Directional autocorrelation: an extension of spatial correlo-
grams to two dimensions. Syst. Zool. 35: 608-617.

Sokal, R. R. 1986. Spatial data analysis and historical processes. 29-43 in: E. Diday et al. [eds.]
Data analysis and informatics, IV. North-Holland, Amsterdam.

Sturges, H. A. 1926. The choice of a class interval. Journal of the American Statistical Association
21: 65–66.

Examples

# Mite data available in "vegan"
data(mite)
data(mite.xy)
mite.hel <- decostand(mite, "hellinger")

# Detrend the species data by regression on the site coordinates
mite.hel.resid <- resid(lm(as.matrix(mite.hel) ~ ., data=mite.xy))

# Compute the detrended species distance matrix
mite.hel.D <- dist(mite.hel.resid)

# Compute Mantel correlogram with cutoff, Pearson statistic
mite.correlog <- mantel.correlog(mite.hel.D, XY=mite.xy, nperm=49)
summary(mite.correlog)
mite.correlog
# or: print(mite.correlog)
# or: print.mantel.correlog(mite.correlog)
plot(mite.correlog)

# Compute Mantel correlogram without cutoff, Spearman statistic
mite.correlog2 <- mantel.correlog(mite.hel.D, XY=mite.xy, cutoff=FALSE,

r.type="spearman", nperm=49)
summary(mite.correlog2)
mite.correlog2
plot(mite.correlog2)

# NOTE: ’nperm’ argument usually needs to be larger than 49.
# It was set to this low value for demonstration purposes.
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MDSrotate Rotate First MDS Dimension Parallel to an External Variable

Description

Function rotates a multidimensional scaling result so that its first dimension is parallel to an external
(environmental variable). The function can handle the results from metaMDS or monoMDS functions.

Usage

MDSrotate(object, vec, na.rm = FALSE, ...)

Arguments

object A result object from metaMDS or monoMDS.

vec A continuous environmental variable (vector of the same length as the number
of points).

na.rm Remove missing values from the continuous variable vec.

... Other arguments (ignored).

Details

The orientation and rotation are undefined in multidimensional scaling. Functions metaMDS and
metaMDS can rotate their solutions to principal components so that the dispersion of the points is
highest on the first dimension. Sometimes a different rotation is more intuitive, and MDSrotate
allows rotation of the result so that the first axis is parallel to a given external variable.

Value

Function returns the original ordination result, but with rotated scores (both site and species if
available), and the pc attribute of scores set to FALSE.

Author(s)

Jari Oksanen

See Also

metaMDS, monoMDS.

Examples

data(varespec)
data(varechem)
mod <- monoMDS(vegdist(varespec))
mod <- with(varechem, MDSrotate(mod, pH))
plot(mod)
ef <- envfit(mod ~ pH, varechem, permutations = 0)
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plot(ef)
ordisurf(mod ~ pH, varechem, knots = 1, add = TRUE)

metaMDS Nonmetric Multidimensional Scaling with Stable Solution from Ran-
dom Starts, Axis Scaling and Species Scores

Description

Function metaMDS performs Nonmetric Multidimensional Scaling (NMDS), and tries to find a stable
solution using several random starts. In addition, it standardizes the scaling in the result, so that the
configurations are easier to interpret, and adds species scores to the site ordination. The metaMDS
function does not provide actual NMDS, but it calls another function for the purpose. Currently
monoMDS is the default choice, and it is also possible to call the isoMDS (MASS package).

Usage

metaMDS(comm, distance = "bray", k = 2, trymax = 20,
engine = c("monoMDS", "isoMDS"), autotransform =TRUE,
noshare = (engine == "isoMDS"), wascores = TRUE, expand = TRUE,
trace = 1, plot = FALSE, previous.best, ...)

## S3 method for class ’metaMDS’
plot(x, display = c("sites", "species"), choices = c(1, 2),

type = "p", shrink = FALSE, ...)
## S3 method for class ’metaMDS’
points(x, display = c("sites", "species"),

choices = c(1,2), shrink = FALSE, select, ...)
## S3 method for class ’metaMDS’
text(x, display = c("sites", "species"), labels,

choices = c(1,2), shrink = FALSE, select, ...)
## S3 method for class ’metaMDS’
scores(x, display = c("sites", "species"), shrink = FALSE,

choices, ...)
metaMDSdist(comm, distance = "bray", autotransform = TRUE,

noshare = TRUE, trace = 1, commname, zerodist = "ignore",
distfun = vegdist, ...)

metaMDSiter(dist, k = 2, trymax = 20, trace = 1, plot = FALSE,
previous.best, engine = "monoMDS", maxit = 200, ...)

initMDS(x, k=2)
postMDS(X, dist, pc=TRUE, center=TRUE, halfchange, threshold=0.8,

nthreshold=10, plot=FALSE, ...)
metaMDSredist(object, ...)

Arguments

comm Community data. Alternatively, dissimilarities either as a dist structure or as a
symmetric square matrix. In the latter case all other stages are skipped except
random starts and centring and pc rotation of axes.
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distance Dissimilarity index used in vegdist.

k Number of dimensions. NB., the number of points n should be n > 2k+ 1, and
preferably higher in non-metric MDS.

trymax Maximum number of random starts in search of stable solution.

engine The function used for MDS. The default is to use the monoMDS function in vegan,
but for backward compatibility it is also possible to use isoMDS of MASS.

autotransform Use simple heuristics for possible data transformation of typical community
data (see below). If you do not have community data, you should probably
set autotransform = FALSE.

noshare Triggering of calculation step-across or extended dissimilarities with function
stepacross. The argument can be logical or a numerical value greater than
zero and less than one. If TRUE, extended dissimilarities are used always when
there are no shared species between some sites, if FALSE, they are never used.
If noshare is a numerical value, stepacross is used when the proportion of
site pairs with no shared species exceeds noshare. The number of pairs with no
shared species is found with no.shared function, and noshare has no effect if
input data were dissimilarities instead of community data.

wascores Calculate species scores using function wascores.

expand Expand weighted averages of species in wascores.

trace Trace the function; trace = 2 or higher will be more voluminous.

plot Graphical tracing: plot interim results. You may want to set par(ask = TRUE)
with this option.

previous.best Start searches from a previous solution.

x metaMDS result (or a dissimilarity structure for initMDS.

choices Axes shown.

type Plot type: "p" for points, "t" for text, and "n" for axes only.

display Display "sites" or "species".

shrink Shrink back species scores if they were expanded originally.

labels Optional test to be used instead of row names.

select Items to be displayed. This can either be a logical vector which is TRUE for
displayed items or a vector of indices of displayed items.

X Configuration from multidimensional scaling.

commname The name of comm: should not be given if the function is called directly.

zerodist Handling of zero dissimilarities: either "fail" or "add" a small positive value,
or "ignore". monoMDS accepts zero dissimilarities and the default is zerodist = "ignore",
but with isoMDS you may need to set zerodist = "add".

distfun Dissimilarity function. Any function returning a dist object and accepting argu-
ment method can be used (but some extra arguments may cause name conflicts).

maxit Maximum number of iterations in the single NMDS run; passed to the engine
function monoMDS or isoMDS.

dist Dissimilarity matrix used in multidimensional scaling.
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pc Rotate to principal components.

center Centre the configuration.

halfchange Scale axes to half-change units. This defaults TRUE when dissimilarities were
evaluated within metaMDS and the dissimilarity index has an upper limit of 1. If
FALSE, the ordination dissimilarities are scaled to the same range as the input
dissimilarities.

threshold Largest dissimilarity used in half-change scaling.

nthreshold Minimum number of points in half-change scaling.

object A result object from metaMDS.

... Other parameters passed to functions. Function metaMDS passes all arguments to
its component functions metaMDSdist, metaMDSiter, postMDS, and to distfun
and engine.

Details

Non-metric Multidimensional Scaling (NMDS) is commonly regarded as the most robust uncon-
strained ordination method in community ecology (Minchin 1987). Function metaMDS is a wrapper
function that calls several other functions to combine Minchin’s (1987) recommendations into one
command. The complete steps in metaMDS are:

1. Transformation: If the data values are larger than common abundance class scales, the function
performs a Wisconsin double standardization (wisconsin). If the values look very large, the
function also performs sqrt transformation. Both of these standardizations are generally
found to improve the results. However, the limits are completely arbitrary (at present, data
maximum 50 triggers sqrt and > 9 triggers wisconsin). If you want to have a full control
of the analysis, you should set autotransform = FALSE and standardize and transform data
independently. The autotransform is intended for community data, and for other data types,
you should set autotransform = FALSE. This step is perfomed using metaMDSdist.

2. Choice of dissimilarity: For a good result, you should use dissimilarity indices that have a
good rank order relation to ordering sites along gradients (Faith et al. 1987). The default is
Bray-Curtis dissimilarity, because it often is the test winner. However, any other dissimilarity
index in vegdist can be used. Function rankindex can be used for finding the test winner for
you data and gradients. The default choice may be bad if you analyse other than community
data, and you should probably select an appropriate index using argument distance. This
step is performed using metaMDSdist.

3. Step-across dissimilarities: Ordination may be very difficult if a large proportion of sites have
no shared species. In this case, the results may be improved with stepacross dissimilarities,
or flexible shortest paths among all sites. The default NMDS engine is monoMDS which is able
to break tied values at the maximum dissimilarity, and this often is sufficient to handle cases
with no shared species, and therefore the default is not to use stepacross with monoMDS.
Function isoMDS does not handle tied values adequately, and therefore the default is to use
stepacross always when there are sites with no shared species with engine = "isoMDS".
The stepacross is triggered by option noshare. If you do not like manipulation of original
distances, you should set noshare = FALSE. This step is skipped if input data were dissimi-
larities instead of community data. This step is performed using metaMDSdist.
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4. NMDS with random starts: NMDS easily gets trapped into local optima, and you must start
NMDS several times from random starts to be confident that you have found the global
solution. The strategy in metaMDS is to first run NMDS starting with the metric scaling
(cmdscale which usually finds a good solution but often close to a local optimum), or use
the previous.best solution if supplied, and take its solution as the standard (Run 0). Then
metaMDS starts NMDS from several random starts (maximum number is given by trymax).
Function monoMDS defaults random starts, but isoMDS defaults to cmdscale, and there random
starts are generated by initMDS. If a solution is better (has a lower stress) than the previ-
ous standard, it is taken as the new standard. If the solution is better or close to a standard,
metaMDS compares two solutions using Procrustes analysis (function procrustes with option
symmetric = TRUE). If the solutions are very similar in their Procrustes rmse and the largest
residual is very small, the solutions are regarded as convergent and the better one is taken as
the new standard. Please note that the conditions are stringent, and you may have found good
and relatively stable solutions although the function is not yet satisfied. Setting trace = TRUE
will monitor the final stresses, and plot = TRUE will display Procrustes overlay plots from
each comparison. This step is performed using metaMDSiter. This is the only step performed
if input data (comm) were dissimilarities.

5. Scaling of the results: metaMDS will run postMDS for the final result. Function postMDS pro-
vides the following ways of “fixing” the indeterminacy of scaling and orientation of axes in
NMDS: Centring moves the origin to the average of the axes; Principal components rotate the
configuration so that the variance of points is maximized on first dimension (with function
MDSrotate you can alternatively rotate the configuration so that the first axis is parallel to an
environmental variable); Half-change scaling scales the configuration so that one unit means
halving of community similarity from replicate similarity. Half-change scaling is based on
closer dissimilarities where the relation between ordination distance and community dissim-
ilarity is rather linear (the limit is set by argument threshold). If there are enough points
below this threshold (controlled by the parameter nthreshold), dissimilarities are regressed
on distances. The intercept of this regression is taken as the replicate dissimilarity, and half-
change is the distance where similarity halves according to linear regression. Obviously the
method is applicable only for dissimilarity indices scaled to 0 . . . 1, such as Kulczynski, Bray-
Curtis and Canberra indices. If half-change scaling is not used, the ordination is scaled to the
same range as the original dissimilarities.

6. Species scores: Function adds the species scores to the final solution as weighted averages
using function wascores with given value of parameter expand. The expansion of weighted
averages can be undone with shrink = TRUE in plot or scores functions, and the calculation
of species scores can be suppressed with wascores = FALSE.

Value

Function metaMDS returns an object of class metaMDS. The final site ordination is stored in the item
points, and species ordination in the item species, and the stress in item stress (NB, the scaling
of the stress depends on the engine: isoMDS uses percents, and monoMDS proportions in the range
0 . . . 1). The other items store the information on the steps taken and the items returned by the
engine function. The object has print, plot, points and text methods. Functions metaMDSdist
and metaMDSredist return vegdist objects. Function initMDS returns a random configuration
which is intended to be used within isoMDS only. Functions metaMDSiter and postMDS returns the
result of NMDS with updated configuration.
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Warning

metaMDS uses monoMDS as its NMDS engine from vegan version 2.0-0, when it replaced the isoMDS
function. You can set argument engine to select the old engine.

Note

Function metaMDS is a simple wrapper for an NMDS engine (either monoMDS or isoMDS) and some
support functions (metaMDSdist, stepacross, metaMDSiter, initMDS, postMDS, wascores). You
can call these support functions separately for better control of results. Data transformation, dissim-
ilarities and possible stepacross are made in function metaMDSdist which returns a dissimilarity
result. Iterative search (with starting values from initMDS with monoMDS) is made in metaMDSiter.
Processing of result configuration is done in postMDS, and species scores added by wascores. If
you want to be more certain of reaching a global solution, you can compare results from several
independent runs. You can also continue analysis from previous results or from your own configura-
tion. Function may not save the used dissimilarity matrix (monoMDS does), but metaMDSredist tries
to reconstruct the used dissimilarities with original data transformation and possible stepacross.

The metaMDS function was designed to be used with community data. If you have other type of
data, you should probably set some arguments to non-default values: probably at least wascores,
autotransform and noshare should be FALSE. If you have negative data entries, metaMDS will set
the previous to FALSE with a warning.

Author(s)

Jari Oksanen

References

Faith, D. P, Minchin, P. R. and Belbin, L. (1987). Compositional dissimilarity as a robust measure
of ecological distance. Vegetatio 69, 57–68.

Minchin, P.R. (1987) An evaluation of relative robustness of techniques for ecological ordinations.
Vegetatio 69, 89–107.

See Also

monoMDS (and isoMDS), decostand, wisconsin, vegdist, rankindex, stepacross, procrustes,
wascores, MDSrotate, ordiplot.

Examples

## The recommended way of running NMDS (Minchin 1987)
##
data(dune)
# Global NMDS using monoMDS
sol <- metaMDS(dune)
sol
plot(sol, type="t")
## Start from previous best solution
sol <- metaMDS(dune, previous.best = sol)
## Local NMDS and stress 2 of monoMDS
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sol2 <- metaMDS(dune, model = "local", stress=2)
sol2
## Use Arrhenius exponent ’z’ as a binary dissimilarity measure
sol <- metaMDS(dune, distfun = betadiver, distance = "z")
sol

mite Oribatid Mite Data with Explanatory Variables

Description

Oribatid mite data. 70 soil cores collected by Daniel Borcard in 1989. See Borcard et al. (1992,
1994) for details.

Usage

data(mite)
data(mite.env)
data(mite.pcnm)
data(mite.xy)

Format

There are three linked data sets: mite that contains the data on 35 species of Oribatid mites,
mite.env that contains environmental data in the same sampling sites, mite.xy that contains ge-
ographic coordinates, and mite.pcnm that contains 22 PCNM base functions (columns) computed
from the geographic coordinates of the 70 sampling sites (Borcard & Legendre 2002). The whole
sampling area was 2.5 m x 10 m in size.

The fields in the environmental data are:

SubsDens Substrate density (g/L)

WatrCont Water content of the substrate (g/L)

Substrate Substrate type, factor with levels Sphagn1,Sphagn2 Sphagn3 Sphagn Litter Barepeat Interface

Shrub Shrub density, an ordered factor with levels 1 < 2 < 3

Topo Microtopograhy, a factor with levels Blanket and Hummock

Source

Pierre Legendre
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References

Borcard, D., P. Legendre and P. Drapeau. 1992. Partialling out the spatial component of ecological
variation. Ecology 73: 1045-1055.

Borcard, D. and P. Legendre. 1994. Environmental control and spatial structure in ecological
communities: an example using Oribatid mites (Acari, Oribatei). Environmental and Ecological
Statistics 1: 37-61.

Borcard, D. and P. Legendre. 2002. All-scale spatial analysis of ecological data by means of
principal coordinates of neighbour matrices. Ecological Modelling 153: 51-68.

Examples

data(mite)

model.matrix.cca Reconstruct Model Frame and Model Matrices of Constrained Ordi-
nation

Description

Function model.frame.cca reconstructs a data.frame with the variables used in the constrained
ordination method (cca, rda or capscale. Function model.matrix.cca creates a list of design ma-
trices used in constrained ordination. The items of the list are called Conditions and Constraints.
If either partial (Conditions) or constrained component was missing, a single matrix is returned.

Usage

## S3 method for class ’cca’
model.frame(formula, ...)
## S3 method for class ’cca’
model.matrix(object, ...)

Arguments

formula, object

A constrained ordination result object from which the needed information is
extracted.

... Other arguments passed to the default method of the function.

Details

The constrained ordination method objects do not save data on model frame or design matrix, and
the functions must reconstruct the information in the session. This will fail if the data sets and
variables of the original model are unavailable.
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Value

Returns a data frame (model.frame) or an unnnamed matrix or a list of two matrices called Constraints
and Conditions (model.matrix).

Author(s)

Jari Oksanen

See Also

model.frame, model.matrix.

Examples

data(dune)
data(dune.env)
mod <- cca(dune ~ poly(A1, 2) + Management + Use, dune.env)
model.frame(mod)
model.matrix(mod)

monoMDS Global and Local Non-metric Multidimensional Scaling and Linear
and Hybrid Scaling

Description

Function implements Kruskal’s (1964a,b) non-metric multidimensional scaling (NMDS) using mono-
tone regression and primary (“weak”) treatment of ties. In addition to traditional global NMDS, the
function implements local NMDS, linear and hybrid multidimensional scaling.

Usage

monoMDS(dist, y, k = 2, model = c("global", "local", "linear", "hybrid"),
threshold = 0.8, maxit = 200, weakties = TRUE, stress = 1,
scaling = TRUE, pc = TRUE, smin = 1e-4, sfgrmin = 1e-7,
sratmax=0.99999, ...)

## S3 method for class ’monoMDS’
scores(x, choices = NA, ...)
## S3 method for class ’monoMDS’
plot(x, choices = c(1,2), type = "t", ...)

Arguments

dist Input dissimilarities.

y Starting configuration. A random configuration will be generated if this is miss-
ing.
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k Number of dimensions. NB., the number of points n should be n > 2k+ 1, and
preferably higher in non-metric MDS.

model MDS model: "global" is normal non-metric MDS with a monotone regression,
"local" is non-metric MDS with separate regressions for each point, "linear"
uses linear regression, and "hybrid" uses linear regression for dissimilarities
below a threshold in addition to monotone regression. See Details.

threshold Dissimilarity below which linear regression is used alternately with monotone
regression.

maxit Maximum number of iterations.

weakties Use primary or weak tie treatment, where equal observed dissimilarities are al-
lowed to have different fitted values. if FALSE, then secondary (strong) tie treat-
ment is used, and tied values are not broken.

stress Use stress type 1 or 2 (see Details).

scaling Scale final scores to unit root mean squares.

pc Rotate final scores to principal components.
smin, sfgrmin, sratmax

Convergence criteria: iterations stop when stress drops below smin, scale factor
of the gradient drops below sfgrmin, or stress ratio goes over sratmax (but is
still < 1).

x A monoMDS result.

choices Dimensions returned or plotted. The default NA returns all dimensions.

type The type of the plot: "t" for text, "p" for points, and "n" for none.

... Other parameters to the functions (ignored in monoMDS, passed to graphical func-
tions in plot.).

Details

There are several versions of non-metric multidimensional scaling in R, but monoMDS offers the
following unique combination of features:

• “Weak” treatment of ties (Kruskal 1964a,b), where tied dissimilarities can be broken in mono-
tone regression. This is especially important for cases where compared sites share no species
and dissimilarities are tied to their maximum value of one. Breaking ties allows these points to
be at different distances and can help in recovering very long coenoclines (gradients). Func-
tion smacofSym (smacof package) also has adequate tie treatment.

• Handles missing values in a meaningful way.

• Offers “local” and “hybrid” scaling in addition to usual “global” NMDS (see below).

• Uses fast compiled code (isoMDS of the MASS package also uses compiled code).

Function monoMDS uses Kruskal’s (1964b) original monotone regression to minimize the stress.
There are two alternatives of stress: Kruskal’s (1964a,b) original or “stress 1” and an alternative
version or “stress 2” (Sibson 1972). Both of these stresses can be expressed with a general formula

s2 =

∑
(d− d̂)2∑
(d− d0)2
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where d are distances among points in ordination configuration, d̂ are the fitted ordination distances,
and d0 are the ordination distances under null model. For “stress 1” d0 = 0, and for “stress 2” d0 =
d̄ or mean distances. “Stress 2” can be expressed as s2 = 1 − R2, whereR2 is squared correlation
between fitted values and ordination distances, and so related to the “linear fit” of stressplot.

Function monoMDS can fit several alternative NMDS variants that can be selected with argument
model. The default model = "global" fits global NMDS, or Kruskal’s (1964a,b) original NMDS
similar to isoMDS (MASS) or smacofSym (smacof). Alternative model = "local" fits local NMDS
where independent monotone regression is used for each point (Sibson 1972). Alternative model = "linear"
fits a linear MDS. This fits a linear regression instead of monotone, and is not identical to metric
scaling or principal coordinates analysis (cmdscale) that performs an eigenvector decomposition
of dissimilarities (Gower 1966). Alternative model = "hybrid" implements hybrid MDS that uses
monotone regression for all points and linear regression for dissimilarities below or at a threshold
dissimilarity in alternating steps (Faith et al. 1987). Function stressplot can be used to display
the kind of regression in each model.

Scaling, orientation and direction of the axes is arbitrary. However, the function always centres the
axes, and the default scaling is to scale the configuration ot unit root mean square and to rotate the
axes (argument pc) to principal components so that the first dimension shows the major variation.
It is possible to rotate the solution so that the first axis is parallel to a given environmental variable
using fuction metaMDSrotate.

Value

Returns an object of class "monoMDS". The final scores are returned in item points (function
scores extracts these results), and the stress in item stress. In addition, there is a large number of
other items (but these may change without notice in the future releases).

Note

This is the default NMDS function used in metaMDS. Function metaMDS adds support functions so
that NMDS can be run like recommended by Minchin (1987).

Author(s)

Peter R. Michin (Fortran core) and Jari Oksanen (R interface).

References

Faith, D.P., Minchin, P.R and Belbin, L. 1987. Compositional dissimilarity as a robust measure of
ecological distance. Vegetatio 69, 57–68.

Gower, J.C. (1966). Some distance properties of latent root and vector methods used in multivariate
analysis. Biometrika 53, 325–328.

Kruskal, J.B. 1964a. Multidimensional scaling by optimizing goodness-of-fit to a nonmetric hy-
pothesis. Psychometrika 29, 1–28.

Kruskal, J.B. 1964b. Nonmetric multidimensional scaling: a numerical method. Psychometrika 29,
115–129.

Minchin, P.R. 1987. An evaluation of relative robustness of techniques for ecological ordinations.
Vegetatio 69, 89–107.
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Sibson, R. 1972. Order invariant methods for data analysis. Journal of the Royal Statistical Society
B 34, 311–349.

See Also

metaMDS for the vegan way of running NMDS, and isoMDS and smacofSym for some alternative
implementations of NMDS.

Examples

data(dune)
dis <- vegdist(dune)
m <- monoMDS(dis, model = "loc")
m
plot(m)

MOStest Mitchell-Olds \& Shaw Test for the Location of Quadratic Extreme

Description

Mitchell-Olds & Shaw test concerns the location of the highest (hump) or lowest (pit) value of a
quadratic curve at given points. Typically, it is used to study whether the quadratic hump or pit
is located within a studied interval. The current test is generalized so that it applies generalized
linear models (glm) with link function instead of simple quadratic curve. The test was popularized
in ecology for the analysis of humped species richness patterns (Mittelbach et al. 2001), but it is
more general. With logarithmic link function, the quadratic response defines the Gaussian response
model of ecological gradients (ter Braak & Looman 1986), and the test can be used for inspecting
the location of Gaussian optimum within a given range of the gradient. It can also be used to replace
Tokeshi’s test of “bimodal” species frequency distribution.

Usage

MOStest(x, y, interval, ...)
## S3 method for class ’MOStest’
plot(x, which = c(1,2,3,6), ...)
fieller.MOStest(object, level = 0.95)
## S3 method for class ’MOStest’
profile(fitted, alpha = 0.01, maxsteps = 10, del = zmax/5, ...)
## S3 method for class ’MOStest’
confint(object, parm = 1, level = 0.95, ...)

Arguments

x The independent variable or plotting object in plot.

y The dependent variable.

interval The two points at which the test statistic is evaluated. If missing, the extremes
of x are used.
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which Subset of plots produced. Values which=1 and 2 define plots specific to MOStest
(see Details), and larger values select graphs of plot.lm (minus 2).

object, fitted A result object from MOStest.

level The confidence level required.

alpha Maximum significance level allowed.

maxsteps Maximum number of steps in the profile.

del A step length parameter for the profile (see code).

parm Ignored.

... Other variables passed to functions. Function MOStest passes these to glm so
that these can include family. The other functions pass these to underlying
graphical functions.

Details

The function fits a quadratic curve µ = b0 + b1x + b2x
2 with given family and link function. If

b2 < 0, this defines a unimodal curve with highest point at u = −b1/(2b2) (ter Braak & Looman
1986). If b2 > 0, the parabola has a minimum at u and the response is sometimes called “bimodal”.
The null hypothesis is that the extreme point u is located within the interval given by points p1
and p2. If the extreme point u is exactly at p1, then b1 = 0 on shifted axis x − p1. In the test,
origin of x is shifted to the values p1 and p2, and the test statistic is based on the differences of
deviances between the original model and model where the origin is forced to the given location
using the standard anova.glm function (Oksanen et al. 2001). Mitchell-Olds & Shaw (1987) used
the first degree coefficient with its significance as estimated by the summary.glm function. This
give identical results with Normal error, but for other error distributions it is preferable to use the
test based on differences in deviances in fitted models.

The test is often presented as a general test for the location of the hump, but it really is dependent
on the quadratic fitted curve. If the hump is of different form than quadratic, the test may be
insignificant.

Because of strong assumptions in the test, you should use the support functions to inspect the fit.
Function plot(..., which=1) displays the data points, fitted quadratic model, and its approximate
95% confidence intervals (2 times SE). Function plot with which = 2 displays the approximate
confidence interval of the polynomial coefficients, together with two lines indicating the combina-
tions of the coefficients that produce the evaluated points of x. Moreover, the cross-hair shows the
approximate confidence intervals for the polynomial coefficients ignoring their correlations. Higher
values of which produce corresponding graphs from plot.lm. That is, you must add 2 to the value
of which in plot.lm.

Function fieller.MOStest approximates the confidence limits of the location of the extreme point
(hump or pit) using Fieller’s theorem following ter Braak & Looman (1986). The test is based
on quasideviance except if the family is poisson or binomial. Function profile evaluates the
profile deviance of the fitted model, and confint finds the profile based confidence limits following
Oksanen et al. (2001).

The test is typically used in assessing the significance of diversity hump against productivity gradi-
ent (Mittelbach et al. 2001). It also can be used for the location of the pit (deepest points) instead
of the Tokeshi test. Further, it can be used to test the location of the the Gaussian optimum in
ecological gradient analysis (ter Braak & Looman 1986, Oksanen et al. 2001).



MOStest 121

Value

The function is based on glm, and it returns the result of object of glm amended with the result of
the test. The new items in the MOStest are:

isHump TRUE if the response is a hump.

isBracketed TRUE if the hump or the pit is bracketed by the evaluated points.

hump Sorted vector of location of the hump or the pit and the points where the test was
evaluated.

coefficients Table of test statistics and their significances.

Note

Function fieller.MOStest is based on package optgrad in the Ecological Archives (http://www.
esapubs.org/archive/ecol/E082/015/default.htm) accompanying Oksanen et al. (2001). The
Ecological Archive package optgrad also contains profile deviance method for the location of the
hump or pit, but the current implementation of profile and confint rather follow the example of
profile.glm and confint.glm in the MASS package.

Author(s)

Jari Oksanen

References

Mitchell-Olds, T. & Shaw, R.G. 1987. Regression analysis of natural selection: statistical inference
and biological interpretation. Evolution 41, 1149–1161.

Mittelbach, G.C. Steiner, C.F., Scheiner, S.M., Gross, K.L., Reynolds, H.L., Waide, R.B., Willig,
R.M., Dodson, S.I. & Gough, L. 2001. What is the observed relationship between species richness
and productivity? Ecology 82, 2381–2396.

Oksanen, J., Läärä, E., Tolonen, K. & Warner, B.G. 2001. Confidence intervals for the optimum in
the Gaussian response function. Ecology 82, 1191–1197.

ter Braak, C.J.F & Looman, C.W.N 1986. Weighted averaging, logistic regression and the Gaussian
response model. Vegetatio 65, 3–11.

See Also

The no-interaction model can be fitted with humpfit.

Examples

## The Al-Mufti data analysed in humpfit():
mass <- c(140,230,310,310,400,510,610,670,860,900,1050,1160,1900,2480)
spno <- c(1, 4, 3, 9, 18, 30, 20, 14, 3, 2, 3, 2, 5, 2)
mod <- MOStest(mass, spno)
## Insignificant
mod
## ... but inadequate shape of the curve
op <- par(mfrow=c(2,2), mar=c(4,4,1,1)+.1)

http://www.esapubs.org/archive/ecol/E082/015/default.htm
http://www.esapubs.org/archive/ecol/E082/015/default.htm
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plot(mod)
## Looks rather like log-link with Poisson error and logarithmic biomass
mod <- MOStest(log(mass), spno, family=quasipoisson)
mod
plot(mod)
par(op)
## Confidence Limits
fieller.MOStest(mod)
confint(mod)
plot(profile(mod))

mrpp Multi Response Permutation Procedure and Mean Dissimilarity Ma-
trix

Description

Multiple Response Permutation Procedure (MRPP) provides a test of whether there is a significant
difference between two or more groups of sampling units. Function meandist finds the mean within
and between block dissimilarities.

Usage

mrpp(dat, grouping, permutations = 999, distance = "euclidean",
weight.type = 1, strata)

meandist(dist, grouping, ...)
## S3 method for class ’meandist’
summary(object, ...)
## S3 method for class ’meandist’
plot(x, kind = c("dendrogram", "histogram"), cluster = "average",

ylim, axes = TRUE, ...)

Arguments

dat data matrix or data frame in which rows are samples and columns are response
variable(s), or a dissimilarity object or a symmetric square matrix of dissimilar-
ities.

grouping Factor or numeric index for grouping observations.

permutations Number of permutations to assess the significance of the MRPP statistic, delta.

distance Choice of distance metric that measures the dissimilarity between two observa-
tions . See vegdist for options. This will be used if dat was not a dissimilarity
structure of a symmetric square matrix.

weight.type choice of group weights. See Details below for options.

strata An integer vector or factor specifying the strata for permutation. If supplied,
observations are permuted only within the specified strata.

dist A dist object of dissimilarities, such as produced by functions dist, vegdist
or designdist..
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object, x A meandist result object.

kind Draw a dendrogram or a histogram; see Details.

cluster A clustering method for the hclust function for kind = "dendrogram". Any
hclust method can be used, but perhaps only "average" and "single" make
sense.

ylim Limits for vertical axes (optional).

axes Draw scale for the vertical axis.

... Further arguments passed to functions.

Details

Multiple Response Permutation Procedure (MRPP) provides a test of whether there is a significant
difference between two or more groups of sampling units. This difference may be one of location
(differences in mean) or one of spread (differences in within-group distance; cf. Warton et al.
2012). Function mrpp operates on a data.frame matrix where rows are observations and responses
data matrix. The response(s) may be uni- or multivariate. The method is philosophically and
mathematically allied with analysis of variance, in that it compares dissimilarities within and among
groups. If two groups of sampling units are really different (e.g. in their species composition), then
average of the within-group compositional dissimilarities ought to be less than the average of the
dissimilarities between two random collection of sampling units drawn from the entire population.

The mrpp statistic δ is the overall weighted mean of within-group means of the pairwise dissimilar-
ities among sampling units. The choice of group weights is currently not clear. The mrpp function
offers three choices: (1) group size (n), (2) a degrees-of-freedom analogue (n−1), and (3) a weight
that is the number of unique distances calculated among n sampling units (n(n− 1)/2).

The mrpp algorithm first calculates all pairwise distances in the entire dataset, then calculates δ. It
then permutes the sampling units and their associated pairwise distances, and recalculates δ based
on the permuted data. It repeats the permutation step permutations times. The significance test is
the fraction of permuted deltas that are less than the observed delta, with a small sample correction.
The function also calculates the change-corrected within-group agreement A = 1− δ/E(δ), where
E(δ) is the expected δ assessed as the average of dissimilarities.

If the first argument dat can be interpreted as dissimilarities, they will be used directly. In other
cases the function treats dat as observations, and uses vegdist to find the dissimilarities. The
default distance is Euclidean as in the traditional use of the method, but other dissimilarities in
vegdist also are available.

Function meandist calculates a matrix of mean within-cluster dissimilarities (diagonal) and between-
cluster dissimilarities (off-diagonal elements), and an attribute n of grouping counts. Function
summary finds the within-class, between-class and overall means of these dissimilarities, and the
MRPP statistics with all weight.type options and the Classification Strength, CS (Van Sickle and
Hughes, 2000). CS is defined for dissimiliraties as B̄ − W̄ , where B̄ is the mean between cluster
dissimilarity and W̄ is the mean within cluster dissimilarity with weight.type = 1. The func-
tion does not perform significance tests for these statistics, but you must use mrpp with appropriate
weight.type. There is currently no significance test for CS, but mrpp with weight.type = 1
gives the correct test for W̄ and a good approximation for CS. Function plot draws a dendrogram
or a histogram of the result matrix based on the within-group and between group dissimilarities.
The dendrogram is found with the method given in the cluster argument using function hclust.
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The terminal segments hang to within-cluster dissimilarity. If some of the clusters are more het-
erogeneous than the combined class, the leaf segment are reversed. The histograms are based on
dissimilarites, but ore otherwise similar to those of Van Sickle and Hughes (2000): horizontal line
is drawn at the level of mean between-cluster dissimilarity and vertical lines connect within-cluster
dissimilarities to this line.

Value

The function returns a list of class mrpp with following items:

call Function call.

delta The overall weighted mean of group mean distances.

E.delta expected delta, under the null hypothesis of no group structure. This is the mean
of original dissimilarities.

CS Classification strength (Van Sickle and Hughes, 2000). Currently not imple-
mented and always NA.

n Number of observations in each class.

classdelta Mean dissimilarities within classes. The overall δ is the weighted average of
these values with given weight.type

.

Pvalue Significance of the test.

A A chance-corrected estimate of the proportion of the distances explained by
group identity; a value analogous to a coefficient of determination in a linear
model.

distance Choice of distance metric used; the "method" entry of the dist object.

weight.type The choice of group weights used.

boot.deltas The vector of "permuted deltas," the deltas calculated from each of the permuted
datasets. The distribution of this item can be inspected with density.mrpp
function.

permutations The number of permutations used.

Note

This difference may be one of location (differences in mean) or one of spread (differences in within-
group distance). That is, it may find a significant difference between two groups simply because
one of those groups has a greater dissimilarities among its sampling units. Most mrpp models can
be analysed with adonis which seems not suffer from the same problems as mrpp and is a more
robust alternative.

Author(s)

M. Henry H. Stevens <HStevens@muohio.edu> and Jari Oksanen.
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References

B. McCune and J. B. Grace. 2002. Analysis of Ecological Communities. MjM Software Design,
Gleneden Beach, Oregon, USA.

P. W. Mielke and K. J. Berry. 2001. Permutation Methods: A Distance Function Approach. Springer
Series in Statistics. Springer.
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See Also

anosim for a similar test based on ranks, and mantel for comparing dissimilarities against contin-
uous variables, and vegdist for obtaining dissimilarities, adonis is a more robust alternative in
most cases.

Examples

data(dune)
data(dune.env)
dune.mrpp <- mrpp(dune, dune.env$Management)
dune.mrpp

# Save and change plotting parameters
def.par <- par(no.readonly = TRUE)
layout(matrix(1:2,nr=1))

plot(dune.ord <- metaMDS(dune), type="text", display="sites" )
ordihull(dune.ord, dune.env$Management)

with(dune.mrpp, {
fig.dist <- hist(boot.deltas, xlim=range(c(delta,boot.deltas)),

main="Test of Differences Among Groups")
abline(v=delta);
text(delta, 2*mean(fig.dist$counts), adj = -0.5,

expression(bold(delta)), cex=1.5 ) }
)
par(def.par)
## meandist
dune.md <- with(dune.env, meandist(vegdist(dune), Management))
dune.md
summary(dune.md)
plot(dune.md)
plot(dune.md, kind="histogram")
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mso Functions for performing and displaying a spatial partitioning of cca
or rda results

Description

The function mso adds an attribute vario to an object of class "cca" that describes the spatial
partitioning of the cca object and performs an optional permutation test for the spatial independence
of residuals. The function plot.mso creates a diagnostic plot of the spatial partitioning of the "cca"
object.

Usage

mso(object.cca, object.xy, grain = 1, round.up = FALSE, permutations = FALSE)
msoplot(x, alpha = 0.05, explained = FALSE, ylim = NULL, legend = "topleft", ...)

Arguments

object.cca An object of class cca, created by the cca or rda function.

object.xy A vector, matrix or data frame with the spatial coordinates of the data repre-
sented by object.cca. Must have the same number of rows as object.cca$CA$Xbar
(see cca.object).

grain Interval size for distance classes.

round.up Determines the choice of breaks. If false, distances are rounded to the nearest
multiple of grain. If true, distances are rounded to the upper multiple of grain.

permutations If false, suppresses the permutation test. If an integer, determines the number of
permutations for the Mantel test of spatial independence of residual inertia.

x A result object of mso.

alpha Significance level for the two-sided permutation test of the Mantel statistic for
spatial independence of residual inertia and for the point-wise envelope of the
variogram of the total variance. A Bonferroni-type correction can be achieved
by dividing the overall significance value (e.g. 0.05) by the number of distance
classes.

explained If false, suppresses the plotting of the variogram of explained variance.

ylim Limits for y-axis.

legend The x and y co-ordinates to be used to position the legend. They can be specified
by keyword or in any way which is accepted by legend.

... Other arguments passed to functions.
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Details

The Mantel test is an adaptation of the function mantel of the vegan package to the parallel testing
of several distance classes. It compares the mean inertia in each distance class to the pooled mean
inertia of all other distance classes.

If there are explanatory variables (RDA, CCA, pRDA, pCCA) and a significance test for residual
autocorrelation was performed when running the function mso, the function plot.mso will print an
estimate of how much the autocorrelation (based on significant distance classes) causes the global
error variance of the regression analysis to be underestimated

Value

The function mso returns an amended cca or rda object with the additional attributes grain, H,
H.test and vario.

grain The grain attribute defines the interval size of the distance classes .

H H is an object of class ’dist’ and contains the geographic distances between
observations.

H.test H.test contains a set of dummy variables that describe which pairs of observa-
tions (rows = elements of object$H) fall in which distance class (columns).

vario The vario attribute is a data frame that contains some or all of the following
components for the rda case (cca case in brackets):

H Distance class as multiples of grain.
Dist Average distance of pairs of observations in distance class H.
n Number of unique pairs of observations in distance class H.
All Empirical (chi-square) variogram of total variance (inertia).
Sum Sum of empirical (chi-square) variograms of explained and residual vari-

ance (inertia).
CA Empirical (chi-square) variogram of residual variance (inertia).
CCA Empirical (chi-square) variogram of explained variance (inertia).
pCCA Empirical (chi-square) variogram of conditioned variance (inertia).
se Standard error of the empirical (chi-square) variogram of total variance (in-

ertia).
CA.signif P-value of permutation test for spatial independence of residual

variance (inertia).

Note

The function is based on the code published in the Ecological Archives E085-006 (http://www.
esapubs.org/archive/ecol/E085/006/default.htm).

Author(s)

The responsible author was Helene Wagner.

http://www.esapubs.org/archive/ecol/E085/006/default.htm
http://www.esapubs.org/archive/ecol/E085/006/default.htm
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References

Wagner, H.H. 2004. Direct multi-scale ordination with canonical correspondence analysis. Ecology
85: 342–351.

See Also

Function cca and rda, cca.object.

Examples

## Reconstruct worked example of Wagner (submitted):
X <- matrix(c(1, 2, 3, 2, 1, 0), 3, 2)
Y <- c(3, -1, -2)
tmat <- c(1:3)
## Canonical correspondence analysis (cca):
Example.cca <- cca(X, Y)
Example.cca <- mso(Example.cca, tmat)
msoplot(Example.cca)
Example.cca$vario

## Correspondence analysis (ca):
Example.ca <- mso(cca(X), tmat)
msoplot(Example.ca)

## Unconstrained ordination with test for autocorrelation
## using oribatid mite data set as in Wagner (2004)
data(mite)
data(mite.env)
data(mite.xy)

mite.cca <- cca(log(mite + 1))
mite.cca <- mso(mite.cca, mite.xy, grain = 1, permutations = 100)
msoplot(mite.cca)
mite.cca

## Constrained ordination with test for residual autocorrelation
## and scale-invariance of species-environment relationships
mite.cca <- cca(log(mite + 1) ~ SubsDens + WatrCont + Substrate + Shrub + Topo, mite.env)
mite.cca <- mso(mite.cca, mite.xy, permutations = 100)
msoplot(mite.cca)
mite.cca

multipart Multiplicative Diversity Partitioning

Description

In multiplicative diversity partitioning, mean values of alpha diversity at lower levels of a sampling
hierarchy are compared to the total diversity in the entire data set or the pooled samples (gamma
diversity).
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Usage

multipart(...)
## Default S3 method:
multipart(y, x, index=c("renyi", "tsallis"), scales = 1,

global = FALSE, relative = FALSE, nsimul=99, ...)
## S3 method for class ’formula’
multipart(formula, data, index=c("renyi", "tsallis"), scales = 1,

global = FALSE, relative = FALSE, nsimul=99, ...)

Arguments

y A community matrix.

x A matrix with same number of rows as in y, columns coding the levels of sam-
pling hierarchy. The number of groups within the hierarchy must decrease from
left to right. If x is missing, two levels are assumed: each row is a group in the
first level, and all rows are in the same group in the second level.

formula A two sided model formula in the form y ~ x, where y is the community data
matrix with samples as rows and species as column. Right hand side (x) must
grouping vaiables referring to levels of sampling hierarchy, terms from right to
left will be treated as nested (first column is the lowest, last is the highest level,
at least two levels specified). Interaction terms are not allowed.

data A data frame where to look for variables defined in the right hand side of
formula. If missing, variables are looked in the global environment.

index Character, the entropy index to be calculated (see Details).

relative Logical, if TRUE then beta diversity is standardized by its maximum (see De-
tails).

scales Numeric, of length 1, the order of the generalized diversity index to be used.

global Logical, indicates the calculation of beta diversity values, see Details.

nsimul Number of permutation to use if matr is not of class ’permat’. If nsimul = 0,
only the FUN argument is evaluated. It is thus possible to reuse the statistic values
without using a null model.

... Other arguments passed to oecosimu, i.e. method, thin or burnin.

Details

Multiplicative diversity partitioning is based on Whittaker’s (1972) ideas, that has recently been
generalised to one parametric diversity families (i.e. Rényi and Tsallis) by Jost (2006, 2007). Jost
recommends to use the numbers equivalents (Hill numbers), instead of pure diversities, and proofs,
that this satisfies the multiplicative partitioning requirements.

The current implementation of multipart calculates Hill numbers based on the functions renyi
and tsallis (provided as index argument). If values for more than one scales are desired, it
should be done in separate runs, because it adds extra dimensionality to the implementation, which
has not been resolved efficiently.
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Alpha diversities are then the averages of these Hill numbers for each hierarchy levels, the global
gamma diversity is the alpha value calculated for the highest hierarchy level. When global = TRUE,
beta is calculated relative to the global gamma value:

βi = γ/αi

when global = FALSE, beta is calculated relative to local gamma values (local gamma means the
diversity calculated for a particular cluster based on the pooled abundance vector):

βij = α(i+1)j/mean(αij)

where j is a particular cluster at hierarchy level i. Then beta diversity value for level i is the mean
of the beta values of the clusters at that level, βi = mean(βij).

If relative = TRUE, the respective beta diversity values are standardized by their maximum possi-
ble values (mean(βij)/βmax,ij) given as βmax,ij = nj (the number of lower level units in a given
cluster j).

The expected diversity components are calculated nsimul times by individual based randomisation
of the community data matrix. This is done by the "r2dtable" method in oecosimu by default.

Value

An object of class ’multipart’ with same structure as ’oecosimu’ objects.

Author(s)

Péter Sólymos, <solymos@ualberta.ca>

References

Jost, L. (2006). Entropy and diversity. Oikos, 113, 363–375.

Jost, L. (2007). Partitioning diversity into independent alpha and beta components. Ecology, 88,
2427–2439.

Whittaker, R. (1972). Evolution and measurement of species diversity. Taxon, 21, 213–251.

See Also

See adipart for additive diversity partitioning, hiersimu for hierarchical null model testing and
oecosimu for permutation settings and calculating p-values.

Examples

## NOTE: ’nsimul’ argument usually needs to be >= 99
## here much lower value is used for demonstration

data(mite)
data(mite.xy)
data(mite.env)
## Function to get equal area partitions of the mite data
cutter <- function (x, cut = seq(0, 10, by = 2.5)) {

out <- rep(1, length(x))
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for (i in 2:(length(cut) - 1))
out[which(x > cut[i] & x <= cut[(i + 1)])] <- i

return(out)}
## The hierarchy of sample aggregation
levsm <- data.frame(

l1=1:nrow(mite),
l2=cutter(mite.xy$y, cut = seq(0, 10, by = 2.5)),
l3=cutter(mite.xy$y, cut = seq(0, 10, by = 5)),
l4=cutter(mite.xy$y, cut = seq(0, 10, by = 10)))

## Multiplicative diversity partitioning
multipart(mite, levsm, index="renyi", scales=1, nsimul=19)
multipart(mite ~ ., levsm, index="renyi", scales=1, nsimul=19)
multipart(mite ~ ., levsm, index="renyi", scales=1, nsimul=19, relative=TRUE)
multipart(mite ~ ., levsm, index="renyi", scales=1, nsimul=19, global=TRUE)

nestedtemp Nestedness Indices for Communities of Islands or Patches

Description

Patches or local communities are regarded as nested if they all could be subsets of the same com-
munity. In general, species poor communities should be subsets of species rich communities, and
rare species should only occur in species rich communities.

Usage

nestedchecker(comm)
nestedn0(comm)
nesteddisc(comm, niter = 200)
nestedtemp(comm, ...)
nestednodf(comm, order = TRUE, weighted = FALSE)
nestedbetasor(comm)
nestedbetajac(comm)
## S3 method for class ’nestedtemp’
plot(x, kind = c("temperature", "incidence"),

col=rev(heat.colors(100)), names = FALSE, ...)
## S3 method for class ’nestednodf’
plot(x, col = "red", names = FALSE, ...)

Arguments

comm Community data.

niter Number of iterations to reorder tied columns.

x Result object for a plot.

col Colour scheme for matrix temperatures.

kind The kind of plot produced.
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names Label columns and rows in the plot using names in comm. If it is a logical vector
of length 2, row and column labels are returned accordingly.

order Order rows and columns by frequencies.

weighted Use species abundances as weights of interactions.

... Other arguments to functions.

Details

The nestedness functions evaluate alternative indices of nestedness. The functions are intended to
be used together with Null model communities and used as an argument in oecosimu to analyse the
non-randomness of results.

Function nestedchecker gives the number of checkerboard units, or 2x2 submatrices where both
species occur once but on different sites (Stone & Roberts 1990).

Function nestedn0 implements nestedness measure N0 which is the number of absences from the
sites which are richer than the most pauperate site species occurs (Patterson & Atmar 1986).

Function nesteddisc implements discrepancy index which is the number of ones that should be
shifted to fill a row with ones in a table arranged by species frequencies (Brualdi & Sanderson
1999). The original definition arranges species (columns) by their frequencies, but did not have
any method of handling tied frequencies. The nesteddisc function tries to order tied columns to
minimize the discrepancy statistic but this is rather slow, and with a large number of tied columns
there is no guarantee that the best ordering was found (argument niter gives the maximum number
of tried orders). In that case a warning of tied columns will be issued.

Function nestedtemp finds the matrix temperature which is defined as the sum of “surprises” in
arranged matrix. In arranged unsurprising matrix all species within proportion given by matrix fill
are in the upper left corner of the matrix, and the surprise of the absence or presences is the diagonal
distance from the fill line (Atmar & Patterson 1993). Function tries to pack species and sites to a
low temperature (Rodríguez-Gironés & Santamaria 2006), but this is an iterative procedure, and the
temperatures usually vary among runs. Function nestedtemp also has a plot method which can
display either incidences or temperatures of the surprises. Matrix temperature was rather vaguely
described (Atmar & Patterson 1993), but Rodríguez-Gironés & Santamaria (2006) are more explicit
and their description is used here. However, the results probably differ from other implementations,
and users should be cautious in interpreting the results. The details of calculations are explained in
the vignette Design decisions and implementation that you can read using functions vignette or
vegandocs. Function nestedness in the bipartite package is a direct port of the BINMATNEST
programme of Rodríguez-Gironés & Santamaria (2006).

Function nestednodf implements a nestedness metric based on overlap and decreasing fill (Almeida-
Neto et al., 2008). Two basic properties are required for a matrix to have the maximum degree of
nestedness according to this metric: (1) complete overlap of 1’s from right to left columns and
from down to up rows, and (2) decreasing marginal totals between all pairs of columns and all
pairs of rows. The nestedness statistic is evaluated separately for columns (N columns) for rows
(N rows) and combined for the whole matrix (NODF). If you set order = FALSE, the statistic is
evaluated with the current matrix ordering allowing tests of other meaningful hypothesis of matrix
structure than default ordering by row and column totals (breaking ties by total abundances when
weighted = TRUE) (see Almeida-Neto et al. 2008). With weighted = TRUE, the function finds the
weighted version of the index (Almeida-Neto & Ulrich, 2011). However, this requires quantitative
null models for adequate testing.
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Functions nestedbetasor and nestedbetajac find multiple-site dissimilarities and decompose
these into components of turnover and nestedness following Baselga (2010). This can be seen as a
decomposition of beta diversity (see betadiver). Function nestedbetasor uses Sørensen dissimi-
larity and the turnover component is Simpson dissimilarity (Baselga 2010), and nestedbetajac
uses analogous methods with the Jaccard index. The functions return a vector of three items:
turnover, nestedness and their sum which is the multiple Sørensen or Jaccard dissimilarity. The
last one is the total beta diversity (Baselga 2010). The functions will treat data as presence/absence
(binary) and they can be used with binary null models (see commsimulator). The overall dissimilar-
ity is constant in all null models that fix species (column) frequencies ("c0"), and all components
are constant if row columns are also fixed (e.g., model "quasiswap"), and the functions are not
meaningful with these null models.

Value

The result returned by a nestedness function contains an item called statistic, but the other
components differ among functions. The functions are constructed so that they can be handled by
oecosimu.

Author(s)

Jari Oksanen and Gustavo Carvalho (nestednodf).

References

Almeida-Neto, M., Gumarães, P., Gumarães, P.R., Loyola, R.D. & Ulrich, W. (2008). A consistent
metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos
117, 1227–1239.

Almeida-Neto, M. & Ulrich, W. (2011). A straightforward computational approach for measuring
nestedness using quantitative matrices. Env. Mod. Software 26, 173–178.

Atmar, W. & Patterson, B.D. (1993). The measurement of order and disorder in the distribution of
species in fragmented habitat. Oecologia 96, 373–382.

Baselga, A. (2010). Partitioning the turnover and nestedness components of beta diversity. Global
Ecol. Biogeog. 19, 134–143.

Brualdi, R.A. & Sanderson, J.G. (1999). Nested species subsets, gaps, and discrepancy. Oecologia
119, 256–264.

Patterson, B.D. & Atmar, W. (1986). Nested subsets and the structure of insular mammalian faunas
and archipelagos. Biol. J. Linnean Soc. 28, 65–82.

Rodríguez-Gironés, M.A. & Santamaria, L. (2006). A new algorithm to calculate the nestedness
temperature of presence-absence matrices. J. Biogeogr. 33, 924–935.

Stone, L. & Roberts, A. (1990). The checkerboard score and species distributions. Oecologia 85,
74–79.

Wright, D.H., Patterson, B.D., Mikkelson, G.M., Cutler, A. & Atmar, W. (1998). A comparative
analysis of nested subset patterns of species composition. Oecologia 113, 1–20.
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See Also

In general, the functions should be used with oecosimu which generates Null model communities
to assess the non-randomness of nestedness patterns.

Examples

data(sipoo)
## Matrix temperature
out <- nestedtemp(sipoo)
out
plot(out)
plot(out, kind="incid")
## Use oecosimu to assess the non-randomness of checker board units
nestedchecker(sipoo)
oecosimu(sipoo, nestedchecker, "quasiswap")
## Another Null model and standardized checkerboard score
oecosimu(sipoo, nestedchecker, "r00", statistic = "C.score")

nobs.adonis Extract the Number of Observations from a vegan Fit.

Description

Extract the number of ‘observations’ from a vegan model fit.

Usage

## S3 method for class ’adonis’
nobs(object, ...)

Arguments

object A fitted model object.

... Further arguments to be passed to methods.

Details

Function nobs is generic in R version 2.13.0, and vegan provides methods for objects from adonis,
betadisper, cca and other related methods, CCorA, decorana, isomap, metaMDS, pcnm, procrustes,
radfit, varpart and wcmdscale.

Value

A single number, normally an interger, giving the number of observations.

Author(s)

Jari Oksanen
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oecosimu Null Models for Biological Communities

Description

Null models generate random communities with different criteria to study the significance of nest-
edness or other community patterns. The function only simulates binary (presence/absence) models
with constraint for total number of presences, and optionally for numbers of species and/or species
frequencies.

Usage

oecosimu(comm, nestfun, method, nsimul = 99, burnin = 0, thin = 1,
statistic = "statistic", alternative = c("two.sided", "less", "greater"),
...)

commsimulator(x, method, thin=1)
## S3 method for class ’oecosimu’
as.ts(x, ...)
## S3 method for class ’oecosimu’
as.mcmc(x)
## S3 method for class ’oecosimu’
density(x, ...)
## S3 method for class ’oecosimu’
densityplot(x, data, xlab = "Simulated", ...)

Arguments

comm Community data.

x Community data for commsimulator, or an oecosimu result object for as.ts,
as.mcmc, density and densityplot.

nestfun Function to analyse nestedness. Some functions are provided in vegan, but
any function can be used if it accepts the community as the first argument, and
returns either a plain number or the result in list item with the name defined in
argument statistic. See Examples for defining your own functions.

method Null model method. See details.

nsimul Number of simulated null communities.

burnin Number of null communities discarded before proper analysis in sequential
methods "swap" and "tswap".

thin Number of discarded null communities between two evaluations of nestedness
statistic in sequential methods "swap" and "tswap".

statistic The name of the statistic returned by nestedfun

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less". Please note that the p-value of two-sided
test is approximately two times higher than in the corresponding one-sided test
("greater" or "less" depending on the sign of the difference).
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data Ignored argument of the generic function.

xlab Label of the x-axis.

... Other arguments to functions.

Details

Function oecosimu is a wrapper that evaluates a nestedness statistic using function given by nestfun,
and then simulates a series of null models using commsimulator or other functions (depending on
method argument), and evaluates the statistic on these null models. The vegan packages contains
some nestedness functions that are described separately (nestedchecker, nesteddisc, nestedn0,
nestedtemp), but many other functions can be used as long as they are meaningful with binary or
quantitative community models. An applicable function must return either the statistic as a plain
number, or as a list element "statistic" (like chisq.test), or in an item whose name is given in
the argument statistic. The statistic can be a single number (like typical for a nestedness index),
or it can be a vector. The vector indices can be used to analyse site (row) or species (column) prop-
erties, see treedive for an example. Raup-Crick index (raupcrick) gives an example of using a
dissimilarities index.

Function commsimulator implements binary (presence/absence) null models for community com-
position. The implemented models are r00 which maintains the number of presences but fills these
anywhere so that neither species (column) nor site (row) totals are preserved. Methods r0, r1 and
r2 maintain the site (row) frequencies. Method r0 fills presences anywhere on the row with no
respect to species (column) frequencies, r1 uses column marginal frequencies as probabilities, and
r2 uses squared column sums. Methods r1 and r2 try to simulate original species frequencies, but
they are not strictly constrained. All these methods are reviewed by Wright et al. (1998). Method
c0 maintains species frequencies, but does not honour site (row) frequencies (Jonsson 2001).

The other methods maintain both row and column frequencies. Methods swap and tswap implement
sequential methods, where the matrix is changed only little in one step, but the changed matrix is
used as an input if the next step. Methods swap and tswap inspect random 2x2 submatrices and if
they are checkerboard units, the order of columns is swapped. This changes the matrix structure, but
does not influence marginal sums (Gotelli & Entsminger 2003). Method swap inspects submatrices
so long that a swap can be done. Miklós & Podani (2004) suggest that this may lead into biased
sequences, since some columns or rows may be more easily swapped, and they suggest trying a
fixed number of times and doing zero to many swaps at one step. This method is implemented by
method tswap or trial swap. Function commsimulator makes only one trial swap in time (which
probably does nothing), but oecosimu estimates how many submatrices are expected before finding
a swappable checkerboard, and uses that ratio to thin the results, so that on average one swap will
be found per step of tswap. However, the checkerboard frequency probably changes during swaps,
but this is not taken into account in estimating the thin. One swap still changes the matrix only
little, and it may be useful to thin the results so that the statistic is only evaluated after burnin steps
(and thinned).

Methods quasiswap and backtracking are not sequential, but each call produces a matrix that
is independent of previous matrices, and has the same marginal totals as the original data. The
recommended method is quasiswap which is much faster because it is implemented in C. Method
backtracking is provided for comparison, but it is so slow that it may be dropped from future
releases of vegan (or also implemented in C). Method quasiswap (Miklós & Podani 2004) imple-
ments a method where matrix is first filled honouring row and column totals, but with integers that
may be larger than one. Then the method inspects random 2x2 matrices and performs a quasiswap
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on them. Quasiswap is similar to ordinary swap, but it also can reduce numbers above one to ones
maintaining marginal totals. Method backtracking implements a filling method with constraints
both for row and column frequencies (Gotelli & Entsminger 2001). The matrix is first filled ran-
domly using row and column frequencies as probabilities. Typically row and column sums are
reached before all incidences are filled in. After that begins “backtracking”, where some of the
points are removed, and then filling is started again, and this backtracking is done so may times that
all incidences will be filled into matrix. The quasiswap method is not sequential, but it produces a
random incidence matrix with given marginal totals.

Function as.ts transforms the simulated results of sequential methods into a time series or a ts
object. This allows using analytic tools for time series in studying the sequences (see examples).
Function as.mcmc transforms the simulated results of sequential methods into an mcmc object of the
coda package. The coda package provides functions for the analysis of stationarity, adequacy of
sample size, autocorrelation, need of burn-in and much more for sequential methods. Please consult
the documentation of coda package.

Function density provides an interface to the standard density function for the simulated values.
Function densityplot is an interface to the densityplot function of the lattice package. The
density can be used meaningfully only for single statistics and must be plotted separately. The
densityplot function can handle multiple statistics, and it plots the results directly. In addition to
the density, the densityplot also shows the observed value of the statistic (provided it is within
the graph limits). The densityplot function is defined as a generic function in the lattice package
and you must either load the lattice library before calling densityplot, or use the longer form
densityplot.oecosimu when you first time call the function.

As a result of method = "r2dtable" in oecosimu, quantitative community null models are used
to evaluate the statistic. This setting uses the r2dtable function to generate random matrices with
fixed row and column totals (hypergeometric distribution). This null model is used in diversity
partitioning function (see adipart).

The method argument can be a function with first argument taking the community matrix, and
optionally with burnin and thin argument. The function must return a matrix-like object with
same dimensions. But be careful, blindly applying permuted matrices for null model testing can be
dangerous.

Value

Function oecosimu returns the result of nestfun added with a component called oecosimu. The
oecosimu component contains the simulated values of the statistic (item simulated), the name of
the method, P value (with given alternative), z-value of the statistic based on simulation (also
known as standardized effect size), and the mean of simulations.

Note

Functions commsimulator and oecosimu do not have default nestfun nor default method, because
there is no clear natural choice. If you use these methods, you must be able to choose your own
strategy. The choice of nestedness index is difficult because the functions seem to imply very
different concepts of structure and randomness. The choice of swapping method is also problematic.
Method r00 has some heuristic value of being really random. However, it produces null models
which are different from observed communities in most respects, and a “significant” result may
simply mean that not all species are equally common (r0 is similar with this respect). It is also
difficult to find justification for r2. The methods maintaining both row and column totals only
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study the community relations, but they can be very slow. Moreover, they regard marginal totals as
constraints instead of results of occurrence patterns. You should evaluate timings in small trials (one
cycle) before launching an extensive simulation. One swap is fast, but it changes data only little, and
you may need long burnin and strong thinning in large matrices. You should plot the simulated
values to see that they are more or less stationary and there is no trend. Method quasiswap is
implemented in C and it is much faster than backtrack. Method backtrack may be removed from
later releases of vegan because it is slow, but it is still included for comparison.

If you wonder about the name of oecosimu, look at journal names in the References (and more in
nestedtemp).

Author(s)

Jari Oksanen

References

Gotelli, N.J. & Entsminger, N.J. (2001). Swap and fill algorithms in null model analysis: rethinking
the knight’s tour. Oecologia 129, 281–291.

Gotelli, N.J. & Entsminger, N.J. (2003). Swap algorithms in null model analysis. Ecology 84,
532–535.

Jonsson, B.G. (2001) A null model for randomization tests of nestedness in species assemblages.
Oecologia 127, 309–313.

Miklós, I. & Podani, J. (2004). Randomization of presence-absence matrices: comments and new
algorithms. Ecology 85, 86–92.

Wright, D.H., Patterson, B.D., Mikkelson, G.M., Cutler, A. & Atmar, W. (1998). A comparative
analysis of nested subset patterns of species composition. Oecologia 113, 1–20.

See Also

r2dtable generates table with given marginals but with entries above one. Functions permatfull
and permatswap generate Null models for count data. Function rndtaxa (labdsv package) ran-
domizes a community table. See also nestedtemp (that also discusses other nestedness functions)
and treedive for another application.

Examples

## Use the first eigenvalue of correspondence analysis as an index
## of structure: a model for making your own functions.
data(sipoo)
out <- oecosimu(sipoo, decorana, "swap", burnin=100, thin=10, statistic="evals")
out
## Inspect the swap sequence as a time series object
plot(as.ts(out))
lag.plot(as.ts(out))
acf(as.ts(out))
## Density plot: needs lattice
require(lattice)
densityplot(out, as.table = TRUE)
## Use quantitative null models to compare
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## mean Bray-Curtis dissimilarities
data(dune)
meandist <- function(x) mean(vegdist(x, "bray"))
mbc1 <- oecosimu(dune, meandist, "r2dtable")
mbc1
## Define a custom function that shuffles
## cells in each rows
f <- function(x) {

apply(x, 2, function(z) sample(z, length(z)))
}
mbc2 <- oecosimu(as.matrix(dune), meandist, f)
mbc2

ordiarrows Add Arrows and Line Segments to Ordination Diagrams

Description

Functions to add arrows, line segments, regular grids of points. The ordination diagrams can be
produced by vegan plot.cca, plot.decorana or ordiplot.

Usage

ordiarrows(ord, groups, levels, replicates, order.by, display = "sites",
show.groups, startmark, label = FALSE, ...)

ordisegments(ord, groups, levels, replicates, order.by, display = "sites",
show.groups, label = FALSE, ...)

ordigrid(ord, levels, replicates, display = "sites", lty = c(1,1),
col = c(1,1), lwd = c(1,1), ...)

Arguments

ord An ordination object or an ordiplot object.

groups Factor giving the groups for which the graphical item is drawn.
levels, replicates

Alternatively, regular groups can be defined with arguments levels and replicates,
where levels gives the number of groups, and replicates the number of suc-
cessive items at the same group.

order.by Order points by increasing order of this variable within groups. Reverse sign of
the variable for decreasing ordering.

display Item to displayed.

show.groups Show only given groups. This can be a vector, or TRUE if you want to show items
for which condition is TRUE. This argument makes it possible to use different
colours and line types for groups. The default is to show all groups.
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label Label the groups by their names. In ordiellipse, ordihull and ordispider
the the group name is in the centroid of the object, in ordiarrows in the start of
the arrow, and in ordisegments at both ends. ordiellipse and ordihull use
standard text, and others use ordilabel.

startmark plotting character used to mark the first item. The default is to use no mark, and
for instance, startmark = 1 will draw a circle. For other plotting characters,
see pch in points.

col Colour of lines in ordigrid. This argument is also passed to other functions to
change the colour of lines.

lty, lwd Line type, line width used for levels and replicates in ordigrid.

... Parameters passed to graphical functions such as lines, segments, arrows, or
to scores to select axes and scaling etc.

Details

Function ordiarrows draws arrows and ordisegments draws line segments between successive
items in the groups. Function ordigrid draws line segments both within the groups and for the
corresponding items among the groups.

Note

These functions add graphical items to ordination graph: You must draw a graph first.

Author(s)

Jari Oksanen

See Also

The functions pass parameters to basic graphical functions, and you may wish to change the default
values in arrows, lines and segments. You can pass parameters to scores as well.

Examples

example(pyrifos)
mod <- rda(pyrifos)
plot(mod, type = "n")
## Annual succession by ditches
ordiarrows(mod, ditch, label = TRUE)
## Show only control and highest Pyrifos treatment
plot(mod, type = "n")
ordiarrows(mod, ditch, label = TRUE,

show.groups = c("2", "3", "5", "11"))
ordiarrows(mod, ditch, label = TRUE, show = c("6", "9"),

col = 2)
legend("topright", c("Control", "Pyrifos 44"), lty = 1, col = c(1,2))
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ordihull Display Groups or Factor Levels in Ordination Diagrams

Description

Functions to add convex hulls, ‘spider’ graphs, ellipses or cluster dendrogram to ordination dia-
grams. The ordination diagrams can be produced by vegan plot.cca, plot.decorana or ordiplot.

Usage

ordihull(ord, groups, display = "sites", draw = c("lines","polygon", "none"),
col = NULL, alpha = 127, show.groups, label = FALSE, ...)

ordiellipse(ord, groups, display="sites", kind = c("sd","se"), conf,
draw = c("lines","polygon", "none"), w = weights(ord, display),
col = NULL, alpha = 127, show.groups, label = FALSE, ...)

ordispider(ord, groups, display="sites", w = weights(ord, display),
show.groups, label = FALSE, ...)

ordicluster(ord, cluster, prune = 0, display = "sites",
w = weights(ord, display), ...)

## S3 method for class ’ordihull’
summary(object, ...)
## S3 method for class ’ordiellipse’
summary(object, ...)

Arguments

ord An ordination object or an ordiplot object.

groups Factor giving the groups for which the graphical item is drawn.

display Item to displayed.

draw Use either lines or polygon to draw the lines. Graphical parameters are passed
to both. The main difference is that polygons may be filled and non-transparent.
With none nothing is drawn, but the function returns the invisible plotting
data.

col Colour of hull or ellipse lines (if draw = "lines") or their fills (if draw = "polygon")
in ordihull and ordiellipse. When draw = "polygon", the colour of bor-
dering lines can be set with argument border of the polygon function. For other
functions the effect depends on the underlining functions this argument is passed
to.

alpha Transparency of the fill colour with draw = "polygon" in ordihull and
ordiellipse. The argument takes precedence over possible transparency def-
initions of the colour. The value must be in range 0...255, and low values are
more transparent. Transparency is not available in all graphics devices or file
formats.

show.groups Show only given groups. This can be a vector, or TRUE if you want to show items
for which condition is TRUE. This argument makes it possible to use different
colours and line types for groups. The default is to show all groups.
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label Label the groups by their names in the centroid of the object. ordiellipse and
ordihull use standard text, and others use ordilabel.

w Weights used to find the average within group. Weights are used automatically
for cca and decorana results, unless undone by the user. w=NULL sets equal
weights to all points.

kind Whether standard deviations of points (sd) or standard deviations of their (weighted)
averages (se) are used.

conf Confidence limit for ellipses, e.g. 0.95. If given, the corresponding sd or se is
multiplied with the corresponding value found from the Chi-squared distribution
with 2df.

cluster Result of hierarchic cluster analysis, such as hclust or agnes.

prune Number of upper level hierarchies removed from the dendrogram. If prune> 0,
dendrogram will be disconnected.

object A result object from ordihull or ordiellipse. The result is invisible, but it
can be saved, and used for summaries (areas etc. of hulls and ellipses).

... Parameters passed to graphical functions or to scores to select axes and scaling
etc.

Details

Function ordihull draws lines or polygons for the convex hulls found by function chull encir-
cling the items in the groups.

Function ordiellipse draws lines or polygons for dispersion ellipses using either standard de-
viation of point scores or standard error of the (weighted) average of scores, and the (weighted)
correlation defines the direction of the principal axis of the ellipse. An ellipsoid hull can be drawn
with function ellipsoidhull of package cluster.

Function ordispider draws a ‘spider’ diagram where each point is connected to the group centroid
with segments. Weighted centroids are used in the correspondence analysis methods cca and
decorana or if the user gives the weights in the call. If ordispider is called with cca or rda result
without groups argument, the function connects each ‘WA’ scores to the corresponding ‘LC’ score.
If the argument is a (invisible) ordihull object, the function will connect the points of the hull
to their centroid.

Function ordicluster overlays a cluster dendrogram onto ordination. It needs the result from a hi-
erarchic clustering such as hclust or agnes, or other with a similar structure. Function ordicluster
connects cluster centroids to each other with line segments. Function uses centroids of all points
in the clusters, and is therefore similar to average linkage methods.

Value

Functions ordihull, ordiellipse and ordispider return the invisible plotting structure.

Function ordispider return the coordinates to which each point is connected (centroids or ‘LC’
scores).

Function ordihull returns a list of coordinates of the hulls (which can be extracted with scores),
and ordiellipse returns a list of covariance matrices and scales used in drawing the ellipses. These
result objects have a summary method that returns the coordinates of the centres of the ellipses or
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hulls and their surface areas in user units. With draw = "none" only the result object is returned
and nothing is drawn.

Note

These functions add graphical items to ordination graph: You must draw a graph first. To draw line
segments, grids or arrows, see ordisegments, ordigrid andordiarrows.

Author(s)

Jari Oksanen

See Also

The functions pass parameters to basic graphical functions, and you may wish to change the default
values in lines, segments and polygon. You can pass parameters to scores as well. Underlying
function for ordihull is chull.

Examples

data(dune)
data(dune.env)
mod <- cca(dune ~ Management, dune.env)
attach(dune.env)
## pass non-graphical arguments without warnings
plot(mod, type="n", scaling = 3)
## Catch the invisible result of ordihull...
pl <- ordihull(mod, Management, scaling = 3, label = TRUE)
## ... and find centres and areas of the hulls
summary(pl)
## use ordispider to label and mark the hull
plot(mod, type = "n")
pl <- ordihull(mod, Management, scaling = 3)
ordispider(pl, col="red", lty=3, label = TRUE )
## ordispider to connect WA and LC scores
plot(mod, dis=c("wa","lc"), type="p")
ordispider(mod)
## Other types of plots
plot(mod, type = "p", display="sites")
ordicluster(mod, hclust(vegdist(dune)), prune=3, col = "blue")
plot(mod, type="n", display = "sites")
text(mod, display="sites", labels = as.character(Management))
pl <- ordiellipse(mod, Management, kind="se", conf=0.95, lwd=2, draw = "polygon",

col="skyblue", border = "blue")
summary(pl)
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ordilabel Add Text on Non-transparent Label to an Ordination Plot.

Description

Function ordilabel is similar to text, but the text is on an opaque label. This can help in crowded
ordination plots: you still cannot see all text labels, but at least the uppermost are readable. Argu-
ment priority helps to make the most important labels visible.

Usage

ordilabel(x, display, labels, choices = c(1, 2), priority, select,
cex = 0.8, fill = "white", border = NULL, col = NULL, xpd = TRUE, ...)

Arguments

x An ordination object an any object known to scores.

display Kind of scores displayed (passed to scores).

labels Optional text used in plots. If this is not given, the text is found from the ordi-
nation object.

choices Axes shown (passed to scores).

priority Vector of the same length as the number of labels. The items with high priority
will be plotted uppermost.

select Items to be displayed. This can either be a logical vector which is TRUE for
displayed items or a vector of indices of displayed items.

cex Character expansion for the text (passed to text).

fill Background colour of the labels (the col argument of polygon).

border The colour and visibility of the border of the label as defined in polygon).

col Text colour. Default NULL will give the value of border or par("fg") if border
is NULL.

xpd Draw labels also outside the plot region (see par).

... Other arguments (passed to text).

Details

The function may be useful with crowded ordination plots, in particular together with argument
priority. You will not see all text labels, but at least some are readable. Other alternatives to
crowded plots are identify.ordiplot, orditorp and orditkplot.

Author(s)

Jari Oksanen
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See Also

scores, polygon, text. The function is modelled after s.label in ade4 package.

Examples

data(dune)
ord <- cca(dune)
plot(ord, type = "n")
ordilabel(ord, dis="sites", cex=1.2, font=3, fill="hotpink", col="blue")
## You may prefer separate plots, but here species as well
ordilabel(ord, dis="sp", font=2, priority=colSums(dune))

ordiplot Alternative plot and identify Functions for Ordination

Description

Ordination plot function especially for congested plots. Function ordiplot always plots only
unlabelled points, but identify.ordiplot can be used to add labels to selected site, species or
constraint points. Function identify.ordiplot can be used to identify points from plot.cca,
plot.decorana, plot.procrustes and plot.rad as well.

Usage

ordiplot(ord, choices = c(1, 2), type="points", display, xlim, ylim,
cex = 0.7, ...)

## S3 method for class ’ordiplot’
identify(x, what, labels, ...)
## S3 method for class ’ordiplot’
points(x, what, select, ...)
## S3 method for class ’ordiplot’
text(x, what, labels, select, ...)

Arguments

ord A result from an ordination.

choices Axes shown.

type The type of graph which may be "points", "text" or "none" for any ordination
method.

display Display only "sites" or "species". The default for most methods is to display
both, but for cca, rda and capscale it is the same as in plot.cca.

xlim, ylim the x and y limits (min,max) of the plot.

cex Character expansion factor for points and text.

... Other graphical parameters.

x A result object from ordiplot.
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what Items identified in the ordination plot. The types depend on the kind of plot used.
Most methods know sites and species, functions cca and rda know in addi-
tion constraints (for ‘LC’ scores), centroids and biplot, and plot.procrustes
ordination plot has heads and points.

labels Optional text used for labels. Row names will be used if this is missing.

select Items to be displayed. This can either be a logical vector which is TRUE for
displayed items or a vector of indices of displayed items.

Details

Function ordiplot draws an ordination diagram using black circles for sites and red crosses for
species. It returns invisibly an object of class ordiplot which can be used by identify.ordiplot
to label selected sites or species, or constraints in cca and rda.

The function can handle output from several alternative ordination methods. For cca, rda and
decorana it uses their plot method with option type = "points". In addition, the plot functions
of these methods return invisibly an ordiplot object which can be used by identify.ordiplot
to label points. For other ordinations it relies on scores to extract the scores.

For full user control of plots, it is best to call ordiplot with type = "none" and save the result,
and then add sites and species using points.ordiplot or text.ordiplot which both pass all their
arguments to the corresponding default graphical functions.

Value

Function ordiplot returns invisibly an object of class ordiplot with items sites, species and
constraints (if these are available in the ordination object). Function identify.ordiplot uses
this object to label the point.

Note

The purpose of these functions is to provide similar functionality as the plot, plotid and specid
methods in library labdsv. The functions are somewhat limited in parametrization, but you can call
directly the standard identify and plot functions for a better user control.

Author(s)

Jari Oksanen

See Also

identify for basic operations, plot.cca, plot.decorana, plot.procrustes which also produce
objects for identify.ordiplot and scores for extracting scores from non-vegan ordinations.

Examples

# Draw a plot for a non-vegan ordination (cmdscale).
data(dune)
dune.dis <- vegdist(wisconsin(dune))
dune.mds <- cmdscale(dune.dis, eig = TRUE)
dune.mds$species <- wascores(dune.mds$points, dune, expand = TRUE)
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fig <- ordiplot(dune.mds, type = "none")
points(fig, "sites", pch=21, col="red", bg="yellow")
text(fig, "species", col="blue", cex=0.9)
# Default plot of the previous using identify to label selected points
## Not run:
fig <- ordiplot(dune.mds)
identify(fig, "spec")
## End(Not run)

ordiplot3d Three-Dimensional and Dynamic Ordination Graphics

Description

Function ordiplot3d displays three-dimensional ordination graphics using scatterplot3d. Func-
tion ordirgl displays three-dimensional dynamic ordination graphs which can be rotated and
zoomed into using rgl package. Both work with all ordination results form vegan and all ordi-
nation results known by scores function.

Usage

ordiplot3d(object, display = "sites", choices = 1:3, ax.col = 2,
arr.len = 0.1, arr.col = 4, envfit, xlab, ylab, zlab, ...)

ordirgl(object, display = "sites", choices = 1:3, type = "p",
ax.col = "red", arr.col = "yellow", text, envfit, ...)

orglpoints(object, display = "sites", choices = 1:3, ...)
orgltext(object, text, display = "sites", choices = 1:3, justify = "center",

adj = 0.5, ...)
orglsegments(object, groups, display = "sites", choices = 1:3, ...)
orglspider(object, groups, display = "sites", w = weights(object, display),

choices = 1:3, ...)

Arguments

object An ordination result or any object known by scores.

display Display "sites" or "species" or other ordination object recognized by scores.

choices Selected three axes.

arr.len ’Length’ (width) of arrow head passed to arrows function.

arr.col Colour of biplot arrows and centroids of environmental variables.

type The type of plots: "p" for points or "t" for text labels.

ax.col Axis colour (concerns only the crossed axes through the origin).

text Text to override the default with type = "t".

envfit Fitted environmental variables from envfit displayed in the graph.
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xlab, ylab, zlab

Axis labels passed to scatterplot3d. If missing, labels are taken from the
ordination result. Set to NA to suppress labels.

justify, adj Text justification passed to rgl.texts. One of these is used depending on the
version of rgl installed.

groups Factor giving the groups for which the graphical item is drawn.
w Weights used to find the average within group. Weights are used automatically

for cca and decorana results, unless undone by the user. w=NULL sets equal
weights to all points.

... Other parameters passed to graphical functions.

Details

Both function display three-dimensional ordination graphics. Function ordiplot3d plots static
scatter diagrams using scatterplot3d. Function ordirgl plots dynamic graphics using OpenGL
in rgl. Both functions use most default settings of underlying graphical functions, and you must
consult their help pages to change graphics to suit your taste (see scatterplot3d, rgl, rgl.points,rgl.texts).
Both functions will display only one selected set of scores, typically either "sites" or "species",
but for instance cca also has "lc" scores. In constrained ordination (cca, rda, capscale), bi-
plot arrows and centroids are always displayed similarly as in two-dimensional plotting function
plot.cca. Alternatively, it is possible to display fitted environmental vectors or class centroids
from envfit in both graphs. These are displayed similarly as the results of constrained ordination,
and they can be shown only for non-constrained ordination. The user must remember to specify at
least three axes in envfit if the results are used with these functions.

Function ordiplot3d plots only points. However, it returns invisibly an object inheriting from
ordiplot so that you can use identify.ordiplot to identify "points" or "arrows". The un-
derlying scatterplot3d function accepts type = "n" so that only the axes, biplot arrows and
centroids of environmental variables will be plotted, and the ordination scores can be added with
text.ordiplot or points.ordiplot. Further, you can use any functions from the ordihull
family with the invisible result of ordiplot3d, but you must remember to specify the display as
"points" or "arrows". To change the viewing angle, orientation etc. you must see scatterplot3d.
Only one kind of scores will be plotted. See Examples for plotting both species and site scores.

Function ordigl makes a dynamic three-dimensional graph that can be rotated with mouse, and
zoomed into with mouse buttons or wheel (but Mac users with one-button mouse should see rgl.viewpoint),
or try ctrl-button. MacOS X users must start X11 before calling rgl commands. Function ordirgl
uses default settings, and you should consult the underlying functions rgl.points, rgl.texts to
see how to control the graphics. Function ordirgl always cleans its graphic window before draw-
ing. Functions orglpoints adds points and orgltext adds text to existing ordirgl windows. In
addition, function orglsegments combines points within "groups" with line segments similarly as
ordisegments. Function orglspider works similarly as ordispider: it connects points to their
weighted centroid within "groups", and in constrained ordination it can connect "wa" or weighted
averages scores to corresponding "lc" or linear combination scores if "groups" is missing. In
addition, basic rgl functions rgl.points, rgl.texts, rgl.lines and many others can be used.

Value

Function ordiplot3d returns invisibly an object of class "ordiplot3d" inheriting from ordiplot.
The return object will contain the coordinates projected onto two dimensions for points, and the
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projected coordinates of origin, and possibly the projected coordinates of the heads of arrows and
centroids of environmental variables. Functions like identify.ordiplot, points.ordiplot,
text.ordiplot can use this result, as well as ordihull and other functions documented with
the latter. The result will also contain the object returned by scatterplot3d, including function
xyz.convert which projects three-dimensional coordinates onto the plane used in the current plot
(see Examples). In addition, there is a function envfit.convert that projects a three-dimensional
envfit object to the current plot.

Function ordirgl returns nothing.

Warning

Function ordirgl uses OpenGL package rgl which may not be functional in all platforms, and
can crash R in some: use save.image before trying ordirgl. Mac users must start X11 (and first
install X11 and some other libraries) before being able to use rgl. It seems that rgl.texts does not
always position the text like supposed, and it may be safe to verify text location with corresponding
points.

Function ordiplot3d is based on scatterplot3d which does not allow exactly setting equal aspect
ratio for axes. The function tries to circumvent this by setting equal plotting ranges for all axes so
that the plot should be a cube. Depending on the dimensions of plotting device, this may fail, and
the user should verify that the axes are approximately equal.

Please note that scatterplot3d sets internally some graphical parameters (such as mar for margins)
and does not honour default settings. It is advisable to study carefully the documentation and
examples of scatterplot3d.

Note

The user interface of rgl changed in version 0.65, but the ordirgl functions do not yet fully use the
new capabilities. However, they should work both in old and new versions of rgl.

Author(s)

Jari Oksanen

See Also

scatterplot3d, rgl, rgl.points, rgl.texts, rgl.viewpoint, ordiplot, identify.ordiplot,
text.ordiplot, points.ordiplot, ordihull, plot.cca, envfit.

Examples

## Examples are not run, because they need non-standard packages
## ’scatterplot3d’ and ’rgl’ (and the latter needs user interaction).
#####
### Default ’ordiplot3d’
## Not run:
data(dune)
data(dune.env)
ord <- cca(dune ~ A1 + Moisture, dune.env)
ordiplot3d(ord)
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### A boxed ’pin’ version
ordiplot3d(ord, type = "h")
### More user control
pl <- ordiplot3d(ord, scaling = 3, angle=15, type="n")
points(pl, "points", pch=16, col="red", cex = 0.7)
### identify(pl, "arrows", col="blue") would put labels in better positions
text(pl, "arrows", col="blue", pos=3)
text(pl, "centroids", col="blue", pos=1, cex = 1)
### Add species using xyz.convert function returned by ordiplot3d
sp <- scores(ord, choices=1:3, display="species", scaling=3)
text(pl$xyz.convert(sp), rownames(sp), cex=0.7, xpd=TRUE)
### Two ways of adding fitted variables to ordination plots
ord <- cca(dune)
ef <- envfit(ord ~ Moisture + A1, dune.env, choices = 1:3)
### 1. use argument ’envfit’
ordiplot3d(ord, envfit = ef)
### 2. use returned envfit.convert function for better user control
pl3 <- ordiplot3d(ord)
plot(pl3$envfit.convert(ef), at = pl3$origin)
### envfit.convert() also handles different ’choices’ of axes
pl3 <- ordiplot3d(ord, choices = c(1,3,2))
plot(pl3$envfit.convert(ef), at = pl3$origin)
### ordirgl
ordirgl(ord, size=2)
ordirgl(ord, display = "species", type = "t")
rgl.quit()

## End(Not run)

ordipointlabel Ordination Plots with Points and Optimized Locations for Text

Description

The function ordipointlabel produces ordination plots with points and text label to the points.
The points are in the exact location given by the ordination, but the function tries to optimize the
location of the text labels to minimize overplotting text. The function may be useful with moderately
crowded ordination plots.

Usage

ordipointlabel(x, display = c("sites", "species"), choices = c(1, 2),
col = c(1, 2), pch = c("o", "+"), font = c(1, 1),
cex = c(0.8, 0.8), add = FALSE, select, ...)

Arguments

x A result object from ordination.

display Scores displayed in the plot.
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choices Axes shown.
col, pch, font, cex

Colours, point types, font style and character expansion for each kind of scores
displayed in the plot. These should be vectors of the same length as the number
of items in display.

add Add to an existing plot.

select Items to be displayed. This can either be a logical vector which is TRUE for
displayed items or a vector of indices of displayed items. select is only used if
a single set of scores is being plotted (i.e. length(display) == 1), otherwise
it is ignored and a warning issued. If a logical vector is used, it must have the
same length as the scores plotted.

... Other arguments passed to points and text.

Details

The function uses simulated annealing (optim, method = "SANN") to optimize the location of the
text labels to the points. There are eight possible locations: up, down, sides and corners. There is a
weak preference to text right above the point, and a weak avoidance of corner positions. The exact
locations and the goodness of solution varies between runs, and there is no guarantee of finding the
global optimum. The optimization can take a long time in difficult cases with a high number of
potential overlaps. Several sets of scores can be displayed in one plot.

The function is modelled after pointLabel in maptools package (which has chained dependencies
of S4 packages).

Value

The function returns invisibly an object of class ordipointlabel with items xy for coordinates of
points, labels for coordinates of labels, items pch, cex and font for graphical parameters of each
point or label. In addition, it returns the result of optim as an attribute "optim". The unit of overlap
is the area of character "m", and with variable cex it is the smallest alternative. The result object
inherits from orditkplot result, and can be replotted with its plot command. It may be possible
to further edit the result object with orditkplot, but for good results it is necessary that the points
span the whole horizontal axis without empty margins.

Note

The function is designed for ordination graphics, and the optimization works properly with plots of
isometric aspect ratio.

Author(s)

Jari Oksanen

References

See pointLabel for references.
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See Also

pointLabel for the model implementation, and optim for the optimization.

Examples

data(dune)
ord <- cca(dune)
ordipointlabel(ord)

ordiresids Plots of Residuals and Fitted Values for Constrained Ordination

Description

The function provides plot.lm style diagnostic plots for the results of constrained ordination from
cca, rda and capscale. Normally you do not need these plots, because ordination is descriptive and
does not make assumptions on the distribution of the residuals. However, if you permute residuals
in significance tests (anova.cca), you may be interested in inspecting that the residuals really are
exchangeable and independent of fitted values.

Usage

ordiresids(x, kind = c("residuals", "scale", "qqmath"),
residuals = "working", type = c("p", "smooth", "g"),
formula, ...)

Arguments

x Ordination result from cca, rda or capscale.

kind The type of plot: "residuals" plot residuals against fitted values, "scale" the
square root of absolute residuals against fitted values, and "qqmath" the resid-
uals against expected distribution (defaults qnorm), unless defined differently in
the formula argument).

residuals The kind of residuals and fitted values. The argument is passed on to fitted.cca
with alternatives "working" and "response".

type The type of plot. The argument is passed on to lattice functions.

formula Formula to override the default plot. The formula can contain items Fitted,
Residuals, Species and Sites (provided that names of species and sites are
available in the ordination result).

... Other arguments passed to lattice functions.

Details

The default plots are similar as in plot.lm, but they use Lattice functions xyplot and qqmath.
The alternatives have default formulae but these can be replaced by the user. The elements available
in formula or in the groups argument are Fitted, Residuals, Species and Sites.
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Value

The function return a Lattice object that can displayed as plot.

Author(s)

Jari Oksanen

See Also

plot.lm, Lattice, xyplot, qqmath.

Examples

data(varespec)
data(varechem)
mod <- cca(varespec ~ Al + P + K, varechem)
ordiresids(mod)

ordistep Choose a Model by Permutation Tests in Constrained Ordination

Description

Automatic stepwise model building for constrained ordination methods (cca, rda, capscale). The
function ordistep is modelled after step and can do forward, backward and stepwise model se-
lection using permutation tests. Function ordiR2step performs forward model choice solely on
adjusted R2 and P-value, for ordination objects created by rda or capscale.

Usage

ordistep(object, scope, direction = c("both", "backward", "forward"),
Pin = 0.05, Pout = 0.1, pstep = 100, perm.max = 1000, steps = 50,
trace = TRUE, ...)

ordiR2step(object, scope, direction = c("both", "forward"),
Pin = 0.05, R2scope = TRUE, pstep = 100, perm.max = 1000,
trace = TRUE, ...)

Arguments

object In ordistep, an ordination object inheriting from cca or rda. In ordiR2step,
the object must inherit from rda, that is, it must have been computed using rda
or capscale.

scope Defines the range of models examined in the stepwise search. This should be
either a single formula, or a list containing components upper and lower, both
formulae. See step for details. In ordiR2step, this defines the upper scope; it
can also be an ordination object from with the model is extracted.
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direction The mode of stepwise search, can be one of "both", "backward", or "forward",
with a default of "both". If the scope argument is missing, the default for
direction is "backward".

Pin, Pout Limits of permutation P -values for adding (Pin) a term to the model, or drop-
ping (Pout) from the model. Term is added if P ≤ Pin, and removed if P >
Pout.

R2scope Use adjusted R2 as the stopping criterion: only models with lower adjusted R2

than scope are accepted.

pstep Number of permutations in one step. See add1.cca.

perm.max Maximum number of permutation in anova.cca.

steps Maximum number of iteration steps of dropping and adding terms.

trace If positive, information is printed during the model building. Larger values may
give more information.

... Any additional arguments to add1.cca and drop1.cca.

Details

The basic functions for model choice in constrained ordination are add1.cca and drop1.cca. With
these functions, ordination models can be chosen with standard R function step which bases the
term choice on AIC. AIC-like statistics for ordination are provided by functions deviance.cca and
extractAIC.cca (with similar functions for rda). Actually, constrained ordination methods do not
have AIC, and therefore the step may not be trusted. This function provides an alternative using
permutation P -values.

Function ordistep defines the model, scope of models considered, and direction of the proce-
dure similarly as step. The function alternates with drop and add steps and stops when the model
was not changed during one step. The - and + signs in the summary table indicate which stage is
performed. The number of permutations is selected adaptively with respect to the defined decision
limit. It is often sensible to have Pout > Pin in stepwise models to avoid cyclic adds and drops of
single terms.

Function ordiR2step builds model so that it maximizes adjusted R2 (function RsquareAdj) at
every step, and stopping when the adjusted R2 starts to decrease, or the adjusted R2 of the scope
is exceeded, or the selected permutation P -value is exceeded (Blanchet et al. 2008). The second
criterion is ignored with option R2step = FALSE, and the third criterion can be ignored setting
Pin = 1 (or higher). The direction has choices "forward" and "both", but it is very excepctional
that a term is dropped with the adjustedR2 criterion. Function uses adjustedR2 as the criterion, and
it cannot be used if the criterion cannot be calculated. Therefore it is unavailable for cca. Adjusted
R2 cannot be calculated if the number of predictors is higher than the number of observations, but
such models can be analysed with R2scope = FALSE.

Functions ordistep (based on P values) and ordiR2step (based on adjusted R2 and hence on
eigenvalues) can select variables in different order.

Value

Functions return the selected model with one additional component, anova, which contains brief
information of steps taken. You can suppress voluminous output during model building by setting
trace = FALSE, and find the summary of model history in the anova item.
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Author(s)

Jari Oksanen

References

Blanchet, F. G., Legendre, P. & Borcard, D. (2008) Forward selection of explanatory variables.
Ecology 89, 2623–2632.

See Also

The function handles constrained ordination methods cca, rda and capscale. The underlying func-
tions are add1.cca and drop1.cca, and the function is modelled after standard step (which also
can be used directly but uses AIC for model choice, see extractAIC.cca). Function ordiR2step
builds upon RsquareAdj.

Examples

## See add1.cca for another example

### Dune data
data(dune)
data(dune.env)
mod0 <- rda(dune ~ 1, dune.env) # Model with intercept only
mod1 <- rda(dune ~ ., dune.env) # Model with all explanatory variables

## With scope present, the default direction is "both"
ordistep(mod0, scope = formula(mod1), perm.max = 200)

## Example without scope. Default direction is "backward"
ordistep(mod1, perm.max = 200)

## Example of ordistep, forward
## Not run:
ordistep(mod0, scope = formula(mod1), direction="forward", perm.max = 200)

## End(Not run)
### Mite data
data(mite)
data(mite.env)
mite.hel = decostand(mite, "hel")
mod0 <- rda(mite.hel ~ 1, mite.env) # Model with intercept only
mod1 <- rda(mite.hel ~ ., mite.env) # Model with all explanatory variables

## Example of ordiR2step with default direction = "both"
## (This never goes "backward" but evaluates included terms.)
step.res <- ordiR2step(mod0, mod1, perm.max = 200)
step.res$anova # Summary table

## Example of ordiR2step with direction = "forward"
## Not run:
step.res <- ordiR2step(mod0, scope = formula(mod1), direction="forward")
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step.res$anova # Summary table

## End(Not run)

ordisurf Fit and Plot Smooth Surfaces of Variables on Ordination.

Description

Function ordisurf fits a smooth surface for given variable and plots the result on ordination dia-
gram.

Usage

## Default S3 method:
ordisurf(x, y, choices=c(1, 2), knots=10, family="gaussian", col="red",

thinplate = TRUE, add = FALSE, display = "sites",
w = weights(x), main, nlevels = 10, levels, labcex = 0.6,
bubble = FALSE, cex = 1, select = FALSE, method = "GCV.Cp",
gamma = 1, plot = TRUE, ...)

## S3 method for class ’formula’
ordisurf(formula, data, ...)

## S3 method for class ’ordisurf’
calibrate(object, newdata, ...)

## S3 method for class ’ordisurf’
plot(x, what = c("contour","persp","gam"),

add = FALSE, bubble = FALSE, col = "red", cex = 1,
nlevels = 10, levels, labcex = 0.6, ...)

Arguments

x For ordisurf an ordination configuration, either a matrix or a result known by
scores. For plot.ordisurf and object of class "ordisurf" as returned by
ordisurf.

y Variable to be plotted.

choices Ordination axes.

knots Number of initial knots in gam (one more than degrees of freedom). If knots = 0
or knots = 1 the function will fit a linear trend surface, and if knots = 2 the
function will fit a quadratic trend surface instead of a smooth surface.

family Error distribution in gam.

col Colour of contours.

thinplate Use thinplate splines in gam.
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add Add contours on an existing diagram or draw a new plot.
display Type of scores known by scores: typically "sites" for ordinary site scores or

"lc" for linear combination scores.
w Prior weights on the data. Concerns mainly cca and decorana results which

have nonconstant weights.
main The main title for the plot, or as default the name of plotted variable in a new

plot.
nlevels, levels

Either a vector of levels for which contours are drawn, or suggested number
of contours in nlevels if levels are not supplied.

labcex Label size in contours. Setting this zero will suppress labels.
bubble Use “bubble plot” for points, or vary the point diameter by the value of the

plotted variable. If bubble is numeric, its value is used for the maximum symbol
size (as in cex), or if bubble = TRUE, the value of cex gives the maximum.
The minimum size will always be cex = 0.4. The option only has an effect if
add = FALSE.

cex Character expansion of plotting symbols.
select Logical; specify gam argument "select". If this is TRUE then gam can add an

extra penalty to each term so that it can be penalized to zero. This means that
the smoothing parameter estimation that is part of fitting can completely remove
terms from the model. If the corresponding smoothing parameter is estimated
as zero then the extra penalty has no effect.

method character; the smoothing parameter estimation method. Options allowed are:
"GCV.Cp" uses GCV for models with unknown scale parameter and Mallows’
Cp/UBRE/AIC for models with known scale; "GACV.Cp" as for "GCV.Cp" but
uses GACV (Generalised Approximate CV) instead of GCV; "REML" and "ML"
use restricted maximum likelihood or maximum likelihood estimation for both
known and unknown scale; and "P-REML" and "P-ML" use REML or ML esti-
mation but use a Pearson estimate of the scale.

gamma Multiplier to inflate model degrees of freedom in GCV or UBRE/AIC score by.
This effectively places an extra penalty on complex models. An oft used value
if gamma = 1.4.

plot logical; should any plotting be done by ordisurf? Useful if all you want is the
fitted response surface model.

formula, data Alternative definition of the fitted model as x ~ y, or left-hand side is the ordi-
nation x and right-hand side the single fitted continuous variable y. The variable
y must be in the working environment or in the data frame or environment given
by data. All other arguments of are passed to the default method.

object An ordisurf result object.
newdata Coordinates in two-dimensional ordination for new points.
what character; what type of plot to produce. "contour" produces a contour plot of

the response surface, see contour for details. "persp" produces a perspective
plot of the same, see persp for details. "gam" plots the fitted GAM model, an
object that inherits from class "gam" returned by ordisurf, see plot.gam.

... Other parameters passed to gam, or to the graphical functions. See Note below
for exceptions.
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Details

Function ordisurf fits a smooth surface using thinplate splines (Wood 2003) in gam, and uses
predict.gam to find fitted values in a regular grid. The smooth surface can be fitted with an extra
penalty that allows the entire smoother to be penalized back to 0 degrees of freedom, effectively
removing the term from the model (see Marra & Wood, 2011). The addition of this extra penalty is
invoked by setting argument select to TRUE. The function plots the fitted contours with convex hull
of data points either over an existing ordination diagram or draws a new plot. If select = TRUE
and the smooth is effectively penalised out of the model, no contours will be plotted.

gam determines the degree of smoothness for the fitted response surface during model fitting. Ar-
gument method controls how gam performs this smoothness selection. See gam for details of the
available options. Using "REML" or "ML" yields p-values for smooths with the best coverage prop-
erties if such things matter to you.

The function uses scores to extract ordination scores, and x can be any result object known by that
function.

User can supply a vector of prior weights w. If the ordination object has weights, these will be
used. In practise this means that the row totals are used as weights with cca or decorana results.
If you do not like this, but want to give equal weights to all sites, you should set w = NULL. The
behaviour is consistent with envfit. For complete accordance with constrained cca, you should
set display = "lc" (and possibly scaling = 2).

Function calibrate returns the fitted values of the response variable. The newdata must be coor-
dinates of points for which the fitted values are desired. The function is based on predict.gam and
will pass extra arguments to that function.

Value

Function is usually called for its side effect of drawing the contour plot. The function returns the
result object of class "ordisurf" that inherits from gam used internally to fit the surface, but adds
an item grid that contains the data for the grid surface. The item grid has elements x and y which
are vectors of axis coordinates, and element z that is a matrix of fitted values for contour. The
values outside the convex hull of observed points are NA in z. The gam component of the result can
be used for further analysis like predicting new values (see predict.gam).

Note

The default is to use thinplate splines. These make sense in ordination as they have equal smoothing
in all directions and are rotation invariant.

Graphical arguments supplied to plot.ordisurf are passed on to the underlying plotting functions,
contour, persp, and plot.gam. The exception to this is that arguments col and cex can not
currently be passed to plot.gam because of a bug in the way that function evaluates arguments
when arranging the plot.

A work-around is to call plot.gam directly on the result of a call to ordisurf. See the Examples
for an illustration of this.

Author(s)

Dave Roberts, Jari Oksanen and Gavin L. Simpson
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References

Marra, G.P & Wood, S.N. (2011) Practical variable selection for generalized additive models. Com-
put. Stat. Data Analysis 55, 2372–2387.

Wood, S.N. (2003) Thin plate regression splines. J. R. Statist. Soc. B 65, 95–114.

See Also

For basic routines gam, and scores. Function envfit provides a more traditional and compact
alternative.

Examples

data(varespec)
data(varechem)
vare.dist <- vegdist(varespec)
vare.mds <- monoMDS(vare.dist)
with(varechem, ordisurf(vare.mds, Baresoil, bubble = 5))

## as above but with extra penalties on smooth terms:
with(varechem, ordisurf(vare.mds, Baresoil, bubble = 5, col = "blue",

add = TRUE, select = TRUE))

## Cover of Cladina arbuscula
fit <- with(varespec, ordisurf(vare.mds, Cla.arb, family=quasipoisson))
## Get fitted values
calibrate(fit)

## Plot method
plot(fit, what = "contour")

## Plotting the "gam" object
plot(fit, what = "gam") ## ’col’ and ’cex’ not passed on
## or via plot.gam directly
plot.gam(fit, cex = 2, pch = 1, col = "blue")
## ’col’ effects all objects drawn...

orditkplot Ordination Plot with Movable Labels

Description

Function orditkplot produces an editable ordination plot with points and labels. The labels can be
moved with mouse, and the edited plot can be saved as an encapsulated postscript file or exported
via R plot function to other graphical formats, or saved in the R session for further processing.
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Usage

orditkplot(x, display = "species", choices = 1:2, width, xlim, ylim,
tcex = 0.8, tcol, pch = 1, pcol, pbg, pcex = 0.7, labels, ...)

## S3 method for class ’orditkplot’
plot(x, ...)
## S3 method for class ’orditkplot’
points(x, ...)
## S3 method for class ’orditkplot’
text(x, ...)
## S3 method for class ’orditkplot’
scores(x, display, ...)

Arguments

x An ordination result or any other object that scores can handle, or for the plot
function the object dumped from the interactive orditkplot session.

display Type of scores displayed. For ordination scores this typically is either "species"
or "sites", and for orditkplot result it is either "points" or "labels".

choices Axes displayed.
width Width of the plot in inches; defaults to the current width of the graphical device.
xlim, ylim x and y limits for plots: points outside these limits will be completely removed.
tcex Character expansion for text labels.
tcol Colour of text labels.
pch, pcol, pbg Point type and outline and fill colours. Defaults pcol="black" and pbg="transparent".

Argument pbg has an effect only in filled plotting characters pch = 21 to 25.
pcex Expansion factor for point size.
labels Labels used instead of row names.
... Other arguments passed to the function. These can be graphical parameters

(see par) used in the plot, or extra arguments to scores. These arguments are
ignored in plot, but honoured in text and points.

Details

Function orditkplot uses tcltk package to draw Tcl/Tk based ordination graphics with points and
labels. The function opens an editable canvas with fixed points, but the labels can be dragged with
mouse to better positions or edited. In addition, it is possible to zoom to a part of the graph.

The function knows the following mouse operations:

• Left mouse button can be used to move labels to better positions. A line will connect a label
to the corresponding point.

• Double clicking left mouse button opens a window where the label can be edited. After
editing the label, hit the Return key.

• Right mouse button (or alternatively, Shift-Mouse button with one-button mouse) can be
used for zooming to a part of the graph. Keeping the mouse button down and dragging will
draw a box of the zoomed area, and after releasing the button, a new plot window will be
created (this is still preliminary: all arguments are not passed to the new plot).
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In addition there are buttons for the following tasks: Copy to EPS copies the current plot to an
encapsulated postscript (eps) file using standard Tcl/Tk utilities. The faithfulness of this copy is
system dependent. Button Export plot uses plot.orditkplot function to redraw the plot into
graphical file formats. Depending on the system, the following graphical formats may be available:
eps, pdf, png, jpeg or bmp. The file type is deduced from the file suffix or the selection of the
file type in the dialogue box. Alternatively, the same dialogue can be used to save the plot to an
editable xfig file. Button Dump to R writes the edited coordinates of labels and points to the R
session for further processing, and the plot.orditkplot function can be used to display the results.
For faithful replication of the plot, the graph must have similar dimensions as the orditkplot
canvas had originally. The plot function cannot be configured, but it uses the same settings as the
original Tcl/Tk plot. However, points and text functions are fully configurable, and unaware of
the original Tcl/Tk plot settings (probably you must set cex at least to get a decent plot). Finally,
button Dismiss closes the window.

The produced plot will have equal aspect ratio. The width of the horizontal axis is fixed, but vertical
axes will be scaled to needed height, and you can use scrollbar to move vertically if the whole
canvas does not fit the window. If you use dumped labels in ordinary R plots, your plot must have
the same dimensions as the orditkplot canvas to have identical location of the labels.

The function only displays one set of scores. However, you can use ordipointlabel to produce
a result object that has different points and text types for several sets of scores and this can further
edited with orditkplot. For a good starting solution you need to scale the ordipointlabel result
so that the points span over the whole horizontal axis.

The plot is a Tcl/Tk canvas, but the function tries to replicate standard graphical device of the
platform, and it honours several graphical parameters (see par). Many of the graphical parameters
can be given on the command line, and they will be passed to the function without influencing other
graphical devices in R. At the moment, the following graphical parameters are honoured: pch bg,
cex, cex.axis, cex.lab, col (for labels), col.axis, col.lab, family (for font faces), fg, font,
font.axis, font.lab, lheight, lwd (for the box), mar, mex, mgp, ps, tcl. These can be set with
par, and they also will influence other plots similarly.

The tkcanvas text cannot be rotated, and therefore vertical axis is not labelled, and las parameter
will not be honoured in the Tcl/Tk plot, but it will be honoured in the exported R plots and in
plot.orditkplot.

Value

Function returns nothing useful directly, but you can save the edited graph to a file or dump the
edited positions to an R session for further processing and plotting.

Note

You need tcltk package and R must have been configured with capabilities for tcltk when
building the binary. Depending on your OS, you may need to start X11 and set the display before
loading tcltk and starting the function (for instance, with Sys.setenv("DISPLAY"=":0")). See
tcltk-package.

Author(s)

Jari Oksanen
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See Also

Function ordipointlabel is an automatic procedure with similar goals of avoiding overplotting.
See ordiplot, plot.cca, ordirgl and orditorp for alternative ordination plots, and scores for
extracting ordination scores.

Examples

## The example needs user interaction and is not executed directly.
## It should work when pasted to the window.
## Not run:
data(varespec)
ord <- cca(varespec)
## Do something with the graph and end by clicking "Dismiss"
orditkplot(ord, mar = c(4,4,1,1)+.1, font=3)
## Use ordipointlabel to produce a plot that has both species and site
## scores in different colors and plotting symbols
pl <- ordipointlabel(ord)
orditkplot(pl)

## End(Not run)

orditorp Add Text or Points to Ordination Plots

Description

The function adds text or points to ordination plots. Text will be used if this can be done without
overwriting other text labels, and points will be used otherwise. The function can help in reducing
clutter in ordination graphics, but manual editing may still be necessary.

Usage

orditorp(x, display, labels, choices = c(1, 2), priority,
select, cex = 0.7, pcex, col = par("col"), pcol,
pch = par("pch"), air = 1, ...)

Arguments

x A result object from ordination or an ordiplot result.

display Items to be displayed in the plot. Only one alternative is allowed. Typically this
is "sites" or "species".

labels Optional text used for labels. Row names will be used if this is missing.

choices Axes shown.

priority Text will be used for items with higher priority if labels overlap. This should be
vector of the same length as the number of items plotted.
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select Items to be displayed. This can either be a logical vector which is TRUE for
displayed items or a vector of indices of displayed items. If a logical vector is
used, it must have the same length as the scores plotted.

cex, pcex Text and point sizes, see plot.default..

col, pcol Text and point colours, see plot.default.

pch Plotting character, see points.

air Amount of empty space between text labels. Values <1 allow overlapping text.

... Other arguments to scores (and its various methods), text and points.

Details

Function orditorp will add either text or points to an existing plot. The items with high priority
will be added first and text will be used if this can be done without overwriting previous labels,and
points will be used otherwise. If priority is missing, labels will be added from the outskirts to
the centre. Function orditorp can be used with most ordination results, or plotting results from
ordiplot or ordination plot functions (plot.cca, plot.decorana, plot.metaMDS).

Arguments can be passed to the relevant scores method for the ordination object (x) being drawn.
See the relevant scores help page for arguments that can be used.

Value

The function returns invisibly a logical vector where TRUE means that item was labelled with text
and FALSE means that it was marked with a point. The returned vector can be used as the select
argument in ordination text and points functions.

Author(s)

Jari Oksanen

Examples

## A cluttered ordination plot :
data(BCI)
mod <- cca(BCI)
plot(mod, dis="sp", type="t")
# Now with orditorp and abbreviated species names
cnam <- make.cepnames(names(BCI))
plot(mod, dis="sp", type="n")
stems <- colSums(BCI)
orditorp(mod, "sp", label = cnam, priority=stems, pch="+", pcol="grey")

## show select in action
set.seed(1)
take <- sample(ncol(BCI), 50)
plot(mod, dis="sp", type="n")
stems <- colSums(BCI)
orditorp(mod, "sp", label = cnam, priority=stems, select = take,

pch="+", pcol="grey")
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ordixyplot Trellis (Lattice) Plots for Ordination

Description

Functions ordicloud, ordisplom and ordixyplot provide an interface to plot ordination results
using Trellis functions cloud, splom and xyplot in package lattice.

Usage

ordixyplot(x, data = NULL, formula, display = "sites", choices = 1:3,
panel = "panel.ordi", aspect = "iso", envfit,
type = c("p", "biplot"), ...)

ordisplom(x, data=NULL, formula = NULL, display = "sites", choices = 1:3,
panel = "panel.ordi", type = "p", ...)

ordicloud(x, data = NULL, formula, display = "sites", choices = 1:3,
panel = "panel.ordi3d", prepanel = "prepanel.ordi3d", ...)

Arguments

x An ordination result that scores knows: any ordination result in vegan and
many others.

data Optional data to amend ordination results. The ordination results are found from
x, but you may give here data for other variables needed in plots. Typically these
are environmental data.

formula Formula to define the plots. A default formula will be used if this is omitted.
The ordination axes must be called by the same names as in the ordination re-
sults (and these names vary among methods). In ordisplom, special character
. refers to the ordination result.

display The kind of scores: an argument passed to scores.

choices The axes selected: an argument passed to scores.
panel, prepanel

The names of the panel and prepanel functions.

aspect The aspect of the plot (passed to the lattice function).

envfit Result of envfit function displayed in ordixyplot. Please note that this needs
same choices as ordixyplot.

type The type of plot. This knows the same alternatives as panel.xyplot. In ad-
dition ordixyplot has alternatives "biplot" and "arrows". The first dis-
plays fitted vectors and factor centroids of envfit, or in constrained ordina-
tion, the biplot arrows and factor centroids if envfit is not given. The sec-
ond (type = "arrows") is a trellis variant of ordiarrows and draws arrows by
groups. The line parameters are controlled by trellis.par.set for superpose.line,
and the user can set length, angle and ends parameters of panel.arrows.

... Arguments passed to scores methods or lattice functions.
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Details

The functions provide an interface to the corresponding lattice functions. All graphical parameters
are passed to the lattice function so that these graphs are extremely configurable. See Lattice and
xyplot, splom and cloud for details, usage and possibilities.

The argument x must always be an ordination result. The scores are extracted with vegan function
scores so that these functions work with all vegan ordinations and many others.

The formula is used to define the models. All functions have simple default formulae which are
used if formula is missing. If formula is omitted in ordisplom it produces a pairs plot of ordination
axes and variables in data. If formula is given, ordination results must be referred to as . and other
variables by their names. In other functions, the formula must use the names of ordination scores
and names of data.

The ordination scores are found from x, and data is optional. The data should contain other
variables than ordination scores to be used in plots. Typically, they are environmental variables
(typically factors) to define panels or plot symbols.

The proper work is done by the panel function. The layout can be changed by defining own panel
functions. See panel.xyplot, panel.splom and panel.cloud for details and survey of possibili-
ties.

Ordination graphics should always be isometric: same scale should be used in all axes. This is
controlled (and can be changed) with argument aspect in ordixyplot. In ordicloud the isometric
scaling is defined in panel and prepanel functions. You must replace these functions if you want
to have non-isometric scaling of graphs. You cannot select isometric scaling in ordisplom.

Value

The function return Lattice objects of class "trellis".

Author(s)

Jari Oksanen

See Also

Lattice, xyplot, splom, cloud, panel.splom, panel.cloud

Examples

data(dune)
data(dune.env)
ord <- cca(dune)
## Pairs plots
ordisplom(ord)
ordisplom(ord, data=dune.env, choices=1:2)
ordisplom(ord, data=dune.env, form = ~ . | Management, groups=Manure)
## Scatter plot
ordixyplot(ord, data=dune.env, form = CA1 ~ CA2 | Management,

groups=Manure)
## Choose a different scaling
ordixyplot(ord, scaling = 3)
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## ... Slices of third axis
ordixyplot(ord, form = CA1 ~ CA2 | equal.count(CA3, 4), type = c("g","p"))
## Display environemntal variables
ordixyplot(ord, envfit = envfit(ord ~ Management + A1, dune.env, choices=1:3))
## 3D Scatter plots
ordicloud(ord, form = CA2 ~ CA3*CA1, groups = Manure, data = dune.env)
ordicloud(ord, form = CA2 ~ CA3*CA1 | Management, groups = Manure,

data = dune.env, auto.key = TRUE, type = c("p","h"))

pcnm Principal Coordinates of Neighbourhood Matrix

Description

This function computed classical PCNM by the principal coordinate analysis of a truncated distance
matrix. These are commonly used to transform (spatial) distances to rectangular data that suitable
for constrained ordination or regression.

Usage

pcnm(dis, threshold, w, dist.ret = FALSE)

Arguments

dis A distance matrix.

threshold A threshold value or truncation distance. If missing, minimum distance giving
connected network will be used. This is found as the longest distance in the
minimum spanning tree of dis.

w Prior weights for rows.

dist.ret Return the distances used to calculate the PCNMs.

Details

Principal Coordinates of Neighbourhood Matrix (PCNM) map distances between rows onto rectan-
gular matrix on rows using a truncation threshold for long distances (Borcard & Legendre 2002). If
original distances were Euclidean distances in two dimensions (like normal spatial distances), they
could be mapped onto two dimensions if there is no truncation of distances. Because of truncation,
there will be a higher number of principal coordinates. The selection of truncation distance has a
huge influence on the PCNM vectors. The default is to use the longest distance to keep data con-
nected. The distances above truncation threshold are given an arbitrary value of 4 times threshold.
For regular data, the first PCNM vectorsshow a wide scale variation and later PCNM vectors show
smaller scale variation (Borcard & Legendre 2002), but for irregular data the intepretation is not as
clear.

The PCNM functions are used to express distances in rectangular form that is similar to normal
explanatory variables used in, e.g., constrained ordination (rda, cca and capscale) or univariate
regression (lm) together with environmental variables (row weights should be supplied with cca;
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see Examples). This is regarded as a more powerful method than forcing rectangular environmen-
tal data into distances and using them in partial mantel analysis (mantel.partial) together with
geographic distances (Legendre et al. 2008, but see Tuomisto & Ruokolainen 2008).

The function is based on pcnm function in Dray’s unreleased spacemakeR package. The differences
are that the current function usesr spantree as an internal support function. The current function
also can use prior weights for rows by using weighted metric scaling of wcmdscale. The use of row
weights allows finding orthonormal PCNMs also for correspondence analysis (e.g., cca).

Value

A list of the following elements:

values Eigenvalues obtained by the principal coordinates analysis.

vectors Eigenvectors obtained by the principal coordinates analysis. They are scaled to
unit norm. The vectors can be extracted with scores function. The default is to
return all PCNM vectors, but argument choices selects the given vectors.

threshold Truncation distance.

dist The distance matrix where values above threshold are replaced with arbitrary
value of four times the threshold. String "pcnm" is added to the method attribute,
and new attribute threshold is added to the distances. This is returned only
when dist.ret = TRUE.

Author(s)

Jari Oksanen, based on the code of Stephane Dray.

References

Borcard D. and Legendre P. (2002) All-scale spatial analysis of ecological data by means of princi-
pal coordinates of neighbour matrices. Ecological Modelling 153, 51–68.

Legendre, P., Bordard, D and Peres-Neto, P. (2008) Analyzing or explaining beta diversity? Com-
ment. Ecology 89, 3238–3244.

Tuomisto, H. & Ruokolainen, K. (2008) Analyzing or explaining beta diversity? A reply. Ecology
89, 3244–3256.

See Also

spantree.

Examples

## Example from Borcard & Legendre (2002)
data(mite.xy)
pcnm1 <- pcnm(dist(mite.xy))
op <- par(mfrow=c(1,3))
## Map of PCNMs in the sample plot
ordisurf(mite.xy, scores(pcnm1, choi=1), bubble = 4, main = "PCNM 1")
ordisurf(mite.xy, scores(pcnm1, choi=2), bubble = 4, main = "PCNM 2")
ordisurf(mite.xy, scores(pcnm1, choi=3), bubble = 4, main = "PCNM 3")
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par(op)
## Plot first PCNMs against each other
ordisplom(pcnm1, choices=1:4)
## Weighted PCNM for CCA
data(mite)
rs <- rowSums(mite)/sum(mite)
pcnmw <- pcnm(dist(mite.xy), w = rs)
ord <- cca(mite ~ scores(pcnmw))
## Multiscale ordination: residual variance should have no distance
## trend
msoplot(mso(ord, mite.xy))

permat Matrix Permutation Algorithms for Presence-Absence and Count Data

Description

Individual (for count data) or incidence (for presence-absence data) based null models can be gener-
ated for community level simulations. Options for preserving characteristics of the original matrix
(rows/columns sums, matrix fill) and restricted permutations (based on strata) are discussed in the
Details section.

Usage

permatfull(m, fixedmar = "both", shuffle = "both", strata = NULL,
mtype = "count", times = 99)

permatswap(m, method = "quasiswap", fixedmar="both", shuffle = "both",
strata = NULL, mtype = "count", times = 99, burnin = 0, thin = 1)

## S3 method for class ’permat’
print(x, digits = 3, ...)
## S3 method for class ’permat’
summary(object, ...)
## S3 method for class ’summary.permat’
print(x, digits = 2, ...)
## S3 method for class ’permat’
plot(x, type = "bray", ylab, xlab, col, lty,

lowess = TRUE, plot = TRUE, text = TRUE, ...)
## S3 method for class ’permat’
lines(x, type = "bray", ...)
## S3 method for class ’permat’
as.ts(x, type = "bray", ...)
## S3 method for class ’permat’
as.mcmc(x)

Arguments

m A community data matrix with plots (samples) as rows and species (taxa) as
columns.
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fixedmar character, stating which of the row/column sums should be preserved ("none", "rows", "columns", "both").

strata Numeric vector or factor with length same as nrow(m) for grouping rows within
strata for restricted permutations. Unique values or levels are used.

mtype Matrix data type, either "count" for count data, or "prab" for presence-absence
type incidence data.

times Number of permuted matrices.

method Character for method used for the swap algorithm ("swap", "tswap", "quasiswap",
"backtrack") as described for function commsimulator. If mtype="count"
the "quasiswap", "swap", "swsh" and "abuswap" methods are available (see
details).

shuffle Character, indicating whether individuals ("ind"), samples ("samp") or both
("both") should be shuffled, see details.

burnin Number of null communities discarded before proper analysis in sequential
("swap", "tswap") methods.

thin Number of discarded permuted matrices between two evaluations in sequential
("swap", "tswap") methods.

x, object Object of class "permat"

digits Number of digits used for rounding.
ylab, xlab, col, lty

graphical parameters for the plot method.

type Character, type of plot to be displayed: "bray" for Bray-Curtis dissimilarities,
"chisq" for Chi-squared values.

lowess, plot, text

Logical arguments for the plot method, whether a locally weighted regression
curve should be drawn, the plot should be drawn, and statistic values should be
printed on the plot.

... Other arguments passed to methods.

Details

The function permatfull is useful when matrix fill is allowed to vary, and matrix type is count.
The fixedmar argument is used to set constraints for permutation. If none of the margins are fixed,
cells are randomised within the matrix. If rows or columns are fixed, cells within rows or columns
are randomised, respectively. If both margins are fixed, the r2dtable function is used that is based
on Patefield’s (1981) algorithm. For presence absence data, matrix fill should be necessarily fixed,
and permatfull is a wrapper for the function commsimulator. The r00, r0, c0, quasiswap
algorithms of commsimulator are used for "none", "rows", "columns", "both" values of the
fixedmar argument, respectively

The shuffle argument only have effect if the mtype = "count" and permatfull function is
used with "none", "rows", "columns" values of fixedmar. All other cases for count data are
individual based randomisations. The "samp" and "both" options result fixed matrix fill. The
"both" option means that individuals are shuffled among non zero cells ensuring that there are no
cell with zeros as a result, then cell (zero and new valued cells) are shuffled.

The function permatswap is useful when with matrix fill (i.e. the proportion of empty cells) and
row/columns sums should be kept constant. permatswap uses different kinds of swap algorithms,
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and row and columns sums are fixed in all cases. For presence-absence data, the swap and tswap
methods of commsimulator can be used. For count data, a special swap algorithm (’swapcount’) is
implemented that results in permuted matrices with fixed marginals and matrix fill at the same time.

The ’quasiswapcount’ algorithm (method="quasiswap" and mtype="count") uses the same trick
as Carsten Dormann’s swap.web function in the package bipartite. First, a random matrix is gen-
erated by the r2dtable function retaining row and column sums. Then the original matrix fill is
reconstructed by sequential steps to increase or decrease matrix fill in the random matrix. These
steps are based on swapping 2x2 submatrices (see ’swapcount’ algorithm for details) to maintain
row and column totals. This algorithm generates independent matrices in each step, so burnin and
thin arguments are not considered. This is the default method, because this is not sequential (as
swapcount is) so independence of subsequent matrices does not have to be checked.

The swapcount algorithm (method="swap" and mtype="count") tries to find 2x2 submatrices
(identified by 2 random row and 2 random column indices), that can be swapped in order to leave
column and row totals and fill unchanged. First, the algorithm finds the largest value in the subma-
trix that can be swapped (d) and whether in diagonal or antidiagonal way. Submatrices that contain
values larger than zero in either diagonal or antidiagonal position can be swapped. Swap means
that the values in diagonal or antidiagonal positions are decreased by d, while remaining cells are
increased by d. A swap is made only if fill doesn’t change. This algorithm is sequential, subsequent
matrices are not independent, because swaps modify little if the matrix is large. In these cases many
burnin steps and thinning is needed to get independent random matrices. Although this algorithm
is implemented in C, large burnin and thin values can slow it down considerably. WARNING: ac-
cording to simulations, this algorithm seems to be biased and non random, thus its use should be
avoided!

The algorithm "swsh" in the function permatswap is a hybrid algorithm. First, it makes binary qua-
siswaps to keep row and column incidences constant, then non-zero values are modified according
to the shuffle argument (only "samp" and "both" are available in this case, because it is applied
only on non-zero values).

The algorithm "abuswap" produces two kinds of null models (based on fixedmar="columns" or
fixedmar="rows") as described in Hardy (2008; randomization scheme 2x and 3x, respectively).
These preserve column and row occurrences, and column or row sums at the same time.

Constraints on row/column sums, matrix fill, total sum and sums within strata can be checked by
the summary method. plot method is for visually testing the randomness of the permuted matrices,
especially for the sequential swap algorithms. If there are any tendency in the graph, higher burnin
and thin values can help for sequential methods. New lines can be added to existing plot with the
lines method.

Unrestricted and restricted permutations: if strata is NULL, functions perform unrestricted per-
mutations. Otherwise, it is used for restricted permutations. Each strata should contain at least 2
rows in order to perform randomization (in case of low row numbers, swap algorithms can be rather
slow). If the design is not well balanced (i.e. same number of observations within each stratum),
permuted matrices may be biased because same constraints are forced on submatrices of different
dimensions. This often means, that the number of potential permutations will decrease with their
dimensions. So the more constraints we put, the less randomness can be expected.

The plot method is useful for graphically testing for trend and independence of permuted matrices.
This is especially important when using sequential algorithms ("swap", "tswap", "abuswap").

The as.ts method can be used to extract Bray-Curtis dissimilarities or Chi-squared values as time
series. This can further used in testing independence (see Examples). The method as.mcmc is useful
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for accessing diagnostic tools available in the coda package.

Value

Functions permatfull and permatswap return an object of class "permat" containing the the func-
tion call (call), the original data matrix used for permutations (orig) and a list of permuted matri-
ces with length times (perm).

The summary method returns various statistics as a list (including mean Bray-Curtis dissimilarities
calculated pairwise among original and permuted matrices, Chi-square statistics, and check results
of the constraints; see Examples). Note that when strata is used in the original call, summary
calculation may take longer.

The plot creates a plot as a side effect.

The as.ts method returns an object of class "ts".

Author(s)

Péter Sólymos, <solymos@ualberta.ca> and Jari Oksanen

References

Original references for presence-absence algorithms are given on help page of commsimulator.

Hardy, O. J. (2008) Testing the spatial phylogenetic structure of local communities: statistical per-
formances of different null models and test statistics on a locally neutral community. Journal of
Ecology 96, 914–926.

Patefield, W. M. (1981) Algorithm AS159. An efficient method of generating r x c tables with given
row and column totals. Applied Statistics 30, 91–97.

See Also

For other functions to permute matrices: commsimulator, r2dtable, sample, swap.web.

For the use of these permutation algorithms: oecosimu, adipart, hiersimu.

For time-series diagnostics: Box.test, lag.plot, tsdiag, ar, arima

Examples

## A simple artificial community data matrix.
m <- matrix(c(

1,3,2,0,3,1,
0,2,1,0,2,1,
0,0,1,2,0,3,
0,0,0,1,4,3
), 4, 6, byrow=TRUE)

## Using the quasiswap algorithm to create a
## list of permuted matrices, where
## row/columns sums and matrix fill are preserved:
x1 <- permatswap(m, "quasiswap")
summary(x1)
## Unrestricted permutation retaining
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## row/columns sums but not matrix fill:
x2 <- permatfull(m)
summary(x2)
## Unrestricted permutation of presence-absence type
## not retaining row/columns sums:
x3 <- permatfull(m, "none", mtype="prab")
x3$orig ## note: original matrix is binarized!
summary(x3)
## Restricted permutation,
## check sums within strata:
x4 <- permatfull(m, strata=c(1,1,2,2))
summary(x4)

## NOTE: ’times’ argument usually needs to be >= 99
## here much lower value is used for demonstration

## Not sequential algorithm
data(BCI)
a <- permatswap(BCI, "quasiswap", times=19)
## Sequential algorithm
b <- permatswap(BCI, "abuswap", fixedmar="col",

burnin=0, thin=100, times=19)
opar <- par(mfrow=c(2,2))
plot(a, main="Not sequential")
plot(b, main="Sequential")
plot(a, "chisq")
plot(b, "chisq")
par(opar)
## Extract Bray-Curtis dissimilarities
## as time series
bc <- as.ts(b)
## Lag plot
lag.plot(bc)
## First order autoregressive model
mar <- arima(bc, c(1,0,0))
mar
## Ljung-Box test of residuals
Box.test(mar$residuals)
## Graphical diagnostics
tsdiag(mar)

permutations Permutation tests in Vegan

Description

Unless stated otherwise, vegan currently provides for two types of permutation test:

1. Free permutation of DATA, also known as randomisation, and

2. Free permutation of DATA within the levels of a factor variable.
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We use DATA to mean either the observed data themselves or some function of the data, for example
the residuals of an ordination model in the presence of covariables.

The second type of permutation test above is available if the function providing the test accepts an
argument strata or passes additional arguments (via ...) to permuted.index.

The Null hypothesis for these two types of permutation test assumes free exchangeability of DATA
(within the levels of strata if specified). Dependence between observations, such as that which
arises due to spatial or temporal autocorrelation, or more-complicated experimental designs, such
as split-plot designs, violates this fundamental assumption of the test and requires restricted per-
mutation test designs. The next major version of Vegan will include infrastructure to handle these
more complicated permutation designs.

Again, unless otherwise stated in the help pages for specific functions, permutation tests in Vegan
all follow the same format/structure:

1. An appropriate test statistic is chosen. Which statistic is chosen should be described on the
help pages for individual functions.

2. The value of the test statistic is evaluate for the observed data and analysis/model and recorded.
Denote this value x0.

3. The DATA are randomly permuted according to one of the above two schemes, and the value
of the test statistic for this permutation is evaluated and recorded.

4. Step 3 is repeated a total of n times, where n is the number of permutations requested. Denote
these values as xi, where i = 1, ..., n

5. The values of the test statistic for the n permutations of the DATA are added to the value of
the test statistic for the observed data. These n + 1 values represent the Null or randomisation
distribution of the test statistic. The observed value for the test statistic is included in the Null
distribution because under the Null hypothesis being tested, the observed value is just a typical
value of the test statistic, inherently no different from the values obtained via permutation of
DATA.

6. The number of times that a value of the test statistic in the Null distribution is equal to or
greater than the value of the test statistic for the observed data is recorded. Note the point
mentioned in step 5 above; the Null distribution includes the observed value of the test statis-
tic. Denote this count as N .

7. The permutation p-value is computed as

p =
N

n+ 1

The above description illustrates why the default number of permutations specified in Vegan func-
tions takes values of 199 or 999 for example. Once the observed value of the test statistic is added to
this number of random permutations of DATA, pretty p-values are achievable because n+1 becomes
200 or 1000, for example.

The minimum achievable p-value is

pmin =
1

n+ 1

A more common definition, in ecological circles, for N would be the number of xi greater than or
equal to x0. The permutation p-value would then be defined as

p =
N + 1

n+ 1
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The + 1 in the numerator of the above equation represents the observed statistic x0. The minimum
p-value would then be defined as

pmin =
0 + 1

n+ 1

However this definition discriminates between the observed statistic and the other xi. Under the
Null hypothesis there is no such distinction, hence we prefer the definintion used in the numbered
steps above.

One cannot simply increase the number of permutations (n) to achieve a potentially lower p-value
unless the number of observations available permits such a number of permutations. This is unlikely
to be a problem for all but the smallest data sets when free permutation (randomisation) is valid, but
in designs where strata is specified and there are a low number of observations within each level
of strata, there may not be as many actual permutations of the data as you might want.

It is currently the responsibility of the user to determine the total number of possible permutations
for their DATA. No checks are made within Vegan functions to ensure a sensible number of permu-
tations is chosen.

Limits on the total number of permutations of DATA are more severe in temporally or spatially
ordered data or experimental designs with low replication. For example, a time series of n = 100
observations has just 100 possible permutations including the observed ordering.

In situations where only a low number of permutations is possible due to the nature of DATA or the
experimental design, enumeration of all permutations becomes important and achievable computa-
tionally. Currently, Vegan does not include functions to perform complete enumeration of the set of
possible permutations. The next major release of Vegan will include such functionality, however.

Author(s)

Gavin Simpson

See Also

permutest, permuted.index

permutest.betadisper Permutation test of multivariate homogeneity of groups dispersions
(variances)

Description

Implements a permutation-based test of multivariate homogeneity of group dispersions (variances)
for the results of a call to betadisper.

Usage

## S3 method for class ’betadisper’
permutest(x, pairwise = FALSE,

control = permControl(nperm = 999), ...)
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Arguments

x an object of class "betadisper", the result of a call to betadisper.

pairwise logical; perform pairwise comparisons of group means?

control a list of control values for the permutations to replace the default values returned
by the function permControl

... Arguments passed to other methods.

Details

To test if one or more groups is more variable than the others, ANOVA of the distances to group
centroids can be performed and parametric theory used to interpret the significance of F. An alter-
native is to use a permutation test. permutest.betadisper permutes model residuals to generate
a permutation distribution of F under the Null hypothesis of no difference in dispersion between
groups.

Pairwise comparisons of group mean dispersions can be performed by setting argument pairwise
to TRUE. A classical t test is performed on the pairwise group dispersions. This is combined with a
permutation test based on the t statistic calculated on pairwise group dispersions. An alternative to
the classical comparison of group dispersions, is to calculate Tukey’s Honest Significant Differences
between groups, via TukeyHSD.betadisper.

Value

permutest.betadisper returns a list of class "permutest.betadisper" with the following com-
ponents:

tab the ANOVA table which is an object inheriting from class "data.frame".

pairwise a list with components observed and permuted containing the observed and
permuted p-values for pairwise comparisons of group mean distances (disper-
sions or variances).

groups character; the levels of the grouping factor.

control a list, the result of a call to permControl.

Author(s)

Gavin L. Simpson

References

Anderson, M.J. (2006) Distance-based tests for homogeneity of multivariate dispersions. Biomet-
rics 62(1), 245–253.

Anderson, M.J., Ellingsen, K.E. & McArdle, B.H. (2006) Multivariate dispersion as a measure of
beta diversity. Ecology Letters 9(6), 683–693.

See Also

For the main fitting function see betadisper. For an alternative approach to determining which
groups are more variable, see TukeyHSD.betadisper.
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Examples

data(varespec)

## Bray-Curtis distances between samples
dis <- vegdist(varespec)

## First 16 sites grazed, remaining 8 sites ungrazed
groups <- factor(c(rep(1,16), rep(2,8)), labels = c("grazed","ungrazed"))

## Calculate multivariate dispersions
mod <- betadisper(dis, groups)
mod

## Perform test
anova(mod)

## Permutation test for F
permutest(mod, pairwise = TRUE)

## Tukey’s Honest Significant Differences
(mod.HSD <- TukeyHSD(mod))
plot(mod.HSD)

plot.cca Plot or Extract Results of Constrained Correspondence Analysis or
Redundancy Analysis

Description

Functions to plot or extract results of constrained correspondence analysis (cca), redundancy anal-
ysis (rda) or constrained analysis of principal coordinates (capscale).

Usage

## S3 method for class ’cca’
plot(x, choices = c(1, 2), display = c("sp", "wa", "cn"),

scaling = 2, type, xlim, ylim, const, ...)
## S3 method for class ’cca’
text(x, display = "sites", labels, choices = c(1, 2), scaling = 2,

arrow.mul, head.arrow = 0.05, select, const, axis.bp = TRUE, ...)
## S3 method for class ’cca’
points(x, display = "sites", choices = c(1, 2), scaling = 2,

arrow.mul, head.arrow = 0.05, select, const, axis.bp = TRUE, ...)
## S3 method for class ’cca’
scores(x, choices=c(1,2), display=c("sp","wa","cn"), scaling=2, ...)
## S3 method for class ’rda’
scores(x, choices=c(1,2), display=c("sp","wa","cn"), scaling=2,

const, ...)
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## S3 method for class ’cca’
summary(object, scaling = 2, axes = 6, display = c("sp", "wa",

"lc", "bp", "cn"), digits = max(3, getOption("digits") - 3), ...)
## S3 method for class ’summary.cca’
print(x, digits = x$digits, head = NA, tail = head, ...)
## S3 method for class ’summary.cca’
head(x, n = 6, tail = 0, ...)
## S3 method for class ’summary.cca’
tail(x, n = 6, head = 0, ...)

Arguments

x, object A cca result object.

choices Axes shown.

display Scores shown. These must include some of the alternatives species or sp for
species scores, sites or wa for site scores, lc for linear constraints or “LC
scores”, or bp for biplot arrows or cn for centroids of factor constraints instead
of an arrow.

scaling Scaling for species and site scores. Either species (2) or site (1) scores are scaled
by eigenvalues, and the other set of scores is left unscaled, or with 3 both are
scaled symmetrically by square root of eigenvalues. Corresponding negative val-
ues can be used in cca to additionally multiply results with

√
(1/(1−λ)). This

scaling is know as Hill scaling (although it has nothing to do with Hill’s rescal-
ing of decorana). With corresponding negative values inrda, species scores
are divided by standard deviation of each species and multiplied with an equal-
izing constant. Unscaled raw scores stored in the result can be accessed with
scaling = 0.

type Type of plot: partial match to text for text labels, points for points, and none
for setting frames only. If omitted, text is selected for smaller data sets, and
points for larger.

xlim, ylim the x and y limits (min,max) of the plot.

labels Optional text to be used instead of row names.

arrow.mul Factor to expand arrows in the graph. Arrows will be scaled automatically to fit
the graph if this is missing.

head.arrow Default length of arrow heads.

select Items to be displayed. This can either be a logical vector which is TRUE for
displayed items or a vector of indices of displayed items.

const General scaling constant to rda scores. The default is to use a constant that
gives biplot scores, that is, scores that approximate original data (see vignette
‘decision-vegan.pdf’ with vegandocs for details and discussion). If const
is a vector of two items, the first is used for species, and the second item for site
scores.

axis.bp Draw axis for biplot arrows.

axes Number of axes in summaries.

digits Number of digits in output.
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n, head, tail Number of rows printed from the head and tail of species and site scores. Default
NA prints all.

... Parameters passed to other functions.

Details

Same plot function will be used for cca and rda. This produces a quick, standard plot with current
scaling.

The plot function sets colours (col), plotting characters (pch) and character sizes (cex) to certain
standard values. For a fuller control of produced plot, it is best to call plot with type="none" first,
and then add each plotting item separately using text.cca or points.cca functions. These use the
default settings of standard text and points functions and accept all their parameters, allowing a
full user control of produced plots.

Environmental variables receive a special treatment. With display="bp", arrows will be drawn.
These are labelled with text and unlabelled with points. The basic plot function uses a simple
(but not very clever) heuristics for adjusting arrow lengths to plots, but the user can give the ex-
pansion factor in mul.arrow. With display="cn" the centroids of levels of factor variables are
displayed (these are available only if there were factors and a formula interface was used in cca
or rda). With this option continuous variables still are presented as arrows and ordered factors as
arrows and centroids.

If you want to have still a better control of plots, it is better to produce them using primitive plot
commands. Function scores helps in extracting the needed components with the selected scaling.

Function summary lists all scores and the output can be very long. You can suppress scores by setting
axes = 0 or display = NA or display = NULL. You can display some first or last (or both) rows
of scores by using head or tail or explicit print command for the summary.

Palmer (1993) suggested using linear constraints (“LC scores”) in ordination diagrams, because
these gave better results in simulations and site scores (“WA scores”) are a step from constrained
to unconstrained analysis. However, McCune (1997) showed that noisy environmental variables
(and all environmental measurements are noisy) destroy “LC scores” whereas “WA scores” were
little affected. Therefore the plot function uses site scores (“WA scores”) as the default. This is
consistent with the usage in statistics and other functions in R (lda, cancor).

Value

The plot function returns invisibly a plotting structure which can be used by function identify.ordiplot
to identify the points or other functions in the ordiplot family.

Note

Package ade4 has function cca which returns constrained correspondence analysis of the same class
as the vegan function. If you have results of ade4 in your working environment, vegan functions
may try to handle them and fail with cryptic error messages. However, there is a simple utility
function ade2vegancca which tries to translate ade4 cca results to vegan cca results so that some
vegan functions may work partially with ade4 objects (with a warning).

Author(s)

Jari Oksanen
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See Also

cca, rda and capscale for getting something to plot, ordiplot for an alternative plotting routine
and more support functions, and text, points and arrows for the basic routines.

Examples

data(dune)
data(dune.env)
mod <- cca(dune ~ A1 + Moisture + Management, dune.env)
plot(mod, type="n")
text(mod, dis="cn")
points(mod, pch=21, col="red", bg="yellow", cex=1.2)
text(mod, "species", col="blue", cex=0.8)
## Limited output of ’summary’
head(summary(mod), tail=2)
## Read description of scaling in RDA in vegan:
## Not run: vegandocs("decision")

prc Principal Response Curves for Treatments with Repeated Observa-
tions

Description

Principal Response Curves (PRC) are a special case of Redundancy Analysis (rda) for multivariate
responses in repeated observation design. They were originally suggested for ecological commu-
nities. They should be easier to interpret than traditional constrained ordination. They can also be
used to study how the effects of a factor A depend on the levels of a factor B, that is A + A:B, in a
multivariate response experiment.

Usage

prc(response, treatment, time, ...)
## S3 method for class ’prc’
summary(object, axis = 1, scaling = 3, digits = 4, ...)
## S3 method for class ’prc’
plot(x, species = TRUE, select, scaling = 3, axis = 1, type = "l",

xlab, ylab, ylim, lty = 1:5, col = 1:6, pch, legpos, cex = 0.8,
...)

Arguments

response Multivariate response data. Typically these are community (species) data. If the
data are counts, they probably should be log transformed prior to the analysis.

treatment A factor for treatments.

time An unordered factor defining the observations times in the repeated design.

object, x An prc result object.
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axis Axis shown (only one axis can be selected).

scaling Scaling of species scores, identical to the scaling in scores.rda.

digits Number of significant digits displayed.

species Display species scores.

select Vector to select displayed species. This can be a vector of indices or a logical
vector which is TRUE for the selected species

type Type of plot: "l" for lines, "p" for points or "b" for both.

xlab, ylab Text to replace default axis labels.

ylim Limits for the vertical axis.

lty, col, pch Line type, colour and plotting characters (defaults supplied).

legpos The position of the legend. A guess is made if this is not supplied, and NA will
suppress legend.

cex Character expansion for symbols and species labels.

... Other parameters passed to functions.

Details

PRC is a special case of rda with a single factor for treatment and a single factor for time points in
repeated observations. In vegan, the corresponding rda model is defined as rda(response ~ treatment *
time + Condition(time)). Since the time appears twice in the model formula, its main effects
will be aliased, and only the main effect of treatment and interaction terms are available, and will
be used in PRC. Instead of usual multivariate ordination diagrams, PRC uses canonical (regression)
coefficients and species scores for a single axis. All that the current functions do is to provide a
special summary and plot methods that display the rda results in the PRC fashion. The current
version only works with default contrasts (contr.treatment) in which the coefficients are con-
trasts against the first level, and the levels must be arranged so that the first level is the control (or a
baseline). If necessary, you must change the baseline level with function relevel.

Function summary prints the species scores and the coefficients. Function plot plots coefficients
against time using matplot, and has similar defaults. The graph (and PRC) is meaningful only if
the first treatment level is the control, as the results are contrasts to the first level when unordered
factors are used. The plot also displays species scores on the right vertical axis using function
linestack. Typically the number of species is so high that not all can be displayed with the default
settings, but users can reduce character size or padding (air) in linestack, or select only a subset
of the species. A legend will be displayed unless suppressed with legpos = NA, and the functions
tries to guess where to put the legend if legpos is not supplied.

Value

The function is a special case of rda and returns its result object (see cca.object). However, a
special summary and plot methods display returns differently than in rda.

Warning

The first level of treatment must be the control: use function relevel to guarantee the correct
refence level. The current version will ignore user setting of contrasts and always use treatment
contrasts (contr.treatment). The time must be an unordered factor.
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Author(s)

Jari Oksanen and Cajo ter Braak

References

van den Brink, P.J. & ter Braak, C.J.F. (1999). Principal response curves: Analysis of time-
dependent multivariate responses of biological community to stress. Environmental Toxicology
and Chemistry, 18, 138–148.

See Also

rda, anova.cca.

Examples

# Chlorpyrifos experiment and experimental design
data(pyrifos)
week <- gl(11, 12, labels=c(-4, -1, 0.1, 1, 2, 4, 8, 12, 15, 19, 24))
dose <- factor(rep(c(0.1, 0, 0, 0.9, 0, 44, 6, 0.1, 44, 0.9, 0, 6), 11))
# PRC
mod <- prc(pyrifos, dose, week)
mod # RDA
summary(mod) # PRC
logabu <- colSums(pyrifos)
plot(mod, select = logabu > 100)
# Permutations should be done only within one week, and we only
# are interested on the first axis
anova(mod, strata = week, first=TRUE, perm.max = 100)

predict.cca Prediction Tools for [Constrained] Ordination (CCA, RDA, DCA, CA,
PCA)

Description

Function predict can be used to find site and species scores or estimates of the response data with
new data sets, Function calibrate estimates values of constraints with new data set. Functions
fitted and residuals return estimates of response data.

Usage

## S3 method for class ’cca’
fitted(object, model = c("CCA", "CA", "pCCA"),

type = c("response", "working"), ...)
## S3 method for class ’capscale’
fitted(object, model = c("CCA", "CA", "pCCA", "Imaginary"),

type = c("response", "working"), ...)
## S3 method for class ’cca’
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residuals(object, ...)
## S3 method for class ’cca’
predict(object, newdata, type = c("response", "wa", "sp", "lc", "working"),

rank = "full", model = c("CCA", "CA"), scaling = FALSE, ...)
## S3 method for class ’cca’
calibrate(object, newdata, rank = "full", ...)
## S3 method for class ’cca’
coef(object, ...)
## S3 method for class ’decorana’
predict(object, newdata, type = c("response", "sites", "species"),

rank = 4, ...)

Arguments

object A result object from cca, rda, capscale or decorana.

model Show constrained ("CCA"), unconstrained ("CA") or conditioned “partial” ("pCCA")
results. For fitted method of capscale this can also be "Imaginary" for
imaginary components with negative eigenvalues.

newdata New data frame to be used in prediction or in calibration. Usually this a new
community data frame, but with type = "lc" and for constrained component
with type = "response" and type = "working" it must be a data frame
of constraints. The newdata must have the same number of rows as the original
community data for a cca result with type = "response" or type = "working".
If the original model had row or column names, then new data must contain rows
or columns with the same names (row names for species scores, column names
for "wa" scores and constraint names of "lc" scores). In other cases the rows or
columns must match directly.

type The type of prediction, fitted values or residuals: "response" scales results
so that the same ordination gives the same results, and "working" gives the
values used internally, that is after Chi-square standardization in cca and scaling
and centring in rda. In capscale the "response" gives the dissimilarities,
and "working" the scaled scores that produce the dissimilarities as Euclidean
distances. Alternative "wa" gives the site scores as weighted averages of the
community data, "lc" the site scores as linear combinations of environmental
data, and "sp" the species scores. In predict.decorana the alternatives are
scores for "sites" or "species".

rank The rank or the number of axes used in the approximation. The default is to use
all axes (full rank) of the "model" or all available four axes in predict.decorana.

scaling Scaling or predicted scores with the same meaning as in cca, rda and capscale.

... Other parameters to the functions.

Details

Function fitted gives the approximation of the original data matrix or dissimilarities from the
ordination result either in the scale of the response or as scaled internally by the function. Func-
tion residuals gives the approximation of the original data from the unconstrained ordination.
With argument type = "response" the fitted.cca and residuals.cca function both give
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the same marginal totals as the original data matrix, and fitted and residuals do not add up to the
original data. Functions fitted.capscale and residuals.capscale give the dissimilarities with
type = "response", but these are not additive, but the "working" scores are additive. All variants
of fitted and residuals are defined so that for model mod <- cca(y ~ x), cca(fitted(mod))
is equal to constrained ordination, and cca(residuals(mod)) is equal to unconstrained part of the
ordination.

Function predict can find the estimate of the original data matrix or dissimilarities (type = "response")
with any rank. With rank = "full" it is identical to fitted. In addition, the function can find the
species scores or site scores from the community data matrix for cca or rda. The function can be
used with new data, and it can be used to add new species or site scores to existing ordinations. The
function returns (weighted) orthonormal scores by default, and you must specify explicit scaling
to add those scores to ordination diagrams. With type = "wa" the function finds the site scores
from species scores. In that case, the new data can contain new sites, but species must match in
the original and new data. With type="sp" the function finds species scores from site constraints
(linear combination scores). In that case the new data can contain new species, but sites must
match in the original and new data. With type = "lc" the function finds the linear combination
scores for sites from environmental data. In that case the new data frame must contain all constrain-
ing and conditioning environmental variables of the model formula. With type = "response" or
type = "working" the new data must contain envinronmental variables if constrained component
is desired, and community data matrix if residual or unconstrained component is desired. With these
types, the function uses newdata to find new "lc" (constrained) or "wa" scores (unconstrained) and
then finds the response or working data from these new row scores and species scores. The original
site (row) and species (column) weights are used for type = "response" and type = "working"
in correspondence analysis (cca) and therefore the number of rows must match in the original data
and newdata.

If a completely new data frame is created, extreme care is needed defining variables similarly as
in the original model, in particular with (ordered) factors. If ordination was performed with the
formula interface, the newdata can be a data frame or matrix, but extreme care is needed that the
columns match in the original and newdata.

Function calibrate.cca finds estimates of constraints from community ordination or "wa" scores
from cca, rda and capscale. This is often known as calibration, bioindication or environmental
reconstruction. Basically, the method is similar to projecting site scores onto biplot arrows, but it
uses regression coefficients. The function can be called with newdata so that cross-validation is
possible. The newdata may contain new sites, but species must match in the original and new data.
The function does not work with ‘partial’ models with Condition term, and it cannot be used with
newdata for capscale results. The results may only be interpretable for continuous variables.

Function coef will give the regression coefficients from centred environmental variables (con-
straints and conditions) to linear combination scores. The coefficients are for unstandardized envi-
ronmental variables. The coefficients will be NA for aliased effects.

Function predict.decorana is similar to predict.cca. However, type = "species" is not
available in detrended correspondence analysis (DCA), because detrending destroys the mutual
reciprocal averaging (except for the first axis when rescaling is not used). Detrended CA does
not attempt to approximate the original data matrix, so type = "response" has no meaning in
detrended analysis (except with rank = 1).
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Value

The functions return matrices, vectors or dissimilarities as is appropriate.

Author(s)

Jari Oksanen.

References

Greenacre, M. J. (1984). Theory and applications of correspondence analysis. Academic Press,
London.

See Also

cca, rda, capscale, decorana, vif, goodness.cca.

Examples

data(dune)
data(dune.env)
mod <- cca(dune ~ A1 + Management + Condition(Moisture), data=dune.env)
# Definition of the concepts ’fitted’ and ’residuals’
mod
cca(fitted(mod))
cca(residuals(mod))
# Remove rare species (freq==1) from ’cca’ and find their scores
# ’passively’.
freq <- specnumber(dune, MARGIN=2)
freq
mod <- cca(dune[, freq>1] ~ A1 + Management + Condition(Moisture), dune.env)
predict(mod, type="sp", newdata=dune[, freq==1], scaling=2)
# New sites
predict(mod, type="lc", new=data.frame(A1 = 3, Management="NM", Moisture="2"), scal=2)
# Calibration and residual plot
mod <- cca(dune ~ A1 + Moisture, dune.env)
pred <- calibrate(mod)
pred
with(dune.env, plot(A1, pred[,"A1"] - A1, ylab="Prediction Error"))
abline(h=0)

procrustes Procrustes Rotation of Two Configurations and PROTEST

Description

Function procrustes rotates a configuration to maximum similarity with another configuration.
Function protest tests the non-randomness (‘significance’) between two configurations.
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Usage

procrustes(X, Y, scale = TRUE, symmetric = FALSE, scores = "sites", ...)
## S3 method for class ’procrustes’
summary(object, digits = getOption("digits"), ...)
## S3 method for class ’procrustes’
plot(x, kind=1, choices=c(1,2), to.target = TRUE,

type = "p", xlab, ylab, main, ar.col = "blue", len=0.05,
cex = 0.7, ...)

## S3 method for class ’procrustes’
points(x, display = c("target", "rotated"), ...)
## S3 method for class ’procrustes’
text(x, display = c("target", "rotated"), labels, ...)
## S3 method for class ’procrustes’
lines(x, type = c("segments", "arrows"), choices = c(1, 2), ...)
## S3 method for class ’procrustes’
residuals(object, ...)
## S3 method for class ’procrustes’
fitted(object, truemean = TRUE, ...)
## S3 method for class ’procrustes’
predict(object, newdata, truemean = TRUE, ...)
protest(X, Y, scores = "sites", permutations = 999, strata, ...)

Arguments

X Target matrix

Y Matrix to be rotated.

scale Allow scaling of axes of Y.

symmetric Use symmetric Procrustes statistic (the rotation will still be non-symmetric).

scores Kind of scores used. This is the display argument used with the corresponding
scores function: see scores, scores.cca and scores.cca for alternatives.

x, object An object of class procrustes.

digits Number of digits in the output.

kind For plot function, the kind of plot produced: kind = 1 plots shifts in two con-
figurations, kind = 0 draws a corresponding empty plot, and kind = 2 plots
an impulse diagram of residuals.

choices Axes (dimensions) plotted.

xlab, ylab Axis labels, if defaults unacceptable.

main Plot title, if default unacceptable.

display Show only the "target" or "rotated" matrix as points.

to.target Draw arrows to point to target.

type The type of plot drawn. In plot, the type can be "points" or "text" to select
the marker for the tail of the arrow, or "none" for drawing an empty plot. In
lines the type selects either arrows or line segments to connect target and
rotated configuration.
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truemean Use the original range of target matrix instead of centring the fitted values. Func-
tion plot.procrustes needs truemean = FALSE.

newdata Matrix of coordinates to be rotated and translated to the target.

permutations Number of permutation to assess the significance of the symmetric Procrustes
statistic.

strata An integer vector or factor specifying the strata for permutation. If supplied,
observations are permuted only within the specified strata.

ar.col Arrow colour.

len Width of the arrow head.

labels Character vector of text labels. Rownames of the result object are used as de-
fault.

cex Character expansion for points or text.

... Other parameters passed to functions. In procrustes and protest parameters
are passed to scores, in graphical functions to underlying graphical functions.

Details

Procrustes rotation rotates a matrix to maximum similarity with a target matrix minimizing sum of
squared differences. Procrustes rotation is typically used in comparison of ordination results. It is
particularly useful in comparing alternative solutions in multidimensional scaling. If scale=FALSE,
the function only rotates matrix Y. If scale=TRUE, it scales linearly configuration Y for maximum
similarity. Since Y is scaled to fit X, the scaling is non-symmetric. However, with symmetric=TRUE,
the configurations are scaled to equal dispersions and a symmetric version of the Procrustes statistic
is computed.

Instead of matrix, X and Y can be results from an ordination from which scores can extract results.
Function procrustes passes extra arguments to scores, scores.cca etc. so that you can specify
arguments such as scaling.

Function plot plots a procrustes object and returns invisibly an ordiplot object so that function
identify.ordiplot can be used for identifying points. The items in the ordiplot object are
called heads and points with kind=1 (ordination diagram) and sites with kind=2 (residuals). In
ordination diagrams, the arrow heads point to the target configuration if to.target = TRUE, and
to rotated configuration if to.target = FALSE. Target and original rotated axes are shown as cross
hairs in two-dimensional Procrustes analysis, and with a higher number of dimensions, the rotated
axes are projected onto plot with their scaled and centred range. Function plot passes parameters
to underlying plotting functions. For full control of plots, you can draw the axes using plot with
kind = 0, and then add items with points or lines. These functions pass all parameters to the
underlying functions so that you can select the plotting characters, their size, colours etc., or you
can select the width, colour and type of line segments or arrows, or you can select the orientation
and head width of arrows.

Function residuals returns the pointwise residuals, and fitted the fitted values, either cen-
tred to zero mean (if truemean=FALSE) or with the original scale (these hardly make sense if
symmetric = TRUE). In addition, there are summary and print methods.

If matrix X has a lower number of columns than matrix Y, then matrix X will be filled with zero
columns to match dimensions. This means that the function can be used to rotate an ordination
configuration to an environmental variable (most practically extracting the result with the fitted
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function). Function predict can be used to add new rotated coordinates to the target. The predict
function will always translate coordinates to the original non-centred matrix. The function canot be
used with newdata for symmetric analysis.

Function protest performs symmetric Procrustes analysis repeatedly to estimate the ‘significance’
of the Procrustes statistic. Function protest uses a correlation-like statistic derived from the sym-
metric Procrustes sum of squares ss as r =

√
1− ss, and also prints the sum of squares of the sym-

metric analysis, sometimes called m2
12. Function protest has own print method, but otherwise

uses procrustes methods. Thus plot with a protest object yields a “Procrustean superimposition
plot.”

Value

Function procrustes returns an object of class procrustes with items. Function protest inherits
from procrustes, but amends that with some new items:

Yrot Rotated matrix Y.

X Target matrix.

ss Sum of squared differences between X and Yrot.

rotation Orthogonal rotation matrix.

translation Translation of the origin.

scale Scaling factor.

xmean The centroid of the target.

symmetric Type of ss statistic.

call Function call.

t0 This and the following items are only in class protest: Procrustes correlation
from non-permuted solution.

t Procrustes correlations from permutations. The distribution of these correlations
can be inspected with density.protest function.

signif ‘Significance’ of t

permutations Number of permutations.

strata The name of the stratifying variable.

stratum.values Values of the stratifying variable.

Note

The function protest follows Peres-Neto & Jackson (2001), but the implementation is still after
Mardia et al. (1979).

Author(s)

Jari Oksanen
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References

Mardia, K.V., Kent, J.T. and Bibby, J.M. (1979). Multivariate Analysis. Academic Press.

Peres-Neto, P.R. and Jackson, D.A. (2001). How well do multivariate data sets match? The advan-
tages of a Procrustean superimposition approach over the Mantel test. Oecologia 129: 169-178.

See Also

monoMDS, for obtaining objects for procrustes, and mantel for an alternative to protest without
need of dimension reduction.

Examples

data(varespec)
vare.dist <- vegdist(wisconsin(varespec))
mds.null <- monoMDS(vare.dist, y = cmdscale(vare.dist))
mds.alt <- monoMDS(vare.dist)
vare.proc <- procrustes(mds.alt, mds.null)
vare.proc
summary(vare.proc)
plot(vare.proc)
plot(vare.proc, kind=2)
residuals(vare.proc)

pyrifos Response of Aquatic Invertebrates to Insecticide Treatment

Description

The data are log transformed abundances of aquatic invertebrate in twelve ditches studied in eleven
times before and after an insecticide treatment.

Usage

data(pyrifos)

Format

A data frame with 132 observations on the log-transformed (log(10*x + 1)) abundances of 178
species. There are only twelve sites (ditches, mesocosms), but these were studied repeatedly in
eleven occasions. The treatment levels, treatment times, or ditch ID’s are not in the data frame, but
the data are very regular, and the example below shows how to obtain these external variables.
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Details

This data set was obtained from an experiment in outdoor experimental ditches. Twelve mesocosms
were allocated at random to treatments; four served as controls, and the remaining eight were treated
once with the insecticide chlorpyrifos, with nominal dose levels of 0.1, 0.9, 6, and 44 µg/ L in two
mesocosms each. The example data set invertebrates. Sampling was done 11 times, from week -4
pre-treatment through week 24 post-treatment, giving a total of 132 samples (12 mesocosms times
11 sampling dates), see van den Brink & ter Braak (1999) for details. The data set contains only the
species data, but the example below shows how to obtain the treatment, time and ditch ID variables.

Source

CANOCO 4 example data, with the permission of Cajo J. F. ter Braak.

References

van den Brink, P.J. & ter Braak, C.J.F. (1999). Principal response curves: Analysis of time-
dependent multivariate responses of biological community to stress. Environmental Toxicology
and Chemistry, 18, 138–148.

Examples

data(pyrifos)
ditch <- gl(12, 1, length=132)
week <- gl(11, 12, labels=c(-4, -1, 0.1, 1, 2, 4, 8, 12, 15, 19, 24))
dose <- factor(rep(c(0.1, 0, 0, 0.9, 0, 44, 6, 0.1, 44, 0.9, 0, 6), 11))

radfit Rank – Abundance or Dominance / Diversity Models

Description

Functions construct rank – abundance or dominance / diversity or Whittaker plots and fit broken-
stick, pre-emption, log-Normal, Zipf and Zipf-Mandelbrot models of species abundance.

Usage

## Default S3 method:
radfit(x, ...)
rad.null(x, family=poisson, ...)
rad.preempt(x, family = poisson, ...)
rad.lognormal(x, family = poisson, ...)
rad.zipf(x, family = poisson, ...)
rad.zipfbrot(x, family = poisson, ...)
## S3 method for class ’radline’
predict(object, newdata, total, ...)
## S3 method for class ’radfit’
plot(x, BIC = FALSE, legend = TRUE, ...)
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## S3 method for class ’radfit.frame’
plot(x, order.by, BIC = FALSE, model, legend = TRUE,

as.table = TRUE, ...)
## S3 method for class ’radline’
plot(x, xlab = "Rank", ylab = "Abundance", type = "b", ...)
radlattice(x, BIC = FALSE, ...)
## S3 method for class ’radfit’
lines(x, ...)
## S3 method for class ’radfit’
points(x, ...)
as.rad(x)
## S3 method for class ’rad’
plot(x, xlab = "Rank", ylab = "Abundance", log = "y", ...)

Arguments

x Data frame, matrix or a vector giving species abundances, or an object to be
plotted.

family Error distribution (passed to glm). All alternatives accepting link = "log" in
family can be used, although not all make sense.

object A fitted result object.

newdata Ranks used for ordinations. All models can interpolate to non-integer “ranks”
(although this may be approximate), but extrapolation may fail

total The new total used for predicting abundance. Observed total count is used if this
is omitted.

order.by A vector used for ordering sites in plots.

BIC Use Bayesian Information Criterion, BIC, instead of Akaike’s AIC. The penalty
in BIC is k = log(S) where S is the number of species, whereas AIC uses
k = 2.

model Show only the specified model. If missing, AIC is used to select the model. The
model names (which can be abbreviated) are Null, Preemption, Lognormal,
Zipf, Mandelbrot.

legend Add legend of line colours.

as.table Arrange panels starting from upper left corner (passed to xyplot).

xlab,ylab Labels for x and y axes.

type Type of the plot, "b" for plotting both observed points and fitted lines, "p" for
only points, "l" for only fitted lines, and "n" for only setting the frame.

log Use logarithmic scale for given axis. The default log = "y" gives the traditional
plot of community ecology where the pre-emption model is a straight line, and
with log = "xy" Zipf model is a straight line. With log = "" both axes are in
the original arithmetic scale.

... Other parameters to functions.
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Details

Rank–Abundance Dominance (RAD) or Dominance/Diversity plots (Whittaker 1965) display log-
arithmic species abundances against species rank order. These plots are supposed to be effective in
analysing types of abundance distributions in communities. These functions fit some of the most
popular models mainly following Wilson (1991).

Functions rad.null, rad.preempt, rad.lognormal, rad.zipf and zipfbrot fit the individual
models (described below) for a single vector (row of data frame), and function radfit fits all
models. The argument of the function radfit can be either a vector for a single community or a
data frame where each row represents a distinct community.

Function rad.null fits a brokenstick model where the expected abundance of species at rank r is
ar = (J/S)

∑S
x=r(1/x) (Pielou 1975), where J is the total number of individuals (site total) and

S is the total number of species in the community. This gives a Null model where the individu-
als are randomly distributed among observed species, and there are no fitted parameters. Function
rad.preempt fits the niche preemption model, a.k.a. geometric series or Motomura model, where
the expected abundance a of species at rank r is ar = Jα(1−α)r−1. The only estimated parameter
is the preemption coefficient αwhich gives the decay rate of abundance per rank. The niche preemp-
tion model is a straight line in a RAD plot. Function rad.lognormal fits a log-Normal model which
assumes that the logarithmic abundances are distributed Normally, or ar = exp(logµ + log σN),
where N is a Normal deviate. Function rad.zipf fits the Zipf model ar = Jp1r

γ where p1 is the
fitted proportion of the most abundant species, and γ is a decay coefficient. The Zipf–Mandelbrot
model (rad.zipfbrot) adds one parameter: ar = Jc(r + β)γ after which p1 of the Zipf model
changes into a meaningless scaling constant c.

Log-Normal and Zipf models are generalized linear models (glm) with logarithmic link function.
Zipf–Mandelbrot adds one nonlinear parameter to the Zipf model, and is fitted using nlm for the
nonlinear parameter and estimating other parameters and log-Likelihood with glm. Preemption
model is fitted as a purely nonlinear model. There are no estimated parameters in the Null model.

The default family is poisson which is appropriate only for genuine counts (integers), but other
families that accept link = "log" can be used. Families Gamma or gaussian may be appropriate
for abundance data, such as cover. The “best” model is selected by AIC. Therefore “quasi” families
such as quasipoisson cannot be used: they do not have AIC nor log-Likelihood needed in non-
linear models.

All these functions have their own plot functions. When radfit was applied for a data frame, plot
uses Lattice graphics, and other plot functions use ordinary graphics. The ordinary graphics func-
tions return invisibly an ordiplot object for observed points, and function identify.ordiplot
can be used to label selected species. Alternatively, radlattice uses Lattice graphics to display
each radfit model of a single site in a separate panel together with their AIC or BIC values.

Function as.rad is a base function to construct ordered RAD data. Its plot is used by other RAD
plot functions which pass extra arguments (such as xlab and log) to this function.

Value

Functions rad.null, rad.preempt, rad.lognormal, zipf and zipfbrot fit each a single RAD
model to a single site. The result object has class "radline" and inherits from glm, and can be
handled by some (but not all) glm methods.

Function radfit fits all models either to a single site or to all rows of a data frame or a matrix.
When fitted to a single site, the function returns an object of class "radfit" with items y (observed
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values), family, and models which is a list of fitted "radline" models. When applied for a data
frame or matrix, radfit function returns an object of class "radfit.frame" which is a list of
"radfit" objects, each item names by the corresponding row name.

All result objects ("radline", "radfit", "radfit.frame") can be accessed with same method
functions. The following methods are available: AIC, coef, deviance, logLik. In addition the fit
results can be accessed with fitted, predict and residuals (inheriting from residuals.glm).The
graphical functions were discussed above in Details.

Note

The RAD models are usually fitted for proportions instead of original abundances. However, noth-
ing in these models seems to require division of abundances by site totals, and original observations
are used in these functions. If you wish to use proportions, you must standardize your data by site
totals, e.g. with decostand and use appropriate family such as Gamma.

The lognormal model is fitted in a standard way, but I do think this is not quite correct – at least it is
not equivalent to fitting Normal density to log abundances like originally suggested (Preston 1948).

Some models may fail. In particular, estimation of the Zipf-Mandelbrot model is difficult. If the
fitting fails, NA is returned.

Wilson (1991) defined preemption model as ar = Jp1(1− α)r−1, where p1 is the fitted proportion
of the first species. However, parameter p1 is completely defined by α since the fitted proportions
must add to one, and therefore I handle preemption as a one-parameter model.

Veiled log-Normal model was included in earlier releases of this function, but it was removed
because it was flawed: an implicit veil line also appears in the ordinary log-Normal. The latest
release version with rad.veil was 1.6-10.

Author(s)

Jari Oksanen

References

Pielou, E.C. (1975) Ecological Diversity. Wiley & Sons.

Preston, F.W. (1948) The commonness and rarity of species. Ecology 29, 254–283.

Whittaker, R. H. (1965) Dominance and diversity in plant communities. Science 147, 250–260.

Wilson, J. B. (1991) Methods for fitting dominance/diversity curves. Journal of Vegetation Science
2, 35–46.

See Also

fisherfit and prestonfit. An alternative approach is to use qqnorm or qqplot with any distri-
bution. For controlling graphics: Lattice, xyplot, lset.

Examples

data(BCI)
mod <- rad.lognormal(BCI[5,])
mod
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plot(mod)
mod <- radfit(BCI[1,])
## Standard plot overlaid for all models
## Pre-emption model is a line
plot(mod)
## log for both axes: Zipf model is a line
plot(mod, log = "xy")
## Lattice graphics separately for each model
radlattice(mod)
# Take a subset of BCI to save time and nerves
mod <- radfit(BCI[3:5,])
mod
plot(mod, pch=".")

rankindex Compares Dissimilarity Indices for Gradient Detection

Description

Rank correlations between dissimilarity indices and gradient separation.

Usage

rankindex(grad, veg, indices = c("euc", "man", "gow", "bra", "kul"),
stepacross = FALSE, method = "spearman", ...)

Arguments

grad The gradient variable or matrix.
veg The community data matrix.
indices Dissimilarity indices compared, partial matches to alternatives in vegdist. Al-

ternatively, it can be a (named) list of functions returning objects of class ’dist’.
stepacross Use stepacross to find a shorter path dissimilarity. The dissimilarities for site

pairs with no shared species are set NA using no.shared so that indices with no
fixed upper limit can also be analysed.

method Correlation method used.
... Other parameters to stepacross.

Details

A good dissimilarity index for multidimensional scaling should have a high rank-order similarity
with gradient separation. The function compares most indices in vegdist against gradient separa-
tion using rank correlation coefficients in cor.test. The gradient separation between each point is
assessed as Euclidean distance for continuous variables, and as Gower metric for mixed data using
function daisy when grad has factors.

The indices argument can accept any dissimilarity indices besides the ones calculated by the
vegdist function. For this, the argument value should be a (possibly named) list of functions.
Each function must return a valid ’dist’ object with dissimilarities, similarities are not accepted and
should be converted into dissimilarities beforehand.
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Value

Returns a named vector of rank correlations.

Note

There are several problems in using rank correlation coefficients. Typically there are very many
ties when n(n − 1)/2 gradient separation values are derived from just n observations. Due to
floating point arithmetics, many tied values differ by machine epsilon and are arbitrarily ranked
differently by rank used in cor.test. Two indices which are identical with certain transformation
or standardization may differ slightly (magnitude 10−15) and this may lead into third or fourth
decimal instability in rank correlations. Small differences in rank correlations should not be taken
too seriously. Probably this method should be replaced with a sounder method, but I do not yet
know which. . . You may experiment with mantel, anosim or even protest.

Earlier version of this function used method = "kendall", but that is far too slow in large data
sets.

The functions returning dissimilarity objects should be self contained, because the ... argument
passes additional parameters to stepacross and not to the functions supplied via the indices
argument.

Author(s)

Jari Oksanen, with additions from Peter Solymos

References

Faith, F.P., Minchin, P.R. and Belbin, L. (1987). Compositional dissimilarity as a robust measure of
ecological distance. Vegetatio 69, 57-68.

See Also

vegdist, stepacross, no.shared, monoMDS, cor, Machine, and for alternatives anosim, mantel
and protest.

Examples

data(varespec)
data(varechem)
## The next scales all environmental variables to unit variance.
## Some would use PCA transformation.
rankindex(scale(varechem), varespec)
rankindex(scale(varechem), wisconsin(varespec))
## Using non vegdist indices as functions
funs <- list(Manhattan=function(x) dist(x, "manhattan"),

Gower=function(x) cluster:::daisy(x, "gower"),
Ochiai=function(x) designdist(x, "1-J/sqrt(A*B)"))

rankindex(scale(varechem), varespec, funs)
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raupcrick Raup-Crick Dissimilarity with Unequal Sampling Densities of Species

Description

Function finds the Raup-Crick dissimilarity which is a probability of number of co-occurring species
with species occurrence probabilities proportional to species frequencies.

Usage

raupcrick(comm, null = "r1", nsimul = 999, chase = FALSE)

Arguments

comm Community data which will be treated as presence/absence data.

null Null model used as the method in oecosimu.

nsimul Number of null communities for assessing the dissimilarity index.

chase Use the Chase et al. (2011) method of tie handling (not recommended except
for comparing the results against the Chase script).

Details

Raup-Crick index is the probability that compared sampling units have non-identical species com-
position. This probability can be regarded as a dissimilarity, although it is not metric: identical
sampling units can have dissimilarity slightly above 0, the dissimilarity can be nearly zero over a
range of shared species, and sampling units with no shared species can have dissimilarity slightly
below 1. Moreover, communities sharing rare species appear as more similar (lower probability of
finding rare species together), than communities sharing the same number of common species.

The function will always treat the data as binary (presence/ absence).

The probability is assessed using simulation with oecosimu where the test statistic is the observed
number of shared species between sampling units evaluated against a community null model (see
Examples). The default null model is "r1" where the probability of selecting species is proportional
to the species frequencies.

The vegdist function implements a variant of the Raup-Crick index with equal sampling probabil-
ities for species using exact analytic equations without simulation. This corresponds to null model
"r0" which also can be used with the current function. All other null model methods of oecosimu
can be used with the current function, but they are new unpublished methods.

Value

The function returns an object inheriting from dist which can be interpreted as a dissimilarity
matrix.
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Note

The test statistic is the number of shared species, and this is typically tied with a large number
of simulation results. The tied values are handled differently in the current function and in the
function published with Chase et al. (2011). In vegan, the index is the number of simulated values
that are smaller or equal than the observed value, but smaller than observed value is used by Chase
et al. (2011) with option split = FALSE in their script; this can be achieved with chase = TRUE in
vegan. Chase et al. (2011) script with split = TRUE uses half of tied simulation values to calculate
a distance measure, and that choice cannot be directly reproduced in vegan (it is the average of
vegan raupcrick results with chase = TRUE and chase = FALSE).

Author(s)

The function was developed after Brian Inouye contacted us and informed us about the method in
Chase et al. (2011), and the function takes its idea from the code that was published with their
paper. The current function was written by Jari Oksanen.

References

Chase, J.M., Kraft, N.J.B., Smith, K.G., Vellend, M. and Inouye, B.D. (2011). Using null models to
disentangle variation in community dissimilarity from variation in α-diversity. Ecosphere 2:art24
[doi:10.1890/ES10-00117.1]

See Also

The function is based on oecosimu. Function vegdist with method = "raup" implements a related
index but with equal sampling densities of species, and designdist demonstrates its calculation.

Examples

## data set with variable species richness
data(sipoo)
## default raupcrick
dr1 <- raupcrick(sipoo)
## use null model "r0" of oecosimu
dr0 <- raupcrick(sipoo, null = "r0")
## vegdist(..., method = "raup") corresponds to ’null = "r0"’
d <- vegdist(sipoo, "raup")
op <- par(mfrow=c(2,1), mar=c(4,4,1,1)+.1)
plot(dr1 ~ d, xlab = "Raup-Crick with Null R1", ylab="vegdist")
plot(dr0 ~ d, xlab = "Raup-Crick with Null R0", ylab="vegdist")
par(op)

## The calculation is essentially as in the following oecosimu() call,
## except that designdist() is replaced with faster code
## Not run:
oecosimu(sipoo, function(x) designdist(x, "J", "binary"), method = "r1")

## End(Not run)
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read.cep Reads a CEP (Canoco) data file

Description

read.cep reads a file formatted by relaxed strict CEP format used by Canoco software, among
others.

Usage

read.cep(file, maxdata=10000, positive=TRUE, trace=FALSE, force=FALSE)

Arguments

file File name (character variable).

maxdata Maximum number of non-zero entries.

positive Only positive entries, like in community data.

trace Work verbosely.

force Run function, even if R refuses first.

Details

Cornell Ecology Programs (CEP) introduced several data formats designed for punched cards. One
of these was the ‘condensed strict’ format which was adopted by popular software DECORANA and
TWINSPAN. Later, Cajo ter Braak wrote Canoco based on DECORANA, where he adopted the format,
but relaxed it somewhat (that’s why I call it a ‘relaxed strict’ format). Further, he introduced a more
ordinary ‘free’ format, and allowed the use of classical Fortran style ‘open’ format with fixed field
widths. This function should be able to deal with all these Canoco formats, whereas it cannot read
many of the traditional CEP alternatives.

All variants of CEP formats have:

• Two or three title cards, most importantly specifying the format (or word FREE) and the number
of items per record (number of species and sites for FREE format).

• Data in one of three accepted formats:

1. Condensed format: First number on the line is the site identifier, and it is followed by
pairs (‘couplets’) of numbers identifying the species and its abundance (an integer and a
floating point number).

2. Open Fortran format, where the first number on the line must be the site number, followed
by abundance values in fields of fixed widths. Empty fields are interpreted as zeros.

3. ‘Free’ format, where the numbers are interpreted as abundance values. These numbers
must be separated by blank space, and zeros must be written as zeros.

• Species and site names, given in Fortran format (10A8): Ten names per line, eight columns
for each.
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With option positive = TRUE the function removes all lines and columns with zero or negative
marginal sums. In community data with only positive entries, this removes empty sites and species.
If data entries can be negative, this ruins data, and such data sets should be read in with option
positive = FALSE.

Value

Returns a data frame, where columns are species and rows are sites. Column and row names are
taken from the CEP file, and changed into unique R names by make.names after stripping the
blanks.

Note

The function relies on smooth linking of Fortran file IO in R session. This is not guaranteed to work,
and therefore the function may not work in your system, but it can crash the R session. Therefore
the default is that the function does not run. If you still want to try:

1. Save your session

2. Run read.cep() with switch force=TRUE

If you transfer files between operating systems or platforms, you should always check that your file
is formatted to your current platform. For instance, if you transfer files from Windows to Linux,
you should change the files to unix format, or your session may crash when Fortran program tries
to read the invisible characters that Windows uses at the end of each line.

If you compiled vegan using gfortran, the input is probably corrupted. You either should com-
pile vegan with other FORTRAN compilers or not to use read.cep. The problems still persist in
gfortran 4.01.

Author(s)

Jari Oksanen

References

Ter Braak, C.J.F. (1984–): CANOCO – a FORTRAN program for canonical community ordination
by [partial] [detrended] [canonical] correspondence analysis, principal components analysis and re-
dundancy analysis. TNO Inst. of Applied Computer Sci., Stat. Dept. Wageningen, The Netherlands.

Examples

## Provided that you have the file ‘dune.spe’
## Not run:
theclassic <- read.cep("dune.spe", force=T)
## End(Not run)
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renyi Renyi and Hill Diversities and Corresponding Accumulation Curves

Description

Function renyi find Rényi diversities with any scale or the corresponding Hill number (Hill 1973).
Function renyiaccum finds these statistics with accumulating sites.

Usage

renyi(x, scales = c(0, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, Inf), hill = FALSE)
## S3 method for class ’renyi’
plot(x, ...)
renyiaccum(x, scales = c(0, 0.5, 1, 2, 4, Inf), permutations = 100,

raw = FALSE, ...)
## S3 method for class ’renyiaccum’
plot(x, what = c("mean", "Qnt 0.025", "Qnt 0.975"), type = "l",

...)
## S3 method for class ’renyiaccum’
persp(x, theta = 220, col = heat.colors(100), zlim, ...)

rgl.renyiaccum(x, rgl.height = 0.2, ...)

Arguments

x Community data matrix or plotting object.

scales Scales of Rényi diversity.

hill Calculate Hill numbers.

permutations Number of random permutations in accumulating sites.

raw if FALSE then return summary statistics of permutations, and if TRUE then returns
the individual permutations.

what Items to be plotted.

type Type of plot, where type = "l" means lines.

theta Angle defining the viewing direction (azimuthal) in persp.

col Colours used for surface. Single colour will be passed on, and vector colours
will be selected by the midpoint of a rectangle in persp.

zlim Limits of vertical axis.

rgl.height Scaling of vertical axis.

... Other arguments which are passed to renyi and to graphical functions.
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Details

Common diversity indices are special cases of Rényi diversity

Ha =
1

1− a
log
∑

pai

where a is a scale parameter, and Hill (1975) suggested to use so-called “Hill numbers” defined
as Na = exp(Ha). Some Hill numbers are the number of species with a = 0, exp(H ′) or the
exponent of Shannon diversity with a = 1, inverse Simpson with a = 2 and 1/max(pi) with
a = ∞. According to the theory of diversity ordering, one community can be regarded as more
diverse than another only if its Rényi diversities are all higher (Tóthmérész 1995).

The plot method for renyi uses lattice graphics, and displays the diversity values against each
scale in separate panel for each site together with minimum, maximum and median values in the
complete data.

Function renyiaccum is similar to specaccum but finds Rényi or Hill diversities at given scales
for random permutations of accumulated sites. Its plot function uses lattice function xyplot to
display the accumulation curves for each value of scales in a separate panel. In addition, it has a
persp method to plot the diversity surface against scale and number and sites. Dynamic graphics
with rgl.renyiaccum use rgl package, and produces similar surface as persp with a mesh showing
the empirical confidence levels.

Value

Function renyi returns a data frame of selected indices. Function renyiaccum with argument
raw = FALSE returns a three-dimensional array, where the first dimension are the accumulated sites,
second dimension are the diversity scales, and third dimension are the summary statistics mean,
stdev, min, max, Qnt 0.025 and Qnt 0.975. With argument raw = TRUE the statistics on the third
dimension are replaced with individual permutation results.

Author(s)

Roeland Kindt <r.kindt@cgiar.org> and Jari Oksanen

References

http://www.worldagroforestry.org/resources/databases/tree-diversity-analysis

Hill, M.O. (1973). Diversity and evenness: a unifying notation and its consequences. Ecology 54,
427–473.

Kindt R, Van Damme P, Simons AJ. 2006. Tree diversity in western Kenya: using profiles to
characterise richness and evenness. Biodiversity and Conservation 15: 1253-1270.

Tóthmérész, B. (1995). Comparison of different methods for diversity ordering. Journal of Vegeta-
tion Science 6, 283–290.

See Also

diversity for diversity indices, and specaccum for ordinary species accumulation curves, and
xyplot, persp and rgl for controlling graphics.

http://www.worldagroforestry.org/resources/databases/tree-diversity-analysis
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Examples

data(BCI)
i <- sample(nrow(BCI), 12)
mod <- renyi(BCI[i,])
plot(mod)
mod <- renyiaccum(BCI[i,])
plot(mod, as.table=TRUE, col = c(1, 2, 2))
persp(mod)

RsquareAdj Adjusted R-square

Description

The functions finds the adjusted R-square.

Usage

## Default S3 method:
RsquareAdj(x, n, m, ...)
## S3 method for class ’rda’
RsquareAdj(x, ...)

Arguments

x Unadjusted R-squared or an object from which the terms for evaluation or ad-
justed R-squared can be found.

n, m Number of observations and number of degrees of freedom in the fitted model.

... Other arguments (ignored).

Details

The default method finds the adjusted R-squared from the unadjusted R-squared, number of ob-
servations, and number of degrees of freedom in the fitted model. The specific methods find this
information from the fitted result object. There are specific methods for rda, cca, lm and glm.
Adjusted, or even unadjusted, R-squared may not be available in some cases, and then the func-
tions will return NA. There is no adjusted R-squared in cca, in partial rda, and R-squared values are
available only for gaussian models in glm.

The raw R2 of partial rda gives the proportion explained after removing the variation due to con-
ditioning (partial) terms; Legendre et al. (2011) call this semi-partial R2. The adjusted R2 is found
as the difference of adjusted R2 values of joint effect of partial and constraining terms and partial
term alone, and it is the same as the adjusted R2 of component [a] = X1|X2 in two-component
variation partition in varpart.

Value

The functions return a list of items r.squared and adj.r.squared.
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References

Legendre, P., Oksanen, J. and ter Braak, C.J.F. (2011). Testing the significance of canonical axes in
redundancy analysis. Methods in Ecology and Evolution 2, 269–277.

Peres-Neto, P., P. Legendre, S. Dray and D. Borcard. 2006. Variation partitioning of species data
matrices: estimation and comparison of fractions. Ecology 87, 2614–2625.

See Also

varpart uses RsquareAdj.

Examples

data(mite)
data(mite.env)
## rda
m <- rda(decostand(mite, "hell") ~ ., mite.env)
RsquareAdj(m)
## default method
RsquareAdj(0.8, 20, 5)

scores Get Species or Site Scores from an Ordination

Description

Function to access either species or site scores for specified axes in some ordination methods. The
scores function is generic in vegan, and vegan ordination functions have their own scores func-
tions that are documented separately with the method (see e.g. scores.cca, scores.metaMDS,
scores.decorana). This help file documents the default scores method that is only used for non-
vegan ordination objects.

Usage

## Default S3 method:
scores(x, choices, display=c("sites", "species"), ...)

Arguments

x An ordination result.

choices Ordination axes. If missing, default method returns all axes.

display Partial match to access scores for sites or species.

... Other parameters (unused).
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Details

Function scores is a generic method in vegan. Several vegan functions have their own scores
methods with their own defaults and with some new arguments. This help page describes only the
default method. For other methods, see, e.g., scores.cca, scores.rda, scores.decorana.

All vegan ordination functions should have a scores method which should be used to extract
the scores instead of directly accessing them. Scaling and transformation of scores should also
happen in the scores function. If the scores function is available, the results can be plotted using
ordiplot, ordixyplot etc., and the ordination results can be compared in procrustes analysis.

The scores.default function is used to extract scores from non-vegan ordination results. Many
standard ordination methods of libraries do not have a specific class, and no specific method can
be written for them. However, scores.default guesses where some commonly used functions
keep their site scores and possible species scores.

If x is a matrix, scores.default returns the chosen columns of that matrix, ignoring whether
species or sites were requested (do not regard this as a bug but as a feature, please). Currently the
function seems to work at least for isoMDS, prcomp, princomp and some ade4 objects. It may work
in other cases or fail mysteriously.

Value

The function returns a matrix of scores.

Author(s)

Jari Oksanen

See Also

Specific scores functions include (but are not limited to) scores.cca, scores.rda, scores.decorana,
scores.envfit, scores.metaMDS, scores.monoMDS and scores.pcnm. These have somewhat
different interface – scores.cca in particular – but all work with keywords display="sites" and
return a matrix. However, they may also return a list of matrices, and some other scores methods
will have quite different arguments.

Examples

data(varespec)
vare.pca <- prcomp(varespec)
scores(vare.pca, choices=c(1,2))

screeplot.cca Screeplots for Ordination Results and Broken Stick Distributions

Description

Screeplot methods for plotting variances of ordination axes/components and overlaying broken stick
distributions. Also, provides alternative screeplot methods for princomp and prcomp.
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Usage

## S3 method for class ’cca’
screeplot(x, bstick = FALSE, type = c("barplot", "lines"),

npcs = min(10, if (is.null(x$CCA) || x$CCA$rank == 0) x$CA$rank else x$CCA$rank),
ptype = "o", bst.col = "red", bst.lty = "solid",
xlab = "Component", ylab = "Inertia",
main = deparse(substitute(x)), legend = bstick,
...)

## S3 method for class ’decorana’
screeplot(x, bstick = FALSE, type = c("barplot", "lines"),

npcs = 4,
ptype = "o", bst.col = "red", bst.lty = "solid",
xlab = "Component", ylab = "Inertia",
main = deparse(substitute(x)),
...)

## S3 method for class ’prcomp’
screeplot(x, bstick = FALSE, type = c("barplot", "lines"),

npcs = min(10, length(x$sdev)),
ptype = "o", bst.col = "red", bst.lty = "solid",
xlab = "Component", ylab = "Inertia",
main = deparse(substitute(x)), legend = bstick,
...)

## S3 method for class ’princomp’
screeplot(x, bstick = FALSE, type = c("barplot", "lines"),

npcs = min(10, length(x$sdev)),
ptype = "o", bst.col = "red", bst.lty = "solid",
xlab = "Component", ylab = "Inertia",
main = deparse(substitute(x)), legend = bstick,
...)

bstick(n, ...)

## Default S3 method:
bstick(n, tot.var = 1, ...)

## S3 method for class ’cca’
bstick(n, ...)

## S3 method for class ’prcomp’
bstick(n, ...)

## S3 method for class ’princomp’
bstick(n, ...)

## S3 method for class ’decorana’
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bstick(n, ...)

Arguments

x an object from which the component variances can be determined.
bstick logical; should the broken stick distribution be drawn?
npcs the number of components to be plotted.
type the type of plot.
ptype if type == "lines" or bstick = TRUE, a character indicating the type of plot-

ting used for the lines; actually any of the types as in plot.default.
bst.col, bst.lty

the colour and line type used to draw the broken stick distribution.
xlab, ylab, main

graphics parameters.
legend logical; draw a legend?
n an object from which the variances can be extracted or the number of variances

(components) in the case of bstick.default.
tot.var the total variance to be split.
... arguments passed to other methods.

Details

The functions provide screeplots for most ordination methods in vegan and enhanced versions with
broken stick for prcomp and princomp.

Function bstick gives the brokenstick values which are ordered random proportions, defined as
pi = (tot/n)

∑n
x=i(1/x) (Legendre & Legendre 2012), where tot is the total and n is the number

of brokenstick components (cf. radfit). Broken stick has been recommended as a stopping rule in
principal component analysis (Jackson 1993): principal components should be retained as long as
observed eigenvalues are higher than corresponding random broken stick components.

The bstick function is generic. The default needs the number of components and the total, and
specific methods extract this information from ordination results. There also is a bstick method
for cca. However, the broken stick model is not strictly valid for correspondence analysis (CA),
because eigenvalues of CA are defined to be ≤ 1, whereas brokenstick components have no such
restrictions. The brokenstick components are not available for decorana where the sum of eigen-
values (total inertia) is unknown, and the eigenvalues of single axes are not additive in detrended
analysis.

Value

Function screeplot draws a plot on the currently active device, and returns invisibly the xy.coords
of the points or bars for the eigenvalues.

Function bstick returns a numeric vector of broken stick components.

Note

Function screeplot is generic from R version 2.5.0. In these versions you can use plain screeplot
command without suffices cca, prcomp etc.
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Author(s)

Gavin L. Simpson

References

Jackson, D. A. (1993). Stopping rules in principal components analysis: a comparison of heuristical
and statistical approaches. Ecology 74, 2204–2214.

Legendre, P. and Legendre, L. (2012) Numerical Ecology. 3rd English ed. Elsevier.

See Also

cca, decorana, princomp and prcomp for the ordination functions, and screeplot for the stock
version.

Examples

data(varespec)
vare.pca <- rda(varespec, scale = TRUE)
bstick(vare.pca)
screeplot(vare.pca, bstick = TRUE, type = "lines")

simper Similarity Percentages

Description

Discriminating species between two groups using Bray-Curtis dissimilarities

Usage

simper(comm, group, ...)
## S3 method for class ’simper’
summary(object, ordered = TRUE,

digits = max(3, getOption("digits") - 3), ...)

Arguments

comm Community data matrix.

group Factor describing the group structure. Must have at least 2 levels.

object an object returned by simper.

ordered Logical; Should the species be ordered by their average contribution?

digits Number of digits in output.

... Parameters passed to other functions.
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Details

Similarity percentage, simper (Clarke 1993) is based on the decomposition of Bray-Curtis dissim-
ilarity index (see vegdist, designdist). The contribution of individual species i to the overall
Bray-Curtis dissimilarity djk is given by

dijk =
|xij − xik|∑S
i=1(xij + xik)

where x is the abundance of species i in sampling units j and k. The overall index is the sum of the
individual contributions over all S species djk =

∑S
i=1 dijk.

The simper functions performs pairwise comparisons of groups of sampling units and finds the
average contributions of each species to the average overall Bray-Curtis dissimilarity.

The function displays most important species for each pair of groups. These species contribute
at least to 70 % of the differences between groups. The function returns much more extensive
results which can be accessed directly from the result object (see section Value). Function summary
transforms the result to a list of data frames. With argument ordered = TRUE the data frames also
include the cumulative contributions and are ordered by species contribution.

The results of simper can be very difficult to interpret. The method very badly confounds the mean
between group differences and within group variation, and seems to single out variable species
instead of distinctive species (Warton et al. 2012). Even if you make groups that are copies of each
other, the method will single out species with high contribution, but these are not contributions to
non-existing between-group differences but to within-group variation in species abundance.

Value

A list of class "simper" with following items:

species The species names.
average Average contribution to overall dissimilarity.
overall The overall between-group dissimilarity.
sd Standard deviation of contribution.
ratio Average to sd ratio.
ava, avb Average abundances per group.
ord An index vector to order vectors by their contribution or order cusum back to the

original data order.
cusum Ordered cumulative contribution.

Author(s)

Eduard Szöcs <szoe8822@uni-landau.de>

References

Clarke, K.R. 1993. Non-parametric multivariate analyses of changes in community structure. Aus-
tralian Journal of Ecology, 18, 117–143.

Warton, D.I., Wright, T.W., Wang, Y. 2012. Distance-based multivariate analyses confound location
and dispersion effects. Methods in Ecology and Evolution, 3, 89–101.
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Examples

data(dune)
data(dune.env)
(sim <- with(dune.env, simper(dune, Management)))
summary(sim)

simulate.rda Simulate Responses with Gaussian Error or Permuted Residuals for
Constrained Ordination

Description

Function simulates a response data frame so that it adds Gaussian error to the fitted responses of
Redundancy Analysis (rda), Constrained Correspondence Analysis (cca) or distance-based RDA
(capscale). The function is a special case of generic simulate, and works similarly as simulate.lm.

Usage

## S3 method for class ’rda’
simulate(object, nsim = 1, seed = NULL, indx = NULL, rank = "full", ...)

Arguments

object an object representing a fitted rda model.

nsim number of response vectors to simulate. (Not yet used, and values above 1 will
give an error).

seed an object specifying if and how the random number generator should be initial-
ized (‘seeded’). See simulate for details.

indx Index of residuals added to the fitted values, such as produced by permuted.index,
shuffle or sample. The index can have duplicate entries so that bootstrapping
is allowed. If null, parametric simulation is used and Gaussian error is added to
the fitted values.

rank The rank of the constrained component: passed to predict.rda or predict.cca.

... additional optional arguments (ignored).

Details

The implementation follows "lm" method of simulate, and adds Gaussian (Normal) error to the
fitted values (fitted.rda) using function rnorm. The standard deviations are estimated indepen-
dently for each species (column) from the residuals after fitting the constraints. Alternatively, the
function can take a permutation index that is used to add permuted residuals (unconstrained com-
ponent) to the fitted values. Raw data are used in rda. Internal Chi-square transformed data in cca
within the function, but the returned data frame is similar to the original input data. The simulation
is performed on internal metric scaling data in capscale, but the function returns the Euclidean
distances calculated from the simulated data. The simulation uses only the real components, and
the imaginary dimensions are ignored.
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Value

Returns a data frame with similar additional arguments on random number seed as simulate.

Author(s)

Jari Oksanen

See Also

simulate for the generic case and for lm objects. Functions fitted.rda and fitted.cca return
fitted values without the error component.

Examples

data(dune)
data(dune.env)
mod <- rda(dune ~ Moisture + Management, dune.env)
## One simulation
update(mod, simulate(mod) ~ .)
## An impression of confidence regions of site scores
plot(mod, display="sites")
for (i in 1:5) lines(procrustes(mod, update(mod, simulate(mod) ~ .)), col="blue")

sipoo Birds in the Archipelago of Sipoo (Sibbo)

Description

Land birds on islands covered by coniferous forest in the Sipoo archipelago, southern Finland (land-
bridge/ oceanic distinction unclear from source).

Usage

data(sipoo)

Format

A data frame with 18 sites and 50 species (Simberloff & Martin, 1991, Appendix 3). The species
are referred by 4+4 letter abbreviation of their Latin names (but using five letters in two species
names to make these unique). The example gives the areas of the studies islands in hectares.

Source

http://www.aics-research.com/nested/

References

Simberloff, D. & Martin, J.-L. (1991). Nestedness of insular avifaunas: simple summary statistics
masking complex species patterns. Ornis Fennica 68:178–192.

http://www.aics-research.com/nested/
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Examples

data(sipoo)
## Areas of the islands in hectares
sipoo.area <- c(1.1, 2.1, 2.2, 3.1, 3.5, 5.8, 6, 6.1, 6.5, 11.4, 13,
14.5, 16.1 ,17.5, 28.7, 40.5, 104.5, 233)

spantree Minimum Spanning Tree

Description

Function spantree finds a minimum spanning tree connecting all points, but disregarding dissimi-
larities that are at or above the threshold or NA.

Usage

spantree(d, toolong = 0)
## S3 method for class ’spantree’
cophenetic(x)
spandepth(x)
## S3 method for class ’spantree’
plot(x, ord, cex = 0.7, type = "p", labels, dlim,

FUN = sammon, ...)
## S3 method for class ’spantree’
lines(x, ord, display="sites", ...)

Arguments

d Dissimilarity data inheriting from class dist or a an object, such as a matrix,
that can be converted to a dissimilarity matrix. Functions vegdist and dist are
some functions producing suitable dissimilarity data.

toolong Shortest dissimilarity regarded as NA. The function uses a fuzz factor, so that dis-
similarities close to the limit will be made NA, too. If toolong = 0 (or negative),
no dissimilarity is regarded as too long.

x A spantree result object.

ord An ordination configuration, or an ordination result known by scores.

cex Character expansion factor.

type Observations are plotted as points with type="p" or type="b", or as text label
with type="t". The tree (lines) will always be plotted.

labels Text used with type="t" or node names if this is missing.

dlim A ceiling value used to highest cophenetic dissimilarity.

FUN Ordination function to find the configuration from cophenetic dissimilarities.

display Type of scores used for ord.

... Other parameters passed to functions.
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Details

Function spantree finds a minimum spanning tree for dissimilarities (there may be several min-
imum spanning trees, but the function finds only one). Dissimilarities at or above the threshold
toolong and NAs are disregarded, and the spanning tree is found through other dissimilarities. If
the data are disconnected, the function will return a disconnected tree (or a forest), and the corre-
sponding link is NA. Connected subtrees can be identified using distconnected.

Function cophenetic finds distances between all points along the tree segments. Function spandepth
returns the depth of each node. The nodes of a tree are either leaves (with one link) or internal nodes
(more than one link). The leaves are recursively removed from the tree, and the depth is the layer
at with the leaf was removed. In disconnected spantree object (in a forest) each tree is analysed
separately and disconnected nodes not in any tree have depth zero.

Function plot displays the tree over a supplied ordination configuration, and lines adds a spanning
tree to an ordination graph. If configuration is not supplied for plot, the function ordinates the
cophenetic dissimilarities of the spanning tree and overlays the tree on this result. The default
ordination function is sammon (package MASS), because Sammon scaling emphasizes structure in
the neighbourhood of nodes and may be able to beautifully represent the tree (you may need to set
dlim, and sometimes the results will remain twisted). These ordination methods do not work with
disconnected trees, but you must supply the ordination configuration. Function lines will overlay
the tree in an existing plot.

Function spantree uses Prim’s method implemented as priority-first search for dense graphs (Sedgewick
1990). Function cophenetic uses function stepacross with option path = "extended". The
spantree is very fast, but cophenetic is slow in very large data sets.

Value

Function spantree returns an object of class spantree which is a list with two vectors, each of
length n− 1. The number of links in a tree is one less the number of observations, and the first item
is omitted. The items are

kid The child node of the parent, starting from parent number two. If there is no link
from the parent, value will be NA and tree is disconnected at the node.

dist Corresponding distance. If kid = NA, then dist = 0.

labels Names of nodes as found from the input dissimilarities.

call The function call.

Note

In principle, minimum spanning tree is equivalent to single linkage clustering that can be performed
using hclust or agnes. However, these functions combine clusters to each other and the informa-
tion of the actually connected points (the “single link”) cannot be recovered from the result. The
graphical output of a single linkage clustering plotted with ordicluster will look very different
from an equivalent spanning tree plotted with lines.spantree.

Author(s)

Jari Oksanen
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References

Sedgewick, R. (1990). Algorithms in C. Addison Wesley.

See Also

vegdist or dist for getting dissimilarities, and hclust or agnes for single linkage clustering.

Examples

data(dune)
dis <- vegdist(dune)
tr <- spantree(dis)
## Add tree to a metric scaling
plot(tr, cmdscale(dis), type = "t")
## Find a configuration to display the tree neatly
plot(tr, type = "t")
## Depths of nodes
depths <- spandepth(tr)
plot(tr, type = "t", label = depths)

specaccum Species Accumulation Curves

Description

Function specaccum finds species accumulation curves or the number of species for a certain num-
ber of sampled sites or individuals.

Usage

specaccum(comm, method = "exact", permutations = 100,
conditioned =TRUE, gamma = "jack1", ...)

## S3 method for class ’specaccum’
plot(x, add = FALSE, ci = 2, ci.type = c("bar", "line", "polygon"),

col = par("fg"), ci.col = col, ci.lty = 1, xlab,
ylab = x$method, ylim, xvar = c("sites", "individuals"), ...)

## S3 method for class ’specaccum’
boxplot(x, add = FALSE, ...)
fitspecaccum(object, model, method = "random", ...)
## S3 method for class ’fitspecaccum’
plot(x, col = par("fg"), lty = 1, xlab = "Sites",

ylab = x$method, ...)
## S3 method for class ’specaccum’
predict(object, newdata, interpolation = c("linear", "spline"), ...)
## S3 method for class ’fitspecaccum’
predict(object, newdata, ...)
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Arguments

comm Community data set.

method Species accumulation method (partial match). Method "collector" adds sites
in the order they happen to be in the data, "random" adds sites in random or-
der, "exact" finds the expected (mean) species richness, "coleman" finds the
expected richness following Coleman et al. 1982, and "rarefaction" finds the
mean when accumulating individuals instead of sites.

permutations Number of permutations with method = "random".

conditioned Estimation of standard deviation is conditional on the empirical dataset for the
exact SAC

gamma Method for estimating the total extrapolated number of species in the survey
area by function specpool

x A specaccum result object

add Add to an existing graph.

ci Multiplier used to get confidence intervals from standard deviation (standard
error of the estimate). Value ci = 0 suppresses drawing confidence intervals.

ci.type Type of confidence intervals in the graph: "bar" draws vertical bars, "line"
draws lines, and "polygon" draws a shaded area.

col Colour for drawing lines.

ci.col Colour for drawing lines or filling the "polygon".

ci.lty Line type for confidence intervals or border of the "polygon".

xlab,ylab Labels for x (defaults xvar) and y axis.

ylim the y limits of the plot.

xvar Variable used for the horizontal axis: "individuals" can be used only with
method = "rarefaction".

object Either a community data set or fitted specaccum model.

model Nonlinear regression model (nls). See Details.

lty line type code (see par.

newdata Optional data used in prediction interpreted as number of sampling units (sites).
If missing, fitted values are returned.

interpolation Interpolation method used with newdata.

... Other parameters to functions.

Details

Species accumulation curves (SAC) are used to compare diversity properties of community data sets
using different accumulator functions. The classic method is "random" which finds the mean SAC
and its standard deviation from random permutations of the data, or subsampling without replace-
ment (Gotelli & Colwell 2001). The "exact" method finds the expected SAC using the method that
was independently developed by Ugland et al. (2003), Colwell et al. (2004) and Kindt et al. (2006).
The unconditional standard deviation for the exact SAC represents a moment-based estimation that
is not conditioned on the empirical data set (sd for all samples > 0), unlike the conditional standard
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deviation that was developed by Jari Oksanen (not published, sd=0 for all samples). The uncondi-
tional standard deviation is based on an estimation of the total extrapolated number of species in the
survey area (a.k.a. gamma diversity), as estimated by function specpool. Method "coleman" finds
the expected SAC and its standard deviation following Coleman et al. (1982). All these methods
are based on sampling sites without replacement. In contrast, the method = "rarefaction" finds
the expected species richness and its standard deviation by sampling individuals instead of sites.
It achieves this by applying function rarefy with number of individuals corresponding to average
number of individuals per site.

The function has a plot method. In addition, method = "random" has summary and boxplot
methods.

Function predict can return the values corresponding to newdata using linear (approx) or spline
(spline) interpolation. The function cannot extrapolate with linear interpolation, and with spline
the type and sensibility of the extrapolation depends on argument method which is passed to spline.
If newdata is not given, the function returns the values corresponding to the data.

Function fitspecaccum fits a nonlinear (nls) self-starting species accumulation model. The input
object can be a result of specaccum or a community in data frame. In the latter case the func-
tion first fits a specaccum model and then proceeds with fitting the a nonlinear model. The func-
tion can apply a limited set of nonlinear regression models suggested for species-area relationship
(Dengler 2009). All these are selfStart models. The permissible alternatives are "arrhenius"
(SSarrhenius), "gleason" (SSgleason), "gitay" (SSgitay), "lomolino" (SSlomolino) of ve-
gan package. In addition the following standard R models are available: "asymp" (SSasymp),
"gompertz" (SSgompertz), "michaelis-menten") (SSmicmen), "logis" (SSlogis), "weibull"
(SSweibull). See these functions for model specification and details.

Function predict uses predict.nls, and you can pass all arguments to that function. In addition,
fitted, residuals and coef work on the result object.

Nonlinear regression may fail for any reason, and some of the fitspecaccum models are fragile
and may not succeed.

Value

Function specaccum returns an object of class "specaccum", and fitspecaccum a model of class
"fitspecaccum" that adds a few items to the "specaccum" (see the end of the list below):

call Function call.

method Accumulator method.

sites Number of sites. For method = "rarefaction" this is the number of sites
corresponding to a certain number of individuals and generally not an integer,
and the average number of individuals is also returned in item individuals.

richness The number of species corresponding to number of sites. With method = "collector"
this is the observed richness, for other methods the average or expected richness.

sd The standard deviation of SAC (or its standard error). This is NULL in method = "collector",
and it is estimated from permutations in method = "random", and from analytic
equations in other methods.

perm Permutation results with method = "random" and NULL in other cases. Each
column in perm holds one permutation.
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fitted, residuals, coefficients

Only in fitspecacum: fitted values, residuals and nonlinear model coefficients.
For method = "random" these are matrices with a column for each random
accumulation.

models Only in fitspecaccum: list of fitted nls models (see Examples on accessing
these models).

Note

The SAC with method = "exact" was developed by Roeland Kindt, and its standard deviation by
Jari Oksanen (both are unpublished). The method = "coleman" underestimates the SAC because
it does not handle properly sampling without replacement. Further, its standard deviation does not
take into account species correlations, and is generally too low.

Author(s)

Roeland Kindt <r.kindt@cgiar.org> and Jari Oksanen.

References

Coleman, B.D, Mares, M.A., Willis, M.R. & Hsieh, Y. (1982). Randomness, area and species
richness. Ecology 63: 1121–1133.

Colwell, R.K., Mao, C.X. & Chang, J. (2004). Interpolating, extrapolating, and comparing incidence-
based species accumulation curves. Ecology 85: 2717–2727.

Dengler, J. (2009). Which function describes the species-area relationship best? A review and
empirical evaluation. Journal of Biogeography 36, 728–744.

Gotellli, N.J. & Colwell, R.K. (2001). Quantifying biodiversity: procedures and pitfalls in mea-
surement and comparison of species richness. Ecol. Lett. 4, 379–391.

Kindt, R. (2003). Exact species richness for sample-based accumulation curves. Manuscript.

Kindt R., Van Damme, P. & Simons, A.J. (2006) Patterns of species richness at varying scales in
western Kenya: planning for agroecosystem diversification. Biodiversity and Conservation, online
first: DOI 10.1007/s10531-005-0311-9

Ugland, K.I., Gray, J.S. & Ellingsen, K.E. (2003). The species-accumulation curve and estimation
of species richness. Journal of Animal Ecology 72: 888–897.

See Also

rarefy and rrarefy are related individual based models. Other accumulation models are poolaccum
for extrapolated richness, and renyiaccum and tsallisaccum for diversity indices. Underlying
graphical functions are boxplot, matlines, segments and polygon.

Examples

data(BCI)
sp1 <- specaccum(BCI)
sp2 <- specaccum(BCI, "random")
sp2
summary(sp2)
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plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0, ci.col="lightblue")
boxplot(sp2, col="yellow", add=TRUE, pch="+")
## Fit Lomolino model to the exact accumulation
mod1 <- fitspecaccum(sp1, "lomolino")
coef(mod1)
fitted(mod1)
plot(sp1)
## Add Lomolino model using argument ’add’
plot(mod1, add = TRUE, col=2, lwd=2)
## Fit Arrhenius models to all random accumulations
mods <- fitspecaccum(sp2, "arrh")
plot(mods, col="hotpink")
boxplot(sp2, col = "yellow", border = "blue", lty=1, cex=0.3, add= TRUE)
## Use nls() methods to the list of models
sapply(mods$models, AIC)

specpool Extrapolated Species Richness in a Species Pool

Description

The functions estimate the extrapolated species richness in a species pool, or the number of un-
observed species. Function specpool is based on incidences in sample sites, and gives a single
estimate for a collection of sample sites (matrix). Function estimateR is based on abundances
(counts) on single sample site.

Usage

specpool(x, pool)
estimateR(x, ...)
specpool2vect(X, index = c("jack1","jack2", "chao", "boot","Species"))
poolaccum(x, permutations = 100, minsize = 3)
estaccumR(x, permutations = 100)
## S3 method for class ’poolaccum’
summary(object, display, alpha = 0.05, ...)
## S3 method for class ’poolaccum’
plot(x, alpha = 0.05, type = c("l","g"), ...)

Arguments

x Data frame or matrix with species data or the analysis result for plot function.

pool A vector giving a classification for pooling the sites in the species data. If miss-
ing, all sites are pooled together.

X, object A specpool result object.

index The selected index of extrapolated richness.

permutations Number of permutations of sampling order of sites.

minsize Smallest number of sampling units reported.
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display Indices to be displayed.

alpha Level of quantiles shown. This proportion will be left outside symmetric limits.

type Type of graph produced in xyplot.

... Other parameters (not used).

Details

Many species will always remain unseen or undetected in a collection of sample plots. The function
uses some popular ways of estimating the number of these unseen species and adding them to the
observed species richness (Palmer 1990, Colwell & Coddington 1994).

The incidence-based estimates in specpool use the frequencies of species in a collection of sites.
In the following, SP is the extrapolated richness in a pool, S0 is the observed number of species
in the collection, a1 and a2 are the number of species occurring only in one or only in two sites in
the collection, pi is the frequency of species i, and N is the number of sites in the collection. The
variants of extrapolated richness in specpool are:

Chao SP = S0 + a12/(2 ∗ a2)
First order jackknife SP = S0 + a1

N−1
N

Second order jackknife SP = S0 + a1
2N−3
N − a2 (N−2)2

N(N−1)
Bootstrap SP = S0 +

∑S0

i=1(1− pi)N

The abundance-based estimates in estimateR use counts (frequencies) of species in a single site.
If called for a matrix or data frame, the function will give separate estimates for each site. The two
variants of extrapolated richness in estimateR are Chao (unbiased variant) and ACE. In the Chao
estimate ai refers to number of species with abundance i instead of incidence:

Chao SP = S0 + a1(a1−1)
2(a2+1)

ACE SP = Sabund + Srare

Cace
+ a1

Cace
γ2ace

where Cace = 1− a1
Nrare

γ2ace = max

[
Srare

∑10

i=1
i(i−1)ai

CaceNrare(Nrare−1) − 1, 0

]

Here ai refers to number of species with abundance i and Srare is the number of rare species,
Sabund is the number of abundant species, with an arbitrary threshold of abundance 10 for rare
species, and Nrare is the number of individuals in rare species.

Functions estimate the standard errors of the estimates. These only concern the number of added
species, and assume that there is no variance in the observed richness. The equations of standard
errors are too complicated to be reproduced in this help page, but they can be studied in the R
source code of the function. The standard error are based on the following sources: Chao (1987)
for the Chao estimate and Smith and van Belle (1984) for the first-order Jackknife and the bootstrap
(second-order jackknife is still missing). The variance estimator of Sace was developed by Bob
O’Hara (unpublished).

Functions poolaccum and estaccumR are similar to specaccum, but estimate extrapolated richness
indices of specpool or estimateR in addition to number of species for random ordering of sam-
pling units. Function specpool uses presence data and estaccumR count data. The functions share
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summary and plot methods. The summary returns quantile envelopes of permutations correspond-
ing the given level of alpha and standard deviation of permutations for each sample size. The plot
function shows the mean and envelope of permutations with given alpha for models. The selection
of models can be restricted and order changes using the display argument in summary or plot. For
configuration of plot command, see xyplot

Value

Function specpool returns a data frame with entries for observed richness and each of the indices
for each class in pool vector. The utility function specpool2vect maps the pooled values into
a vector giving the value of selected index for each original site. Function estimateR returns
the estimates and their standard errors for each site. Functions poolaccum and estimateR return
matrices of permutation results for each richness estimator, the vector of sample sizes and a table
of means of permutations for each estimator.

Note

The functions are based on assumption that there is a species pool: The community is closed so that
there is a fixed pool size SP . Such cases may exist, although I have not seen them yet. All indices
are biased for open communities.

See http://viceroy.eeb.uconn.edu/EstimateS for a more complete (and positive) discussion
and alternative software for some platforms.

Author(s)

Bob O’Hara (estimateR) and Jari Oksanen.

References

Chao, A. (1987). Estimating the population size for capture-recapture data with unequal catchabil-
ity. Biometrics 43, 783–791.

Colwell, R.K. & Coddington, J.A. (1994). Estimating terrestrial biodiversity through extrapolation.
Phil. Trans. Roy. Soc. London B 345, 101–118.

Palmer, M.W. (1990). The estimation of species richness by extrapolation. Ecology 71, 1195–1198.

Smith, E.P & van Belle, G. (1984). Nonparametric estimation of species richness. Biometrics 40,
119–129.

See Also

veiledspec, diversity, beals, specaccum.

Examples

data(dune)
data(dune.env)
attach(dune.env)
pool <- specpool(dune, Management)
pool
op <- par(mfrow=c(1,2))

http://viceroy.eeb.uconn.edu/EstimateS
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boxplot(specnumber(dune) ~ Management, col="hotpink", border="cyan3",
notch=TRUE)

boxplot(specnumber(dune)/specpool2vect(pool) ~ Management, col="hotpink",
border="cyan3", notch=TRUE)

par(op)
data(BCI)
## Accumulation model
pool <- poolaccum(BCI)
summary(pool, display = "chao")
plot(pool)
## Quantitative model
estimateR(BCI[1:5,])

SSarrhenius Self-Starting nls Species-Area Models

Description

These functions provide self-starting species-area models for non-linear regression (nls). They can
also be used for fitting species accumulation models in fitspecaccum. These models (and many
more) are reviewed by Dengler (2009).

Usage

SSarrhenius(area, k, z)
SSgleason(area, k, slope)
SSgitay(area, k, slope)
SSlomolino(area, Asym, xmid, slope)

Arguments

area Area or size of the sample: the independent variable.
k, z, slope, Asym, xmid

Estimated model parameters: see Details.

Details

All these functions are assumed to be used for species richness (number of species) as the inde-
pendent variable, and area or sample size as the independent variable. Basically, these define least
squares models of untransformed data, and will differ from models for transformed species richness
or models with non-Gaussian error.

The Arrhenius model (SSarrhenius) is the expression k*area^z. This is the most classical model
that can be found in any textbook of ecology (and also in Dengler 2009). Parameter z is the steep-
ness of the species-area curve, and k is the expected number of species in a unit area.

The Gleason model (SSgleason) is a linear expression k + slope*log(area) (Dengler 200). This
is a linear model, and starting values give the final estimates; it is provided to ease comparison with
other models.
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The Gitay model (SSgitay) is a quadratic logarithmic expression (k + slope*log(area))^2 (Gi-
tay et al. 1991, Dengler 2009). Parameter slope is the steepness of the species-area curve, and k is
the square root of expected richness in a unit area.

The Lomolino model (SSlomolino) is Asym/(1 + slope^log(xmid/area)) (Lomolino 2000, Den-
gler 2009). Parameter Asym is the asymptotic maximum number of species, slope is the maximum
slope of increse of richness, and xmid is the area where half of the maximum richess is achieved.

In addition to these models, several other models studied by Dengler (2009) are available in standard
R self-starting models: Michaelis-Menten (SSmicmen), Gompertz (SSgompertz), logistic (SSlogis),
Weibull (SSweibull), and some others that may be useful.

Value

Numeric vector of the same length as area. It is the value of the expression of each model. If all
arguments are names of objects the gradient matrix with respect to these names is attached as an
attribute named gradient.

Author(s)

Jari Oksanen.

References

Dengler, J. (2009) Which function describes the species-area relationship best? A review and em-
pirical evaluation. Journal of Biogeography 36, 728–744.

Gitay, H., Roxburgh, S.H. & Wilson, J.B. (1991) Species-area relationship in a New Zealand tussock
grassland, with implications for nature reserve design and for community structure. Journal of
Vegetation Science 2, 113–118.

Lomolino, M. V. (2000) Ecology’s most general, yet protean pattern: the species-area relationship.
Journal of Biogeography 27, 17–26.

See Also

nls, fitspecaccum.

Examples

## Get species area data: sipoo.area gives the areas of islands
example(sipoo)
S <- specnumber(sipoo)
plot(S ~ sipoo.area, xlab = "Island Area (ha)", ylab = "Number of Species",

ylim = c(1, max(S)))
## The Arrhenius model
marr <- nls(S ~ SSarrhenius(sipoo.area, k, z))
marr
## confidence limits from profile likelihood
confint(marr)
## draw a line
xtmp <- seq(min(sipoo.area), max(sipoo.area), len=51)
lines(xtmp, predict(marr, newdata=data.frame(sipoo.area = xtmp)), lwd=2)
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## The normal way is to use linear regression on log-log data,
## but this will be different from the previous:
mloglog <- lm(log(S) ~ log(sipoo.area))
mloglog
lines(xtmp, exp(predict(mloglog, newdata=data.frame(sipoo.area=xtmp))),

lty=2)
## Gleason: log-linear
mgle <- nls(S ~ SSgleason(sipoo.area, k, slope))
lines(xtmp, predict(mgle, newdata=data.frame(sipoo.area=xtmp)),

lwd=2, col=2)
## Gitay: quadratic of log-linear
mgit <- nls(S ~ SSgitay(sipoo.area, k, slope))
lines(xtmp, predict(mgit, newdata=data.frame(sipoo.area=xtmp)),

lwd=2, col = 3)
## Lomolino: using original names of the parameters (Lomolino 2000):
mlom <- nls(S ~ SSlomolino(sipoo.area, Smax, A50, Hill))
mlom
lines(xtmp, predict(mlom, newdata=data.frame(sipoo.area=xtmp)),

lwd=2, col = 4)
## One canned model of standard R:
mmic <- nls(S ~ SSmicmen(sipoo.area, slope, Asym))
lines(xtmp, predict(mmic, newdata = data.frame(sipoo.area=xtmp)),

lwd =2, col = 5)
legend("bottomright", c("Arrhenius", "log-log linear", "Gleason", "Gitay",

"Lomolino", "Michaelis-Menten"), col=c(1,1,2,3,4,5), lwd=c(2,1,2,2,2,2),
lty=c(1,2,1,1,1,1))

## compare models (AIC)
allmods <- list(Arrhenius = marr, Gleason = mgle, Gitay = mgit,

Lomolino = mlom, MicMen= mmic)
sapply(allmods, AIC)

stepacross Stepacross as Flexible Shortest Paths or Extended Dissimilarities

Description

Function stepacross tries to replace dissimilarities with shortest paths stepping across intermedi-
ate sites while regarding dissimilarities above a threshold as missing data (NA). With path = "shortest"
this is the flexible shortest path (Williamson 1978, Bradfield & Kenkel 1987), and with path = "extended"
an approximation known as extended dissimilarities (De’ath 1999). The use of stepacross should
improve the ordination with high beta diversity, when there are many sites with no species in com-
mon.

Usage

stepacross(dis, path = "shortest", toolong = 1, trace = TRUE, ...)



222 stepacross

Arguments

dis Dissimilarity data inheriting from class dist or a an object, such as a matrix,
that can be converted to a dissimilarity matrix. Functions vegdist and dist are
some functions producing suitable dissimilarity data.

path The method of stepping across (partial match) Alternative "shortest" finds the
shortest paths, and "extended" their approximation known as extended dissim-
ilarities.

toolong Shortest dissimilarity regarded as NA. The function uses a fuzz factor, so that
dissimilarities close to the limit will be made NA, too.

trace Trace the calculations.
... Other parameters (ignored).

Details

Williamson (1978) suggested using flexible shortest paths to estimate dissimilarities between sites
which have nothing in common, or no shared species. With path = "shortest" function stepacross
replaces dissimilarities that are toolong or longer with NA, and tries to find shortest paths between
all sites using remaining dissimilarities. Several dissimilarity indices are semi-metric which means
that they do not obey the triangle inequality dij ≤ dik+dkj , and shortest path algorithm can replace
these dissimilarities as well, even when they are shorter than toolong.
De’ath (1999) suggested a simplified method known as extended dissimilarities, which are calcu-
lated with path = "extended". In this method, dissimilarities that are toolong or longer are first
made NA, and then the function tries to replace these NA dissimilarities with a path through single
stepping stone points. If not all NA could be replaced with one pass, the function will make new
passes with updated dissimilarities as long as all NA are replaced with extended dissimilarities. This
mean that in the second and further passes, the remaining NA dissimilarities are allowed to have
more than one stepping stone site, but previously replaced dissimilarities are not updated. Further,
the function does not consider dissimilarities shorter than toolong, although some of these could
be replaced with a shorter path in semi-metric indices, and used as a part of other paths. In optimal
cases, the extended dissimilarities are equal to shortest paths, but they may be longer.
As an alternative to defining too long dissimilarities with parameter toolong, the input dissimilari-
ties can contain NAs. If toolong is zero or negative, the function does not make any dissimilarities
into NA. If there are no NAs in the input and toolong = 0, path = "shortest" will find shorter
paths for semi-metric indices, and path = "extended" will do nothing. Function no.shared can
be used to set dissimilarities to NA.
If the data are disconnected or there is no path between all points, the result will contain NAs and
a warning is issued. Several methods cannot handle NA dissimilarities, and this warning should be
taken seriously. Function distconnected can be used to find connected groups and remove rare
outlier observations or groups of observations.
Alternative path = "shortest" uses Dijkstra’s method for finding flexible shortest paths, imple-
mented as priority-first search for dense graphs (Sedgewick 1990). Alternative path = "extended"
follows De’ath (1999), but implementation is simpler than in his code.

Value

Function returns an object of class dist with extended dissimilarities (see functions vegdist and
dist). The value of path is appended to the method attribute.
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Note

The function changes the original dissimilarities, and not all like this. It may be best to use the
function only when you really must: extremely high beta diversity where a large proportion of
dissimilarities are at their upper limit (no species in common).

Semi-metric indices vary in their degree of violating the triangle inequality. Morisita and Horn–
Morisita indices of vegdist may be very strongly semi-metric, and shortest paths can change these
indices very much. Mountford index violates basic rules of dissimilarities: non-identical sites have
zero dissimilarity if species composition of the poorer site is a subset of the richer. With Mountford
index, you can find three sites i, j, k so that dik = 0 and djk = 0, but dij > 0. The results of
stepacross on Mountford index can be very weird. If stepacross is needed, it is best to try to
use it with more metric indices only.

Author(s)

Jari Oksanen

References

Bradfield, G.E. & Kenkel, N.C. (1987). Nonlinear ordination using flexible shortest path adjustment
of ecological distances. Ecology 68, 750–753.

De’ath, G. (1999). Extended dissimilarity: a method of robust estimation of ecological distances
from high beta diversity data. Plant Ecol. 144, 191–199.

Sedgewick, R. (1990). Algorithms in C. Addison Wesley.

Williamson, M.H. (1978). The ordination of incidence data. J. Ecol. 66, 911-920.

See Also

Function distconnected can find connected groups in disconnected data, and function no.shared
can be used to set dissimilarities as NA. See swan for an alternative approach. Function stepacross
is an essential component in isomap and cophenetic.spantree.

Examples

# There are no data sets with high beta diversity in vegan, but this
# should give an idea.
data(dune)
dis <- vegdist(dune)
edis <- stepacross(dis)
plot(edis, dis, xlab = "Shortest path", ylab = "Original")
## Manhattan distance have no fixed upper limit.
dis <- vegdist(dune, "manhattan")
is.na(dis) <- no.shared(dune)
dis <- stepacross(dis, toolong=0)
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taxondive Indices of Taxonomic Diversity and Distinctness

Description

Function finds indices of taxonomic diversity and distinctness, which are averaged taxonomic dis-
tances among species or individuals in the community (Clarke & Warwick 1998, 2001)

Usage

taxondive(comm, dis, match.force = FALSE)
taxa2dist(x, varstep = FALSE, check = TRUE, labels)

Arguments

comm Community data.

dis Taxonomic distances among taxa in comm. This should be a dist object or a
symmetric square matrix.

match.force Force matching of column names in comm and labels in dis. If FALSE, matching
only happens when dimensions differ, and in that case the species must be in
identical order in both.

x Classification table with a row for each species or other basic taxon, and columns
for identifiers of its classification at higher levels.

varstep Vary step lengths between successive levels relative to proportional loss of the
number of distinct classes.

check If TRUE, remove all redundant levels which are different for all rows or constant
for all rows and regard each row as a different basal taxon (species). If FALSE
all levels are retained and basal taxa (species) also must be coded as variables
(columns). You will get a warning if species are not coded, but you can ignore
this if that was your intention.

labels The labels attribute of taxonomic distances. Row names will be used if this
is not given. Species will be matched by these labels in comm and dis in
taxondive if these have different dimensions.

Details

Clarke & Warwick (1998, 2001) suggested several alternative indices of taxonomic diversity or
distinctness. Two basic indices are called taxonomic diversity (∆) and distinctness (∆∗):

∆ = (
∑∑

i<j ωijxixj)/(n(n− 1)/2)

∆∗ = (
∑∑

i<j ωijxixj)/(
∑∑

i<j xixj)

The equations give the index value for a single site, and summation goes over species i and j. Here
ω are taxonomic distances among taxa, and x are species abundances, and n is the total abundance
for a site. With presence/absence data both indices reduce to the same index ∆+, and for this index
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Clarke & Warwick (1998) also have an estimate of its standard deviation. Clarke & Warwick (2001)
presented two new indices: s∆+ is the product of species richness and ∆+, and index of variation
in taxonomic distinctness (Λ+) defined as

Λ+ = (
∑∑

i<j ω
2
ij)/(n(n− 1)/2)− (∆+)2

The dis argument must be species dissimilarities. These must be similar to dissimilarities produced
by dist. It is customary to have integer steps of taxonomic hierarchies, but other kind of dissimi-
larities can be used, such as those from phylogenetic trees or genetic differences. Further, the dis
need not be taxonomic, but other species classifications can be used.

Function taxa2dist can produce a suitable dist object from a classification table. Each species
(or basic taxon) corresponds to a row of the classification table, and columns give the classification
at different levels. With varstep = FALSE the successive levels will be separated by equal steps,
and with varstep = TRUE the step length is relative to the proportional decrease in the number
of classes (Clarke & Warwick 1999). With check = TRUE, the function removes classes which
are distinct for all species or which combine all species into one class, and assumes that each row
presents a distinct basic taxon. The function scales the distances so that longest path length between
taxa is 100 (not necessarily when check = FALSE).

Function plot.taxondive plots ∆+ against Number of species, together with expectation and its
approximate 2*sd limits. Function summary.taxondive finds the z values and their significances
from Normal distribution for ∆+.

Value

Function returns an object of class taxondive with following items:

Species Number of species for each site.
D, Dstar, Dplus, SDplus, Lambda

∆, ∆∗, ∆+, s∆+ and Λ+ for each site.

sd.Dplus Standard deviation of ∆+.
ED, EDstar, EDplus

Expected values of corresponding statistics.

Function taxa2dist returns an object of class "dist", with an attribute "steps" for the step
lengths between successive levels.

Note

The function is still preliminary and may change. The scaling of taxonomic dissimilarities influ-
ences the results. If you multiply taxonomic distances (or step lengths) by a constant, the values
of all Deltas will be multiplied with the same constant, and the value of Λ+ by the square of the
constant.

Author(s)

Jari Oksanen
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References

Clarke, K.R & Warwick, R.M. (1998) A taxonomic distinctness index and its statistical properties.
Journal of Applied Ecology 35, 523–531.

Clarke, K.R. & Warwick, R.M. (1999) The taxonomic distinctness measure of biodiversity: weight-
ing of step lengths between hierarchical levels. Marine Ecology Progress Series 184: 21–29.

Clarke, K.R. & Warwick, R.M. (2001) A further biodiversity index applicable to species lists: vari-
ation in taxonomic distinctness. Marine Ecology Progress Series 216, 265–278.

See Also

diversity.

Examples

## Preliminary: needs better data and some support functions
data(dune)
data(dune.taxon)
# Taxonomic distances from a classification table with variable step lengths.
taxdis <- taxa2dist(dune.taxon, varstep=TRUE)
plot(hclust(taxdis), hang = -1)
# Indices
mod <- taxondive(dune, taxdis)
mod
summary(mod)
plot(mod)

tolerance Species tolerances and sample heterogeneities

Description

Species tolerances and sample heterogeneities.

Usage

tolerance(x, ...)

## S3 method for class ’cca’
tolerance(x, choices = 1:2, which = c("species","sites"),

scaling = 2, useN2 = FALSE, ...)

Arguments

x object of class "cca".

choices numeric; which ordination axes to compute tolerances and heterogeneities for.
Defaults to axes 1 and 2.
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which character; one of "species" or "sites", indicating whether species tolerances
or sample heterogeneities respectively are computed.

scaling numeric; the ordination scaling to use.

useN2 logical; should the bias in the tolerances / heterogeneities be reduced via scaling
by Hill’s N2?

... arguments passed to other methods.

Details

Function to compute species tolerances and site heterogeneity measures from unimodal ordinations
(CCA & CA). Implements Eq 6.47 and 6.48 from the Canoco 4.5 Reference Manual (pages 178-
179).

Value

Matrix of tolerances/heterogeneities with some additional attributes.

Author(s)

Gavin L. Simpson

Examples

data(dune)
data(dune.env)
mod <- cca(dune ~ ., data = dune.env)

## defaults to species tolerances
tolerance(mod)

## sample heterogeneities for CCA axes 1:6
tolerance(mod, which = "sites", choices = 1:6)

treedive Functional Diversity estimated from a Species Dendrogram

Description

Functional diversity is defined as the total branch length in a trait dendrogram connecting all species,
but excluding the unnecessary root segments of the tree (Petchey and Gaston 2006).

Usage

treedive(comm, tree, match.force = FALSE)
treeheight(tree)
treedist(x, tree, relative = TRUE, match.force = FALSE, ...)
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Arguments

comm, x Community data frame or matrix.

tree A dendrogram which for treedive must be for species (columns).

match.force Force matching of column names in data (comm, x) and labels in tree. If FALSE,
matching only happens when dimensions differ (with a warning or message).
The order of data must match to the order in tree if matching by names is not
done.

relative Use distances relative to the height of combined tree.

... Other arguments passed to functions (ignored).

Details

Function treeheight finds the sum of lengths of connecting segments in a dendrogram produced by
hclust, or other dendrogram that can be coerced to a correct type using as.hclust. When applied
to a clustering of species traits, this is a measure of functional diversity (Petchey and Gaston 2002,
2006).

Function treedive finds the treeheight for each site (row) of a community matrix. The function
uses a subset of dendrogram for those species that occur in each site, and excludes the tree root if
that is not needed to connect the species (Petchey and Gaston 2006). The subset of the dendrogram
is found by first calculating cophenetic distances from the input dendrogram, then reconstructing
the dendrogram for the subset of the cophenetic distance matrix for species occurring in each site.
Diversity is 0 for one spcies, and NA for empty communities.

Function treedist finds the dissimilarities among trees. Pairwise dissimilarity of two trees is
found by combining species in a common tree and seeing how much of the tree height is shared and
how much is unique. With relative = FALSE the dissimilarity is defined as 2(A ∪ B) − A − B,
where A and B are heights of component trees and A ∪ B is the height of the combined tree.
With relative = TRUE the dissimilarity is (2(A ∪ B) − A − B)/(A ∪ B). Although the latter
formula is similar to Jaccard dissimilarity (see vegdist, designdist), it is not in the range 0 . . . 1,
since combined tree can add a new root. When two zero-height trees are combined into a tree of
above zero height, the relative index attains its maximum value 2. The dissimilarity is zero from a
combined zero-height tree.

The functions need a dendrogram of species traits as an input. If species traits contain factor or
ordered factor variables, it is recommended to use Gower distances for mixed data (function daisy
in package cluster), and usually the recommended clustering method is UPGMA (method = "average"
in function hclust) (Podani and Schmera 2006).

It is possible to analyse the non-randomness of functional diversity using oecosimu. This needs
specifying an adequate Null model, and the results will change with this choice.

Value

A vector of diversity values or a single tree height, or a dissimilarity structure that inherits from
dist and can be used similarly.

Author(s)

Jari Oksanen
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References

Lozupone, C. and Knight, R. 2005. UniFrac: a new phylogenetic method for comparing microbial
communities. Applied and Environmental Microbiology 71, 8228–8235.

Petchey, O.L. and Gaston, K.J. 2002. Functional diversity (FD), species richness and community
composition. Ecology Letters 5, 402–411.

Petchey, O.L. and Gaston, K.J. 2006. Functional diversity: back to basics and looking forward.
Ecology Letters 9, 741–758.

Podani J. and Schmera, D. 2006. On dendrogram-based methods of functional diversity. Oikos 115,
179–185.

See Also

Function treedive is similar to the phylogenetic diversity function pd in picante, but excludes
tree root if that is not needed to connect species. Function treedist is similar to the phylogenetic
similarity phylosor in picante, but excludes unneeded tree root and returns distances instead of
similarities.

taxondive is something very similar from another world.

Examples

## There is no data set on species properties yet, and therefore
## the example uses taxonomy
data(dune)
data(dune.taxon)
d <- taxa2dist(dune.taxon, varstep=TRUE)
cl <- hclust(d, "aver")
treedive(dune, cl)
## Significance test using Null model communities.
## The current choice fixes only site totals.
oecosimu(dune, treedive, "r0", tree = cl)
## Clustering of tree distances
dtree <- treedist(dune, cl)
plot(hclust(dtree, "aver"))

tsallis Tsallis Diversity and Corresponding Accumulation Curves

Description

Function tsallis find Tsallis diversities with any scale or the corresponding evenness measures.
Function tsallisaccum finds these statistics with accumulating sites.

Usage

tsallis(x, scales = seq(0, 2, 0.2), norm = FALSE, hill = FALSE)
tsallisaccum(x, scales = seq(0, 2, 0.2), permutations = 100, raw = FALSE, ...)
## S3 method for class ’tsallisaccum’
persp(x, theta = 220, phi = 15, col = heat.colors(100), zlim, ...)
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Arguments

x Community data matrix or plotting object.
scales Scales of Tsallis diversity.
norm Logical, if TRUE diversity values are normalized by their maximum (diversity

value at equiprobability conditions).
hill Calculate Hill numbers.
permutations Number of random permutations in accumulating sites.
raw If FALSE then return summary statistics of permutations, and if TRUE then re-

turns the individual permutations.
theta, phi angles defining the viewing direction. theta gives the azimuthal direction and

phi the colatitude.
col Colours used for surface.
zlim Limits of vertical axis.
... Other arguments which are passed to tsallis and to graphical functions.

Details

The Tsallis diversity (also equivalent to Patil and Taillie diversity) is a one-parametric generalised
entropy function, defined as:

Hq =
1

q − 1
(1−

S∑
i=1

pqi )

where q is a scale parameter, S the number of species in the sample (Tsallis 1988, Tothmeresz
1995). This diversity is concave for all q > 0, but non-additive (Keylock 2005). For q = 0 it gives
the number of species minus one, as q tends to 1 this gives Shannon diversity, for q = 2 this gives
the Simpson index (see function diversity).

If norm = TRUE, tsallis gives values normalized by the maximum:

Hq(max) =
S1−q − 1

1− q

where S is the number of species. As q tends to 1, maximum is defined as ln(S).

If hill = TRUE, tsallis gives Hill numbers (numbers equivalents, see Jost 2007):

Dq = (1− (q − 1)H)1/(1−q)

Details on plotting methods and accumulating values can be found on the help pages of the functions
renyi and renyiaccum.

Value

Function tsallis returns a data frame of selected indices. Function tsallisaccum with argument
raw = FALSE returns a three-dimensional array, where the first dimension are the accumulated sites,
second dimension are the diversity scales, and third dimension are the summary statistics mean,
stdev, min, max, Qnt 0.025 and Qnt 0.975. With argument raw = TRUE the statistics on the third
dimension are replaced with individual permutation results.



varespec 231

Author(s)

Péter Sólymos, <solymos@ualberta.ca>, based on the code of Roeland Kindt and Jari Oksanen
written for renyi

References

Tsallis, C. (1988) Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phis. 52, 479–487.

Tothmeresz, B. (1995) Comparison of different methods for diversity ordering. Journal of Vegeta-
tion Science 6, 283–290.

Patil, G. P. and Taillie, C. (1982) Diversity as a concept and its measurement. J. Am. Stat. Ass. 77,
548–567.

Keylock, C. J. (2005) Simpson diversity and the Shannon-Wiener index as special cases of a gener-
alized entropy. Oikos 109, 203–207.

Jost, L (2007) Partitioning diversity into independent alpha and beta components. Ecology 88,
2427–2439.

See Also

Plotting methods and accumulation routines are based on functions renyi and renyiaccum. An
object of class ’tsallisaccum’ can be used with function rgl.renyiaccum as well. See also settings
for persp.

Examples

data(BCI)
i <- sample(nrow(BCI), 12)
x1 <- tsallis(BCI[i,])
x1
diversity(BCI[i,],"simpson") == x1[["2"]]
plot(x1)
x2 <- tsallis(BCI[i,],norm=TRUE)
x2
plot(x2)
mod1 <- tsallisaccum(BCI[i,])
plot(mod1, as.table=TRUE, col = c(1, 2, 2))
persp(mod1)
mod2 <- tsallisaccum(BCI[i,], norm=TRUE)
persp(mod2,theta=100,phi=30)

varespec Vegetation and environment in lichen pastures
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Description

The varespec data frame has 24 rows and 44 columns. Columns are estimated cover values of
44 species. The variable names are formed from the scientific names, and are self explanatory for
anybody familiar with the vegetation type. The varechem data frame has 24 rows and 14 columns,
giving the soil characteristics of the very same sites as in the varespec data frame. The chemical
measurements have obvious names. Baresoil gives the estimated cover of bare soil, Humdepth the
thickness of the humus layer.

Usage

data(varechem)
data(varespec)

References

Väre, H., Ohtonen, R. and Oksanen, J. (1995) Effects of reindeer grazing on understorey vegetation
in dry Pinus sylvestris forests. Journal of Vegetation Science 6, 523–530.

Examples

data(varespec)
data(varechem)

varpart Partition the Variation of Community Matrix by 2, 3, or 4 Explanatory
Matrices

Description

The function partitions the variation of response table Y with respect to two, three, or four explana-
tory tables, using redundancy analysis ordination (RDA). If Y contains a single vector, partitioning
is by partial regression. Collinear variables in the explanatory tables do NOT have to be removed
prior to partitioning.

Usage

varpart(Y, X, ..., data, transfo, scale = FALSE)
showvarparts(parts, labels, ...)
## S3 method for class ’varpart234’
plot(x, cutoff = 0, digits = 1, ...)

Arguments

Y Data frame or matrix containing the response data table. In community ecology,
that table is often a site-by-species table.
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X Two to four explanatory models, variables or tables. These can be defined in
three alternative ways: (1) one-sided model formulae beginning with ~ and then
defining the model, (2) name of a single numeric variable, or (3) name of data
frame or matrix with numeric variables. The model formulae can have factors,
interaction terms and transformations of variables. The names of the variables
in the model formula are found in data frame given in data argument, and if
not found there, in the user environment. Single numeric variables, data frames
or matrices are found in the user environment. All entries till the next argument
(data or transfo) are interpreted as explanatory models, and the names of these
arguments cannot be abbreviated nor omitted.

data The data frame with the variables used in the formulae in X.

transfo Transformation for Y (community data) using decostand. All alternatives in
decostand can be used, and those preserving Euclidean metric include "hellinger",
"chi.square", "total", "norm".

scale Should the columns of Y be standardized to unit variance

parts Number of explanatory tables (circles) displayed.

labels Labels used for displayed fractions. Default is to use the same letters as in the
printed output.

x The varpart result.

cutoff The values below cutoff will not be displayed.

digits The number of significant digits; the number of decimal places is at least one
higher.

... Other parameters passed to functions.

Details

The functions partition the variation in Y into components accounted for by two to four explanatory
tables and their combined effects. If Y is a multicolumn data frame or matrix, the partitioning is
based on redundancy analysis (RDA, see rda), and if Y is a single variable, the partitioning is based
on linear regression. A simplified, fast version of RDA is used (function simpleRDA2). The actual
calculations are done in functions varpart2 to varpart4, but these are not intended to be called
directly by the user.

The function primarily uses adjusted R squares to assess the partitions explained by the explanatory
tables and their combinations, because this is the only unbiased method (Peres-Neto et al., 2006).
The raw R squares for basic fractions are also displayed, but these are biased estimates of variation
explained by the explanatory table.

The identifiable fractions are designated by lower case alphabets. The meaning of the symbols can
be found in the separate document "partitioning.pdf" (which can be read using vegandocs), or can
be displayed graphically using function showvarparts.

A fraction is testable if it can be directly expressed as an RDA model. In these cases the printed
output also displays the corresponding RDA model using notation where explanatory tables after
| are conditions (partialled out; see rda for details). Although single fractions can be testable,
this does not mean that all fractions simultaneously can be tested, since there number of testable
fractions is higher than the number of estimated models.
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An abridged explanation of the alphabetic symbols for the individual fractions follows, but compu-
tational details should be checked in "partitioning.pdf" (readable with vegandocs) or in the source
code.

With two explanatory tables, the fractions explained uniquely by each of the two tables are [a] and
[c], and their joint effect is [b] following Borcard et al. (1992).

With three explanatory tables, the fractions explained uniquely by each of the three tables are [a]
to [c], joint fractions between two tables are [d] to [f], and the joint fraction between all three
tables is [g].

With four explanatory tables, the fractions explained uniquely by each of the four tables are [a] to
[d], joint fractions between two tables are [e] to [j], joint fractions between three variables are
[k] to [n], and the joint fraction between all four tables is [o].

There is a plot function that displays the Venn diagram and labels each intersection (individual
fraction) with the adjusted R squared if this is higher than cutoff. A helper function showvarpart
displays the fraction labels.

Value

Function varpart returns an object of class "varpart" with items scale and transfo (can be
missing) which hold information on standardizations, tables which contains names of explanatory
tables, and call with the function call. The function varpart calls function varpart2, varpart3
or varpart4 which return an object of class "varpart234" and saves its result in the item part.
The items in this object are:

SS.Y Sum of squares of matrix Y.

n Number of observations (rows).

nsets Number of explanatory tables

bigwarning Warnings on collinearity.

fract Basic fractions from all estimated constrained models.

indfract Individual fractions or all possible subsections in the Venn diagram (see showvarparts).

contr1 Fractions that can be found after conditioning on single explanatory table in
models with three or four explanatory tables.

contr2 Fractions that can be found after conditioning on two explanatory tables in mod-
els with four explanatory tables.

Fraction Data Frames

Items fract, indfract, contr1 and contr2 are all data frames with items:

• DfDegrees of freedom of numerator of the F -statistic for the fraction.

• R.squareRaw R-squared. This is calculated only for fract and this is NA in other items.

• Adj.R.squareAdjusted R-squared.

• TestableIf the fraction can be expressed as a (partial) RDA model, it is directly Testable, and
this field is TRUE. In that case the fraction label also gives the specification of the testable RDA
model.
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Note

You can use command vegandocs to display document "partitioning.pdf" which presents Venn
diagrams showing the fraction names in partitioning the variation of Y with respect to 2, 3, and 4
tables of explanatory variables, as well as the equations used in variation partitioning.

The functions frequently give negative estimates of variation. Adjusted R-squares can be negative
for any fraction; unadjusted R squares of testable fractions always will be non-negative. Non-
testable fractions cannot be found directly, but by subtracting different models, and these subtraction
results can be negative. The fractions are orthogonal, or linearly independent, but more complicated
or nonlinear dependencies can cause negative non-testable fractions.

The current function will only use RDA in multivariate partitioning. It is much more complicated
to estimate the adjusted R-squares for CCA, and unbiased analysis of CCA is not currently imple-
mented.

Author(s)

Pierre Legendre, Departement de Sciences Biologiques, Universite de Montreal, Canada. Adapted
to vegan by Jari Oksanen.

References

(a) References on variation partitioning

Borcard, D., P. Legendre & P. Drapeau. 1992. Partialling out the spatial component of ecological
variation. Ecology 73: 1045–1055.

Legendre, P. & L. Legendre. 2012. Numerical ecology, 3rd English edition. Elsevier Science BV,
Amsterdam.

(b) Reference on transformations for species data

Legendre, P. and E. D. Gallagher. 2001. Ecologically meaningful transformations for ordination of
species data. Oecologia 129: 271–280.

(c) Reference on adjustment of the bimultivariate redundancy statistic

Peres-Neto, P., P. Legendre, S. Dray and D. Borcard. 2006. Variation partitioning of species data
matrices: estimation and comparison of fractions. Ecology 87: 2614–2625.

See Also

For analysing testable fractions, see rda and anova.cca. For data transformation, see decostand.
Function inertcomp gives (unadjusted) components of variation for each species or site separately.

Examples

data(mite)
data(mite.env)
data(mite.pcnm)

## See detailed documentation:
## Not run:
vegandocs("partition")



236 vegan-deprecated

## End(Not run)

# Two explanatory matrices -- Hellinger-transform Y
# Formula shortcut "~ ." means: use all variables in ’data’.
mod <- varpart(mite, ~ ., mite.pcnm, data=mite.env, transfo="hel")
mod

## argument ’bg’ is passed to circle drawing, and the following
## defines semitransparent colours
col2 <- rgb(c(1,1),c(1,0), c(0,1), 0.3)
showvarparts(2, bg = col2)
plot(mod, bg = col2)
# Alternative way of to conduct this partitioning
# Change the data frame with factors into numeric model matrix
mm <- model.matrix(~ SubsDens + WatrCont + Substrate + Shrub + Topo, mite.env)[,-1]
mod <- varpart(decostand(mite, "hel"), mm, mite.pcnm)
# Test fraction [a] using partial RDA:
aFrac <- rda(decostand(mite, "hel"), mm, mite.pcnm)
anova(aFrac, step=200, perm.max=200)
# RsquareAdj gives the same result as component [a] of varpart
RsquareAdj(aFrac)

# Three explanatory matrices
mod <- varpart(mite, ~ SubsDens + WatrCont, ~ Substrate + Shrub + Topo,

mite.pcnm, data=mite.env, transfo="hel")
mod
showvarparts(3)
plot(mod)
# An alternative formulation of the previous model using
# matrices mm1 amd mm2 and Hellinger transformed species data
mm1 <- model.matrix(~ SubsDens + WatrCont, mite.env)[,-1]
mm2 <- model.matrix(~ Substrate + Shrub + Topo, mite.env)[, -1]
mite.hel <- decostand(mite, "hel")
mod <- varpart(mite.hel, mm1, mm2, mite.pcnm)
# Use RDA to test fraction [a]
# Matrix can be an argument in formula
rda.result <- rda(mite.hel ~ mm1 + Condition(mm2) +

Condition(as.matrix(mite.pcnm)))
anova(rda.result, step=200, perm.max=200)

# Four explanatory tables
mod <- varpart(mite, ~ SubsDens + WatrCont, ~Substrate + Shrub + Topo,

mite.pcnm[,1:11], mite.pcnm[,12:22], data=mite.env, transfo="hel")
mod
plot(mod)
# Show values for all partitions by putting ’cutoff’ low enough:
plot(mod, cutoff = -Inf, cex = 0.7)

vegan-deprecated Deprecated Functions in vegan package
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Description

These functions are provided for compatibility with older versions of vegan only, and may be
defunct as soon as the next release.

Usage

metaMDSrotate(object, vec, na.rm = FALSE, ...)

Arguments

object A result object from metaMDS.

vec A continuous site variable (vector).

na.rm Remove missing values from continuous variable vec.

... Other parameters passed to functions.

Details

Function metaMDSrotate is replaced with MDSrotate which can handle monoMDS results in addition
to metaMDS.

See Also

Deprecated

vegandocs Display Package Documentation

Description

Display NEWS, vignettes, other special documents or ChangeLog in vegan, or vignettes in per-
mute.

Usage

vegandocs(doc = c("NEWS", "ONEWS", "ChangeLog", "FAQ-vegan.pdf",
"intro-vegan.pdf", "diversity-vegan.pdf", "decision-vegan.pdf",
"partitioning.pdf", "permutations.pdf"))

Arguments

doc The name of the document (partial match, case sensitive).
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Details

You can read the following documents with this function:

• NEWS: most important new functions, features, fixes etc. from the user’s point of view. These
can be also read using R command news as news(package = "vegan").

• ONEWS: old news about vegan version 1.* before September 2011.

• ChangeLog: similar to news, but intended for developers wit more fine grained comments on
internal changes.

• FAQ-vegan: Frequently Asked Questions. Consult here before writing to Mail groups.

• intro-vegan: a vignette demonstrating a simple, standard ordination analysis. This can be
also read using vignette("intro-vegan", package="vegan").

• diversity-vegan: a vignette describing (most) diversity analyses in vegan. This can be
also read using vignette("diversity-vegan", package="vegan").

• decision-vegan: a vignette discussing design decisions in vegan. Currently this discusses
implementing nestedness temperature (nestedtemp), backtracking algorithm in community
null models (commsimulator), scaling of RDA results, and why WA scores are used as default
instead of LC scores in constrained ordination.

• partitioning: Detailed description of variation partitioning schemes used in varpart.

• permutations: a vignette in the permute package giving an introduction to restricted per-
mutation schemes. You can also read this using vignette("permutations", package="permute").

Note

Function vignette only works with vignettes processed by R, but the current function also shows
other pdf documents. You can extract R code from vignettes, but not from other documents (see
Examples).

The permutations.pdf document is in the permute package.

Author(s)

Jari Oksanen

See Also

vignette, news.

Examples

## Not run:
## Read NEWS
vegandocs()
## Alternatively (perhaps with different formatting)
news(package="vegan")
## Read a vignette
vegandocs("intro")
## with vignette()
vignette("intro-vegan", package="vegan")
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## extract R code
vig <- vignette("intro-vegan", package="vegan")
edit(vig)
##

## End(Not run)

vegdist Dissimilarity Indices for Community Ecologists

Description

The function computes dissimilarity indices that are useful for or popular with community ecolo-
gists. All indices use quantitative data, although they would be named by the corresponding binary
index, but you can calculate the binary index using an appropriate argument. If you do not find
your favourite index here, you can see if it can be implemented using designdist. Gower, Bray–
Curtis, Jaccard and Kulczynski indices are good in detecting underlying ecological gradients (Faith
et al. 1987). Morisita, Horn–Morisita, Binomial, Cao and Chao indices should be able to handle
different sample sizes (Wolda 1981, Krebs 1999, Anderson & Millar 2004), and Mountford (1962)
and Raup-Crick indices for presence–absence data should be able to handle unknown (and variable)
sample sizes.

Usage

vegdist(x, method="bray", binary=FALSE, diag=FALSE, upper=FALSE,
na.rm = FALSE, ...)

Arguments

x Community data matrix.

method Dissimilarity index, partial match to "manhattan", "euclidean", "canberra",
"bray", "kulczynski", "jaccard", "gower", "altGower", "morisita", "horn",
"mountford", "raup" , "binomial", "chao" or "cao".

binary Perform presence/absence standardization before analysis using decostand.

diag Compute diagonals.

upper Return only the upper diagonal.

na.rm Pairwise deletion of missing observations when computing dissimilarities.

... Other parameters. These are ignored, except in method ="gower" which ac-
cepts range.global parameter of decostand. .

Details

Jaccard ("jaccard"), Mountford ("mountford"), Raup–Crick ("raup"), Binomial and Chao in-
dices are discussed later in this section. The function also finds indices for presence/ absence data
by setting binary = TRUE. The following overview gives first the quantitative version, where xij
xik refer to the quantity on species (column) i and sites (rows) j and k. In binary versions A and
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B are the numbers of species on compared sites, and J is the number of species that occur on both
compared sites similarly as in designdist (many indices produce identical binary versions):
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euclidean djk =
√∑

i(xij − xik)2

binary:
√
A+B − 2J

manhattan djk =
∑
i |xij − xik|

binary: A+B − 2J

gower djk = (1/M)
∑
i
|xij−xik|

max xi−min xi

binary: (A+B − 2J)/M ,
where M is the number of columns (excluding missing values)

altGower djk = (1/NZ)
∑
i |xij − xik|

where NZ is the number of non-zero columns excluding double-zeros (Anderson et al. 2006).
binary: A+B−2J

A+B−J
canberra djk = 1

NZ

∑
i
|xij−xik|
xij+xik

where NZ is the number of non-zero entries.
binary: A+B−2J

A+B−J

bray djk =

∑
i
|xij−xik|∑

i
(xij+xik)

binary: A+B−2J
A+B

kulczynski djk = 1− 0.5(

∑
i
min(xij ,xik)∑

i
xij

+

∑
i
min(xij ,xik)∑

i
xik

)

binary: 1− (J/A+ J/B)/2

morisita djk = 1−
2
∑

i
xijxik

(λj+λk)
∑

i
xij

∑
i
xik

, where

λj =

∑
i
xij(xij−1)∑

i
xij

∑
i
(xij−1)

binary: cannot be calculated
horn Like morisita, but λj =

∑
i x

2
ij/(

∑
i xij)

2

binary: A+B−2J
A+B

binomial djk =
∑
i[xij log(

xij

ni
) + xik log(xik

ni
)− ni log( 1

2 )]/ni,
where ni = xij + xik
binary: log(2)× (A+B − 2J)

cao djk = 1
S

∑
i log

(
ni

2

)
− (xij log(xik) + xik log(xij))/ni,

where S is the number of species in compared sites and ni = xij + xik

Jaccard index is computed as 2B/(1 +B), where B is Bray–Curtis dissimilarity.

Binomial index is derived from Binomial deviance under null hypothesis that the two compared
communities are equal. It should be able to handle variable sample sizes. The index does not have
a fixed upper limit, but can vary among sites with no shared species. For further discussion, see
Anderson & Millar (2004).

Cao index or CYd index (Cao et al. 1997) was suggested as a minimally biased index for high
beta diversity and variable sampling intensity. Cao index does not have a fixed upper limit, but
can vary among sites with no shared species. The index is intended for count (integer) data, and it
is undefined for zero abundances; these are replaced with arbitrary value 0.1 following Cao et al.
(1997). Cao et al. (1997) used log10, but the current function uses natural logarithms so that the
values are approximately 2.30 times higher than with 10-based logarithms. Anderson & Thompson
(2004) give an alternative formulation of Cao index to highlight its relationship with Binomial index
(above).

Mountford index is defined as M = 1/α where α is the parameter of Fisher’s logseries as-
suming that the compared communities are samples from the same community (cf. fisherfit,
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fisher.alpha). The index M is found as the positive root of equation exp(aM) + exp(bM) =
1 + exp[(a + b − j)M ], where j is the number of species occurring in both communities, and a
and b are the number of species in each separate community (so the index uses presence–absence
information). Mountford index is usually misrepresented in the literature: indeed Mountford (1962)
suggested an approximation to be used as starting value in iterations, but the proper index is defined
as the root of the equation above. The function vegdist solves M with the Newton method. Please
note that if either a or b are equal to j, one of the communities could be a subset of other, and the
dissimilarity is 0 meaning that non-identical objects may be regarded as similar and the index is
non-metric. The Mountford index is in the range 0 . . . log(2), but the dissimilarities are divided by
log(2) so that the results will be in the conventional range 0 . . . 1.

Raup–Crick dissimilarity (method = "raup") is a probabilistic index based on presence/absence
data. It is defined as 1 − prob(j), or based on the probability of observing at least j species in
shared in compared communities. The current function uses analytic result from hypergeometric
distribution (phyper) to find the probablities. This probability (and the index) is dependent on the
number of species missing in both sites, and adding all-zero species to the data or removing missing
species from the data will influence the index. The probability (and the index) may be almost zero
or almost one for a wide range of parameter values. The index is nonmetric: two communities
with no shared species may have a dissimilarity slightly below one, and two identical communities
may have dissimilarity slightly above zero. The index uses equal occurrence probabilities for all
species, but Raup and Crick originally suggested that sampling probabilities should be proportional
to species frequencies (Chase et al. 2011). A simulation approach with unequal species sampling
probabilities is implemented in raupcrick function following Chase et al. (2011).

Chao index tries to take into account the number of unseen species pairs, similarly as in method = "chao"
in specpool. Function vegdist implements a Jaccard type index defined as djk = 1−UjUk/(Uj+
Uk−UjUk), where Uj = Cj/Nj + (Nk− 1)/Nk× a1/(2a2)×Sj/Nj , and similarly for Uk. Here
Cj is the total number of individuals in the species of site j that are shared with site k, Nj is the
total number of individuals at site j, a1 (and a2) are the number of species occurring in site j that
have only one (or two) individuals in site k, and Sj is the total number of individuals in the species
present at site j that occur with only one individual in site k (Chao et al. 2005).

Morisita index can be used with genuine count data (integers) only. Its Horn–Morisita variant is
able to handle any abundance data.

Euclidean and Manhattan dissimilarities are not good in gradient separation without proper stan-
dardization but are still included for comparison and special needs.

Bray–Curtis and Jaccard indices are rank-order similar, and some other indices become identical or
rank-order similar after some standardizations, especially with presence/absence transformation of
equalizing site totals with decostand. Jaccard index is metric, and probably should be preferred
instead of the default Bray-Curtis which is semimetric.

The naming conventions vary. The one adopted here is traditional rather than truthful to priority.
The function finds either quantitative or binary variants of the indices under the same name, which
correctly may refer only to one of these alternatives For instance, the Bray index is known also as
Steinhaus, Czekanowski and Sørensen index. The quantitative version of Jaccard should probably
called Ružička index. The abbreviation "horn" for the Horn–Morisita index is misleading, since
there is a separate Horn index. The abbreviation will be changed if that index is implemented in
vegan.
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Value

Should provide a drop-in replacement for dist and return a distance object of the same type.

Note

The function is an alternative to dist adding some ecologically meaningful indices. Both methods
should produce similar types of objects which can be interchanged in any method accepting either.
Manhattan and Euclidean dissimilarities should be identical in both methods. Canberra index is
divided by the number of variables in vegdist, but not in dist. So these differ by a constant
multiplier, and the alternative in vegdist is in range (0,1). Function daisy (package cluster)
provides alternative implementation of Gower index that also can handle mixed data of numeric and
class variables. There are two versions of Gower distance ("gower", "altGower") which differ in
scaling: "gower" divides all distances by the number of observations (rows) and scales each column
to unit range, but "altGower" omits double-zeros and divides by the number of pairs with at least
one above-zero value, and does not scale columns (Anderson et al. 2006). You can use decostand
to add range standardization to "altGower" (see Examples). Gower (1971) suggested omitting
double zeros for presences, but it is often taken as the general feature of the Gower distances. See
Examples for implementing the Anderson et al. (2006) variant of the Gower index.

Most dissimilarity indices in vegdist are designed for community data, and they will give mislead-
ing values if there are negative data entries. The results may also be misleading or NA or NaN if there
are empty sites. In principle, you cannot study species composition without species and you should
remove empty sites from community data.

Author(s)

Jari Oksanen, with contributions from Tyler Smith (Gower index) and Michael Bedward (Raup–
Crick index).

References

Anderson, M.J. and Millar, R.B. (2004). Spatial variation and effects of habitat on temperate reef
fish assemblages in northeastern New Zealand. Journal of Experimental Marine Biology and Ecol-
ogy 305, 191–221.

Anderson, M.J., Ellingsen, K.E. & McArdle, B.H. (2006). Multivariate dispersion as a measure of
beta diversity. Ecology Letters 9, 683–693.

Anderson, M.J & Thompson, A.A. (2004). Multivariate control charts for ecological and environ-
mental monitoring. Ecological Applications 14, 1921–1935.

Cao, Y., Williams, W.P. & Bark, A.W. (1997). Similarity measure bias in river benthic Auswuchs
community analysis. Water Environment Research 69, 95–106.

Chao, A., Chazdon, R. L., Colwell, R. K. and Shen, T. (2005). A new statistical approach for
assessing similarity of species composition with incidence and abundance data. Ecology Letters 8,
148–159.

Chase, J.M., Kraft, N.J.B., Smith, K.G., Vellend, M. and Inouye, B.D. (2011). Using null models to
disentangle variation in community dissimilarity from variation in α-diversity. Ecosphere 2:art24
[doi:10.1890/ES10-00117.1]

Faith, D. P, Minchin, P. R. and Belbin, L. (1987). Compositional dissimilarity as a robust measure
of ecological distance. Vegetatio 69, 57–68.
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Gower, J. C. (1971). A general coefficient of similarity and some of its properties. Biometrics 27,
623–637.

Krebs, C. J. (1999). Ecological Methodology. Addison Wesley Longman.

Mountford, M. D. (1962). An index of similarity and its application to classification problems. In:
P.W.Murphy (ed.), Progress in Soil Zoology, 43–50. Butterworths.

Wolda, H. (1981). Similarity indices, sample size and diversity. Oecologia 50, 296–302.

See Also

Function designdist can be used for defining your own dissimilarity index. Alternative dissim-
ilarity functions include dist in base R, daisy (package cluster), and dsvdis (package labdsv).
Function betadiver provides indices intended for the analysis of beta diversity.

Examples

data(varespec)
vare.dist <- vegdist(varespec)
# Orlóci’s Chord distance: range 0 .. sqrt(2)
vare.dist <- vegdist(decostand(varespec, "norm"), "euclidean")
# Anderson et al. (2006) version of Gower
vare.dist <- vegdist(decostand(varespec, "log"), "altGower")
# Range standardization with "altGower" (that excludes double-zeros)
vare.dist <- vegdist(decostand(varespec, "range"), "altGower")

vegemite Display Compact Ordered Community Tables

Description

Functions vegemite and tabasco display compact community tables. Function vegemite prints
text tables where species are rows, and each site takes only one column without spaces. Function
tabasco provides interface for heatmap for a colour image of the data. The community table can
be ordered by explicit indexing, by environmental variables or results from an ordination or cluster
analysis.

Usage

vegemite(x, use, scale, sp.ind, site.ind, zero=".", select ,...)
tabasco(x, use, sp.ind = NULL, site.ind = NULL, select,

Rowv = TRUE, Colv = TRUE, ...)
coverscale(x, scale=c("Braun.Blanquet", "Domin", "Hult", "Hill", "fix","log"),

maxabund)
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Arguments

x Community data.

use Either a vector, or an object from cca, decorana etc. or hclust or a dendrogram
for ordering sites and species.

sp.ind, site.ind

Species and site indices. In tabasco, these can also be hclust tree, agnes
clusterings or dendrograms.

zero Character used for zeros.

select Select a subset of sites. This can be a logical vector (TRUE for selected sites),
or a vector of indices of selected sites. The order of indices does not influence
results, but you must specify use or site.ind to reorder sites.

Rowv, Colv Re-order dendrograms for the rows (sites) or columns (species) of x. If the
Rowv = TRUE, row dendrograms are ordered by the first axis of correspondence
analysis, and when Colv = TRUE column dendrograms by the weighted average
(wascores) of the row order. Alternatively, the arguments can be vectors that
are used to reorder the dendrogram.

scale Cover scale used (can be abbreviated).

maxabund Maximum abundance used with scale = "log". Data maximum in the selected
subset will be used if this is missing.

... Arguments passed to coverscale (i.e., maxabund) in vegemite and to heatmap
in tabasco.

Details

The function vegemite prints a traditional community table. The display is transposed, so that
species are in rows and sites in columns. The table is printed in compact form: only one character
can be used for abundance, and there are no spaces between columns. Species with no occurrences
are dropped from the table.

Function tabasco produces a similar table as vegemite using heatmap, where abundances are
coded by colours. The function can also display dendrograms for sites (columns) or species if these
are given as an argument (use for sites, sp.ind for species).

The parameter use will be used to re-order output. The use can be a vector or an object from hclust
or agnes, a dendrogram or any ordination result recognized by scores (all ordination methods in
vegan and some of those not in vegan). The hclust, agnes and dendrogram must be for sites. The
dendrogram is displayed above the sites in tabasco, but is not shown in vegemite. No dendrogram
for species is displayed, except when given in sp.ind.

If use is a vector, it is used for ordering sites. If use is an object from ordination, both sites and
species are arranged by the first axis (provided that results are available both also for species).
When use is an object from hclust, agnes or a dendrogram, the sites are ordered similarly as
in the cluster dendrogram. Function tabasco re-orders the dendrogram if Rowv = TRUE or Rowv
is a vector. Such re-ordering is not available for vegemite, but it can be done by hand using
reorder.dendrogram. In all cases where species scores are missing, species are ordered by their
weighted averages (wascores) on site order.
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Species and sites can be ordered explicitly giving their indices or names in parameters sp.ind
and site.ind. If these are given, they take precedence over use. A subset of sites can be dis-
played using argument select, but this cannot be used to order sites, but you still must give use or
site.ind. However, tabasco makes two exceptions: site.ind and select cannot be used when
use is a dendrogram (clustering result). In addition, the sp.ind can be an hclust tree, agnes clus-
tering or a dendrogram, and in that case the dendrogram is plotted on the left side of the heatmap.
Phylogenetic trees cannot be directly used, as.hclust.phylo (package ape) can transform these
to hclust trees.

If scale is given, vegemite calls coverscale to transform percent cover scale or some other
scales into traditional class scales used in vegetation science (coverscale can be called directly,
too). Braun-Blanquet and Domin scales are actually not strict cover scales, and the limits used for
codes r and + are arbitrary. Scale Hill may be inappropriately named, since Mark O. Hill probably
never intended this as a cover scale. However, it is used as default ’cut levels’ in his TWINSPAN,
and surprisingly many users stick to this default, and this is a de facto standard in publications.
All traditional scales assume that values are cover percentages with maximum 100. However, non-
traditional alternative log can be used with any scale range. Its class limits are integer powers of
1/2 of the maximum (argument maxabund), with + used for non-zero entries less than 1/512 of the
maximum (log stands alternatively for logarithmic or logical). Scale fix is intended for ‘fixing’
10-point scales: it truncates scale values to integers, and replaces 10 with X and positive values
below 1 with +.

Value

The functions are used mainly to display a table, but they return (invisibly) a list with items:

species Ordered species indices

sites Ordered site indices

These items can be used as arguments sp.ind and site.ind to reproduce the table. In addition to
the proper table, vegemite prints the numbers of species and sites and the name of the used cover
scale at the end.

Note

The name vegemite was chosen because the output is so compact, and the tabasco because it is
just as compact, but uses heat colours.

Author(s)

Jari Oksanen

References

The cover scales are presented in many textbooks of vegetation science; I used:

Shimwell, D.W. (1971) The Description and Classification of Vegetation. Sidgwick & Jackson.
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See Also

cut and approx for making your own ‘cover scales’ for vegemite. Function tabasco is based on
heatmap which in turn is based on image. Both functions order species with weighted averages
using wascores.

Examples

data(varespec)
## Print only more common species
freq <- apply(varespec > 0, 2, sum)
vegemite(varespec, scale="Hult", sp.ind = freq > 10)
## Order by correspondence analysis, use Hill scaling and layout:
dca <- decorana(varespec)
vegemite(varespec, dca, "Hill", zero="-")
## Show one class from cluster analysis, but retain the ordering above
clus <- hclust(vegdist(varespec))
cl <- cutree(clus, 3)
sel <- vegemite(varespec, use=dca, select = cl == 3, scale="Br")
## Re-create previous
vegemite(varespec, sp=sel$sp, site=sel$site, scale="Hult")
## Re-order clusters by ordination
clus <- as.dendrogram(clus)
clus <- reorder(clus, scores(dca, choices=1, display="sites"), agglo.FUN = mean)
vegemite(varespec, clus, scale = "Hult")

## Abundance values have such a wide range that they must be rescaled
## or all abundances will not be shown in tabasco
tabasco(decostand(varespec, "log"), dca)

## Classification trees for species
data(dune, dune.taxon)
taxontree <- hclust(taxa2dist(dune.taxon))
plotree <- hclust(vegdist(dune), "average")
## Automatic reordering of clusters
tabasco(dune, plotree, sp.ind = taxontree)
## No reordering of taxonomy
tabasco(dune, plotree, sp.ind = taxontree, Colv = FALSE)
## Species cluster: most dissimilarity indices do a bad job when
## comparing rare and common species, but Raup-Crick makes sense
sptree <- hclust(vegdist(t(dune), "raup"), "average")
tabasco(dune, plotree, sptree)

wascores Weighted Averages Scores for Species

Description

Computes Weighted Averages scores of species for ordination configuration or for environmental
variables.
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Usage

wascores(x, w, expand=FALSE)
eigengrad(x, w)

Arguments

x Environmental variables or ordination scores.

w Weights: species abundances.

expand Expand weighted averages so that they have the same weighted variance as the
corresponding environmental variables.

Details

Function wascores computes weighted averages. Weighted averages ‘shrink’: they cannot be
more extreme than values used for calculating the averages. With expand = TRUE, the function
‘dehsrinks’ the weighted averages by making their biased weighted variance equal to the biased
weighted variance of the corresponding environmental variable. Function eigengrad returns the
inverses of squared expansion factors or the attribute shrinkage of the wascores result for each
environmental gradient. This is equal to the constrained eigenvalue of cca when only this one
gradient was used as a constraint, and describes the strength of the gradient.

Value

Function wascores returns a matrix where species define rows and ordination axes or environmental
variables define columns. If expand = TRUE, attribute shrinkage has the inverses of squared ex-
pansion factors or cca eigenvalues for the variable. Function eigengrad returns only the shrinkage
attribute.

Author(s)

Jari Oksanen

See Also

monoMDS, cca.

Examples

data(varespec)
data(varechem)
vare.dist <- vegdist(wisconsin(varespec))
vare.mds <- monoMDS(vare.dist)
vare.points <- postMDS(vare.mds$points, vare.dist)
vare.wa <- wascores(vare.points, varespec)
plot(scores(vare.points), pch="+", asp=1)
text(vare.wa, rownames(vare.wa), cex=0.8, col="blue")
## Omit rare species (frequency <= 4)
freq <- apply(varespec>0, 2, sum)
plot(scores(vare.points), pch="+", asp=1)
text(vare.wa[freq > 4,], rownames(vare.wa)[freq > 4],cex=0.8,col="blue")
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## Works for environmental variables, too.
wascores(varechem, varespec)
## And the strengths of these variables are:
eigengrad(varechem, varespec)

wcmdscale Weighted Classical (Metric) Multidimensional Scaling

Description

Weighted classical multidimensional scaling, also known as weighted principal coordinates analy-
sis.

Usage

wcmdscale(d, k, eig = FALSE, add = FALSE, x.ret = FALSE, w)
## S3 method for class ’wcmdscale’
plot(x, choices = c(1, 2), type = "t", ...)
## S3 method for class ’wcmdscale’
scores(x, choices = NA, ...)

Arguments

d a distance structure such as that returned by dist or a full symmetric matrix
containing the dissimilarities.

k the dimension of the space which the data are to be represented in; must be in
{1, 2, . . . , n− 1}. If missing, all dimensions with above zero eigenvalue.

eig indicates whether eigenvalues should be returned.

add logical indicating if an additive constant c∗ should be computed, and added to
the non-diagonal dissimilarities such that all n−1 eigenvalues are non-negative.
Not implemented.

x.ret indicates whether the doubly centred symmetric distance matrix should be re-
turned.

w Weights of points.

x The wcmdscale result object when the function was called with options eig = TRUE
or x.ret = TRUE (See Details).

choices Axes to be returned; NA returns all real axes.

type Type of graph which may be "t"ext, "p"oints or "n"one.

... Other arguments passed to graphical functions.
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Details

Function wcmdscale is based on function cmdscale (package stats of base R), but it uses point
weights. Points with high weights will have a stronger influence on the result than those with low
weights. Setting equal weights w = 1 will give ordinary multidimensional scaling.

With default options, the function returns only a matrix of scores scaled by eigenvalues for all real
axes. If the function is called with eig = TRUE or x.ret = TRUE, the function returns an object of
class "wcmdscale" with print, plot, scores, eigenvals and stressplot methods, and described
in section Value.

Value

If eig = FALSE and x.ret = FALSE (default), a matrix with k columns whose rows give the coor-
dinates of points corresponding to positive eignenvalues. Otherwise, an object of class wcmdscale
containing the components that are mostly similar as in cmdscale:

points a matrix with k columns whose rows give the coordinates of the points chosen
to represent the dissimilarities.

eig the n− 1 eigenvalues computed during the scaling process if eig is true.

x the doubly centred and weighted distance matrix if x.ret is true.

GOF Goodness of fit statistics for k axes. The first value is based on the sum of
absolute values of all eigenvalues, and the second value is based on the sum of
positive eigenvalues

weights Weights.

negaxes A matrix of scores for axes with negative eigenvalues scaled by the absolute
eigenvalues similarly as points. This is NULL if there are no negative eigenval-
ues or k was specified, and would not include negative eigenvalues.

call Function call.

References

Gower, J. C. (1966) Some distance properties of latent root and vector methods used in multivariate
analysis. Biometrika 53, 325–328.

Mardia, K. V., Kent, J. T. and Bibby, J. M. (1979). Chapter 14 of Multivariate Analysis, London:
Academic Press.

See Also

The function is modelled after cmdscale, but adds weights (hence name) and handles negative
eigenvalues differently. Other multidimensional scaling methods are monoMDS, and isoMDS and
sammon in package MASS.

Examples

## Correspondence analysis as a weighted principal coordinates
## analysis of Euclidean distances of Chi-square transformed data
data(dune)
rs <- rowSums(dune)/sum(dune)
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d <- dist(decostand(dune, "chi"))
ord <- wcmdscale(d, w = rs, eig = TRUE)
## Ordinary CA
ca <- cca(dune)
## Eigevalues are numerically similar
ca$CA$eig - ord$eig
## Configurations are similar when site scores are scaled by
## eigenvalues in CA
procrustes(ord, ca, choices=1:19, scaling = 1)
plot(procrustes(ord, ca, choices=1:2, scaling=1))
## Reconstruction of non-Euclidean distances with negative eigenvalues
d <- vegdist(dune)
ord <- wcmdscale(d, eig = TRUE)
## Only positive eigenvalues:
cor(d, dist(ord$points))
## Correction with negative eigenvalues:
cor(d, sqrt(dist(ord$points)^2 - dist(ord$negaxes)^2))
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ordixyplot, 164
plot.cca, 176
vegemite, 244

∗Topic htest
anosim, 14
anova.cca, 16
clamtest, 53
envfit, 78
mantel, 103
mrpp, 122
procrustes, 184
vegan-package, 4

∗Topic iplot
ordiplot, 145
orditkplot, 159

∗Topic manip
beals, 22
decostand, 61
vegemite, 244

∗Topic methods
betadisper, 24
permutest.betadisper, 174

∗Topic misc
vegan-deprecated, 236

∗Topic models
add1.cca, 5
as.mlm.cca, 19
cca.object, 47
deviance.cca, 67

252
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humpfit, 91
model.matrix.cca, 115
MOStest, 119
nobs.adonis, 134
ordistep, 153
simulate.rda, 208
specaccum, 212
SSarrhenius, 219
vegan-package, 4

∗Topic multivariate
add1.cca, 5
adipart, 7
adonis, 11
anosim, 14
anova.cca, 16
as.mlm.cca, 19
betadisper, 24
betadiver, 28
bgdispersal, 31
bioenv, 32
capscale, 36
cca, 43
cca.object, 47
CCorA, 50
contribdiv, 55
decorana, 57
decostand, 61
designdist, 65
deviance.cca, 67
dispindmorisita, 69
distconnected, 71
eigenvals, 77
envfit, 78
eventstar, 82
goodness.cca, 87
goodness.metaMDS, 90
indpower, 94
isomap, 96
kendall.global, 98
mantel, 103
mantel.correlog, 105
MDSrotate, 108
metaMDS, 109
model.matrix.cca, 115
monoMDS, 116
mrpp, 122
mso, 126
multipart, 128

oecosimu, 135
ordistep, 153
ordisurf, 156
pcnm, 166
permat, 168
permutations, 172
permutest.betadisper, 174
prc, 179
predict.cca, 181
procrustes, 184
rankindex, 193
raupcrick, 195
RsquareAdj, 201
scores, 202
screeplot.cca, 203
simper, 206
simulate.rda, 208
spantree, 210
stepacross, 221
tsallis, 229
varpart, 232
vegan-package, 4
vegdist, 239
wascores, 247
wcmdscale, 249

∗Topic nonlinear
humpfit, 91

∗Topic nonparametric
adonis, 11
anosim, 14
bgdispersal, 31
kendall.global, 98
mrpp, 122
vegan-package, 4

∗Topic optimize
eventstar, 82

∗Topic package
vegan-package, 4

∗Topic print
vegemite, 244

∗Topic regression
humpfit, 91
MOStest, 119
vegan-package, 4

∗Topic smooth
beals, 22
density.adonis, 63

∗Topic spatial
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dispindmorisita, 69
mso, 126
pcnm, 166
vegan-package, 4

∗Topic univar
diversity, 72
fisherfit, 84
nestedtemp, 131
radfit, 189
renyi, 199
RsquareAdj, 201
specaccum, 212
specpool, 216
taxondive, 224
treedive, 227
vegan-package, 4
wascores, 247

∗Topic utilities
eventstar, 82
vegandocs, 237

.Random.seed, 18

abbreviate, 102, 103
add1, 6, 7
add1.cca, 5, 19, 46, 68, 154, 155
add1.default, 6
ade2vegancca (plot.cca), 176
adipart, 7, 56, 57, 64, 130, 137, 171
adonis, 11, 16, 29, 30, 38, 64, 124, 125, 134
agnes, 142, 211, 212, 245, 246
AIC, 67, 68, 93, 191, 192
AIC.radfit (radfit), 189
alias.cca, 48, 50
alias.cca (goodness.cca), 87
alias.lm, 89
amova, 12
anosim, 13, 14, 64, 105, 125, 194
anova, 18
anova.betadisper (betadisper), 24
anova.cca, 6, 7, 16, 38, 39, 46, 64, 68, 152,

154, 181, 235
anova.ccabyaxis (anova.cca), 16
anova.ccabymargin (anova.cca), 16
anova.ccabyterm (anova.cca), 16
anova.ccanull (anova.cca), 16
anova.glm, 120
anova.lm, 27
anova.prc (anova.cca), 16
approx, 214, 247

ar, 171
arima, 171
arrows, 35, 140, 147, 179, 185, 186
as.factor, 25
as.fisher (fisherfit), 84
as.hclust, 228
as.hclust.phylo, 246
as.mcmc.oecosimu (oecosimu), 135
as.mcmc.permat (permat), 168
as.mlm, 50
as.mlm (as.mlm.cca), 19
as.mlm.cca, 19, 46
as.preston (fisherfit), 84
as.rad (radfit), 189
as.ts.oecosimu (oecosimu), 135
as.ts.permat (permat), 168
axis, 177

BCI, 21
BCI.env, 21
beals, 22, 95, 218
betadisper, 13, 24, 29, 30, 134, 174, 175
betadiver, 25–27, 28, 66, 133, 244
bgdispersal, 31
bioenv, 32, 105
biplot, 51
biplot.CCorA (CCorA), 50
biplot.default, 51
biplot.rda, 34, 35, 46
Box.test, 171
boxplot, 15, 26, 27, 215
boxplot.betadisper (betadisper), 24
boxplot.specaccum (specaccum), 212
bstick (screeplot.cca), 203

calibrate (predict.cca), 181
calibrate.cca, 46, 48
calibrate.ordisurf (ordisurf), 156
call, 234
cancor, 178
capabilities, 161
capscale, 6, 7, 16, 17, 19, 20, 36, 46–49, 68,

77–79, 88, 89, 115, 145, 148, 152,
153, 155, 166, 176, 179, 182–184,
208

cascadeKM, 40, 100
cca, 6, 7, 16, 17, 19, 20, 36–39, 43, 46, 47, 49,

50, 60, 67, 68, 77–81, 88, 89, 115,
126, 128, 134, 142, 145, 146, 148,
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152–155, 157, 158, 166, 167, 176,
178, 179, 182–184, 201, 205, 206,
208, 248

cca.object, 20, 39, 45, 46, 47, 78, 126, 128,
180

CCorA, 50, 134
chisq.test, 136
chull, 142, 143
cIndexKM (cascadeKM), 40
clamtest, 53
cloud, 164, 165
clustIndex, 40–42
cmdscale, 37–39, 62, 96, 97, 112, 118, 250
coef, 93, 192
coef.cca, 20, 46, 48, 50
coef.cca (predict.cca), 181
coef.radfit (radfit), 189
coef.rda, 48
coef.rda (predict.cca), 181
commsimulator, 133, 169–171, 238
commsimulator (oecosimu), 135
confint.fisherfit (fisherfit), 84
confint.glm, 85, 94, 121
confint.MOStest (MOStest), 119
confint.profile.glm, 93
contour, 157, 158
contr.treatment, 180
contrasts, 12, 44, 180
contribdiv, 55
cooks.distance, 20, 46
cophenetic, 228
cophenetic.spantree, 223
cophenetic.spantree (spantree), 210
cor, 33, 34, 100, 103–106, 194
cor.test, 104, 193, 194
corresp, 44, 60
coverscale (vegemite), 244
cut, 247
cutree, 100

daisy, 193, 228, 243, 244
data.frame, 80, 115
decorana, 44, 57, 79, 80, 88, 89, 134, 142,

146, 148, 157, 158, 177, 182, 184,
205, 206

decostand, 23, 45, 61, 113, 192, 233, 235,
239, 242, 243

dendrogram, 245, 246
density, 64, 87, 137

density.adonis, 13, 63
density.anosim, 15
density.anosim (density.adonis), 63
density.default, 64
density.mantel, 104
density.mantel (density.adonis), 63
density.mrpp, 124
density.mrpp (density.adonis), 63
density.oecosimu (oecosimu), 135
density.permutest.cca, 18
density.permutest.cca (density.adonis),

63
density.protest, 187
density.protest (density.adonis), 63
densityplot, 64, 137
densityplot.adonis (density.adonis), 63
densityplot.oecosimu (oecosimu), 135
Deprecated, 237
designdist, 29, 30, 65, 122, 196, 207, 228,

239, 240, 244
deviance, 68, 93, 192
deviance.cca, 6, 7, 19, 46, 50, 67, 154
deviance.radfit (radfit), 189
deviance.rda, 6
deviance.rda (deviance.cca), 67
dispindmorisita, 69
dist, 15, 16, 25, 33, 34, 36, 37, 39, 66, 71, 72,

105, 109, 122, 195, 210, 212, 222,
224, 225, 228, 243, 244

distconnected, 71, 97, 211, 222, 223
diversity, 57, 72, 87, 200, 218, 226, 230
downweight (decorana), 57
drarefy (diversity), 72
drop.scope, 18
drop1, 6, 7
drop1.cca, 19, 46, 68, 154, 155
drop1.cca (add1.cca), 5
drop1.default, 6
dsvdis, 244
dudi, 77
dune, 75, 76
dune.taxon, 76

eigen, 77, 78
eigengrad (wascores), 247
eigenvals, 77, 250
eigenvals.cca, 46, 50
ellipse.glm, 93
ellipsoidhull, 142
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envfit, 44, 78, 88, 147–149, 158, 159, 164
estaccumR (specpool), 216
estimateR (specpool), 216
eventstar, 82
extractAIC, 68, 93
extractAIC.cca, 7, 154, 155
extractAIC.cca (deviance.cca), 67

factor, 44, 80, 178, 228
factorfit (envfit), 78
family, 92, 93, 120, 190–192
fieller.MOStest (MOStest), 119
fisher.alpha, 85, 87, 242
fisher.alpha (diversity), 72
fisherfit, 73, 84, 94, 192, 241
fitdistr, 86, 87
fitspecaccum, 219, 220
fitspecaccum (specaccum), 212
fitted, 93, 192
fitted.capscale (predict.cca), 181
fitted.cca, 50, 152, 209
fitted.cca (predict.cca), 181
fitted.procrustes (procrustes), 184
fitted.radfit (radfit), 189
fitted.rda, 208, 209
fitted.rda (predict.cca), 181
formula, 33, 36, 44, 47, 79, 80
friedman.test, 100

gam, 156–159
Gamma, 93, 191, 192
gaussian, 191, 201
glm, 93, 119–121, 190, 191, 201
goodness (goodness.cca), 87
goodness.cca, 46, 87, 184
goodness.metaMDS, 90
goodness.monoMDS (goodness.metaMDS), 90

hatvalues, 20
hclust, 100, 123, 142, 211, 212, 228, 245, 246
head.summary.cca (plot.cca), 176
heatmap, 244–247
hiersimu, 64, 130, 171
hiersimu (adipart), 7
humpfit, 91, 121

identify, 146
identify.ordiplot, 26, 35, 144, 148, 149,

178, 186, 191

identify.ordiplot (ordiplot), 145
image, 244, 247
indpower, 23, 94
indval, 95, 100
inertcomp, 46, 235
inertcomp (goodness.cca), 87
influence.measures, 19, 20
inherits, 47
initMDS (metaMDS), 109
intersetcor, 20, 46
intersetcor (goodness.cca), 87
invisible, 74, 141, 142
isomap, 96, 134, 223
isomapdist (isomap), 96
isoMDS, 90, 91, 109–113, 117–119, 203, 250

kendall.global, 98
kendall.post (kendall.global), 98
kmeans, 40–42, 100

labels.envfit (envfit), 78
lag.plot, 171
Lattice, 152, 153, 165, 191, 192
lda, 178
legend, 54, 126, 180
lines, 73, 140–143
lines.humpfit (humpfit), 91
lines.permat (permat), 168
lines.preston (fisherfit), 84
lines.prestonfit (fisherfit), 84
lines.procrustes (procrustes), 184
lines.radfit (radfit), 189
lines.radline (radfit), 189
lines.spantree (spantree), 210
linestack, 101, 180
lm, 19, 20, 46, 50, 166, 201, 209
lm.influence, 46
logLik, 192
logLik, radfit (radfit), 189
lset, 192

Machine, 194
make.cepnames, 102
make.names, 102, 103, 198
make.unique, 102
mantel, 13, 16, 29, 30, 34, 64, 103, 106, 125,

127, 188, 194
mantel.correlog, 105
mantel.partial, 34, 64, 167



INDEX 257

matlines, 215
matplot, 180
mcmc, 137
mcnemar.test, 32
MDSrotate, 108, 112, 113, 237
meandist (mrpp), 122
metaMDS, 34, 37, 38, 44, 60, 90, 91, 98, 108,

109, 118, 119, 134, 237
metaMDSdist, 37
metaMDSdist (metaMDS), 109
metaMDSiter (metaMDS), 109
metaMDSredist, 91
metaMDSredist (metaMDS), 109
metaMDSrotate, 118
metaMDSrotate (vegan-deprecated), 236
mite, 114
model.frame, 116
model.frame.cca, 50
model.frame.cca (model.matrix.cca), 115
model.matrix, 13, 116
model.matrix.cca, 50, 115
monoMDS, 15, 34, 60, 90, 91, 108–113, 116,

188, 194, 237, 248, 250
MOStest, 119
mrpp, 13, 16, 64, 105, 122
mso, 126
msoplot (mso), 126
multipart, 64, 128

na.action, 47–49
na.exclude, 37, 43, 47, 49
na.fail, 37, 43
na.omit, 37, 43, 47, 49
nestedbetajac, 30
nestedbetajac (nestedtemp), 131
nestedbetasor, 30
nestedbetasor (nestedtemp), 131
nestedchecker, 136
nestedchecker (nestedtemp), 131
nesteddisc, 136
nesteddisc (nestedtemp), 131
nestedn0, 136
nestedn0 (nestedtemp), 131
nestedness, 132
nestednodf (nestedtemp), 131
nestedtemp, 131, 136, 138, 238
news, 238
nlm, 73, 74, 85, 86, 93, 191
nls, 213–215, 219, 220

no.shared, 110, 193, 194, 222, 223
no.shared (distconnected), 71
nobs.adonis, 134
nobs.betadisper (nobs.adonis), 134
nobs.cca, 49, 50
nobs.cca (nobs.adonis), 134
nobs.CCorA (nobs.adonis), 134
nobs.decorana (nobs.adonis), 134
nobs.isomap (nobs.adonis), 134
nobs.metaMDS (nobs.adonis), 134
nobs.pcnm (nobs.adonis), 134
nobs.procrustes (nobs.adonis), 134
nobs.rad (nobs.adonis), 134
nobs.varpart (nobs.adonis), 134
nobs.wcmdscale (nobs.adonis), 134

oecosimu, 8–10, 64, 129, 130, 132–134, 135,
171, 195, 196, 228

optim, 151, 152
optimize, 82
ordered, 228
orderingKM (cascadeKM), 40
ordiarrows, 139, 143, 164
ordicloud (ordixyplot), 164
ordicluster, 211
ordicluster (ordihull), 141
ordiellipse (ordihull), 141
ordigrid, 143
ordigrid (ordiarrows), 139
ordihull, 141, 148, 149
ordilabel, 73, 79, 96, 97, 140, 142, 144
ordilattice.getEnvfit (ordixyplot), 164
ordimedian (betadisper), 24
ordiplot, 26, 30, 35, 96, 97, 113, 139, 141,

145, 148, 149, 162, 163, 178, 179,
191, 203

ordiplot3d, 147, 148
ordipointlabel, 150, 161, 162
ordiR2step, 6, 46
ordiR2step (ordistep), 153
ordiresids, 152
ordirgl, 97, 162
ordirgl (ordiplot3d), 147
ordisegments, 143, 148
ordisegments (ordiarrows), 139
ordispider, 88, 148
ordispider (ordihull), 141
ordisplom (ordixyplot), 164
ordistep, 6, 7, 46, 153
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ordisurf, 44, 81, 156
ordiTerminfo, 47
orditkplot, 144, 151, 159
orditorp, 144, 162, 162
ordixyplot, 164, 203
orglpoints (ordiplot3d), 147
orglsegments (ordiplot3d), 147
orglspider (ordiplot3d), 147
orgltext (ordiplot3d), 147

p.adjust, 99, 106
pairs.profile, 93
palette, 64
panel.arrows, 164
panel.cloud, 165
panel.ordi (ordixyplot), 164
panel.ordi3d (ordixyplot), 164
panel.ordiarrows (ordixyplot), 164
panel.splom, 165
panel.xyplot, 164, 165
par, 144, 160, 161, 213
paste, 103
pca, 77
pcaiv, 46
pcnm, 77, 134, 166
pco, 77
pd, 229
permat, 168
permatfull, 138
permatfull (permat), 168
permatswap, 138
permatswap (permat), 168
permControl, 175
permutations, 12, 15, 80, 104, 172
permuted.index, 173, 174, 208
permutest, 174
permutest (anova.cca), 16
permutest.betadisper, 26, 27, 174
permutest.cca, 48, 64
persp, 157, 199, 200, 231
persp.renyiaccum (renyi), 199
persp.tsallisaccum (tsallis), 229
phylosor, 229
phyper, 242
plot, 73, 101, 146
plot.anosim (anosim), 14
plot.betadisper (betadisper), 24
plot.betadiver (betadiver), 28
plot.cascadeKM (cascadeKM), 40

plot.cca, 35, 38, 39, 45, 46, 48, 79, 139, 141,
145, 146, 148, 149, 162, 163, 176

plot.clamtest (clamtest), 53
plot.contribdiv (contribdiv), 55
plot.decorana, 139, 141, 145, 146, 163
plot.decorana (decorana), 57
plot.default, 25, 163, 205
plot.density, 64
plot.envfit (envfit), 78
plot.fisher (fisherfit), 84
plot.fisherfit (fisherfit), 84
plot.fitspecaccum (specaccum), 212
plot.gam, 157, 158
plot.humpfit (humpfit), 91
plot.isomap (isomap), 96
plot.lm, 120, 152, 153
plot.mantel.correlog (mantel.correlog),

105
plot.meandist (mrpp), 122
plot.metaMDS, 163
plot.metaMDS (metaMDS), 109
plot.monoMDS (monoMDS), 116
plot.MOStest (MOStest), 119
plot.nestednodf (nestedtemp), 131
plot.nestedtemp (nestedtemp), 131
plot.ordisurf (ordisurf), 156
plot.orditkplot (orditkplot), 159
plot.permat (permat), 168
plot.poolaccum (specpool), 216
plot.prc (prc), 179
plot.preston (fisherfit), 84
plot.prestonfit (fisherfit), 84
plot.procrustes, 145, 146
plot.procrustes (procrustes), 184
plot.profile, 93
plot.profile.fisherfit (fisherfit), 84
plot.rad, 145
plot.rad (radfit), 189
plot.radfit (radfit), 189
plot.radline (radfit), 189
plot.renyi (renyi), 199
plot.renyiaccum (renyi), 199
plot.spantree (spantree), 210
plot.specaccum (specaccum), 212
plot.taxondive (taxondive), 224
plot.varpart (varpart), 232
plot.varpart234 (varpart), 232
plot.vegandensity (density.adonis), 63
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plot.wcmdscale (wcmdscale), 249
pointLabel, 151, 152
points, 35, 140, 151, 162, 163, 178, 179
points.cca (plot.cca), 176
points.decorana (decorana), 57
points.humpfit (humpfit), 91
points.metaMDS (metaMDS), 109
points.ordiplot, 148, 149
points.ordiplot (ordiplot), 145
points.orditkplot (orditkplot), 159
points.procrustes (procrustes), 184
points.radfit (radfit), 189
points.radline (radfit), 189
polygon, 141–145, 215
poolaccum, 215
poolaccum (specpool), 216
postMDS (metaMDS), 109
prc, 46, 179
prcomp, 77, 78, 203, 205, 206
predict, 192
predict.cca, 46–48, 50, 181, 208
predict.decorana, 60
predict.decorana (predict.cca), 181
predict.fitspecaccum (specaccum), 212
predict.gam, 158
predict.humpfit (humpfit), 91
predict.nls, 214
predict.procrustes (procrustes), 184
predict.radfit (radfit), 189
predict.radline (radfit), 189
predict.rda, 48, 208
predict.rda (predict.cca), 181
predict.specaccum (specaccum), 212
pregraphKM (cascadeKM), 40
prepanel.ordi3d (ordixyplot), 164
prestondistr (fisherfit), 84
prestonfit, 192
prestonfit (fisherfit), 84
princomp, 77, 78, 203, 205, 206
print.anova, 18
print.permat (permat), 168
print.specaccum (specaccum), 212
print.summary.cca (plot.cca), 176
print.summary.decorana (decorana), 57
print.summary.permat (permat), 168
procrustes, 34, 112, 113, 134, 184, 203
profile.fisherfit (fisherfit), 84
profile.glm, 85, 94, 121

profile.humpfit (humpfit), 91
profile.MOStest (MOStest), 119
protest, 34, 64, 105, 194
protest (procrustes), 184
pyrifos, 188

qnorm, 152
qqmath, 152, 153
qqnorm, 192
qqplot, 87, 192
qr, 48
quasipoisson, 191

r2dtable, 137, 138, 169–171
rad.lognormal, 86
rad.lognormal (radfit), 189
rad.null (radfit), 189
rad.preempt (radfit), 189
rad.zipf (radfit), 189
rad.zipfbrot (radfit), 189
radfit, 87, 134, 189, 205
radlattice (radfit), 189
rank, 16, 194
rankindex, 34, 111, 113, 193
rarecurve (diversity), 72
rarefy, 214, 215
rarefy (diversity), 72
raupcrick, 66, 136, 195, 242
rda, 6, 7, 16, 17, 19, 20, 35–39, 47, 49, 67, 68,

77–79, 88, 89, 115, 126, 128, 142,
145, 146, 148, 152–155, 166, 176,
178–184, 201, 208, 233, 235

rda (cca), 43
read.cep, 197
relevel, 180
renyi, 129, 199, 230, 231
renyiaccum, 215, 230, 231
renyiaccum (renyi), 199
reorder.dendrogram, 245
residuals, 192
residuals.cca, 50
residuals.cca (predict.cca), 181
residuals.glm, 93, 192
residuals.procrustes (procrustes), 184
rgl, 147–149, 200
rgl.isomap (isomap), 96
rgl.lines, 148
rgl.points, 148, 149
rgl.renyiaccum, 231
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rgl.renyiaccum (renyi), 199
rgl.texts, 148, 149
rgl.viewpoint, 148, 149
rndtaxa, 138
rnorm, 208
rrarefy, 215
rrarefy (diversity), 72
RsquareAdj, 154, 155, 201
RsquareAdj.cca, 50
RsquareAdj.rda, 46
rug, 101

s.label, 145
sammon, 211, 250
sample, 171, 208
save.image, 149
scale, 33, 34, 49
scatterplot3d, 147–149
scores, 27, 79, 97, 140, 142–148, 156–160,

162–165, 185, 186, 202, 210, 245
scores.betadisper (betadisper), 24
scores.betadiver (betadiver), 28
scores.cca, 46, 48, 50, 89, 185, 186, 202, 203
scores.cca (plot.cca), 176
scores.decorana, 202, 203
scores.decorana (decorana), 57
scores.envfit, 203
scores.envfit (envfit), 78
scores.metaMDS, 202, 203
scores.metaMDS (metaMDS), 109
scores.monoMDS, 203
scores.monoMDS (monoMDS), 116
scores.ordihull (ordihull), 141
scores.ordiplot (ordiplot), 145
scores.orditkplot (orditkplot), 159
scores.pcnm, 203
scores.pcnm (pcnm), 166
scores.rda, 35, 38, 180, 203
scores.rda (plot.cca), 176
scores.wcmdscale (wcmdscale), 249
screeplot, 206
screeplot.cca, 46, 203
screeplot.decorana (screeplot.cca), 203
screeplot.prcomp (screeplot.cca), 203
screeplot.princomp (screeplot.cca), 203
segments, 140, 142, 143, 185, 186, 215
selfStart, 214
Shepard, 90, 91
showvarparts (varpart), 232

shuffle, 208
simper, 206
simpleRDA2 (varpart), 232
simulate, 208, 209
simulate.capscale (simulate.rda), 208
simulate.cca, 46
simulate.cca (simulate.rda), 208
simulate.rda, 208
sipoo, 209
smacofSym, 117–119
spandepth (spantree), 210
spantree, 72, 98, 167, 210
specaccum, 200, 212, 217, 218
specnumber (diversity), 72
specpool, 23, 86, 87, 213, 214, 216, 242
specpool2vect (specpool), 216
spenvcor, 20, 46
spenvcor (goodness.cca), 87
spline, 214
splom, 164, 165
sqrt, 111
SSarrhenius, 214, 219
SSasymp, 214
SSgitay, 214
SSgitay (SSarrhenius), 219
SSgleason, 214
SSgleason (SSarrhenius), 219
SSgompertz, 214, 220
SSlogis, 214, 220
SSlomolino, 214
SSlomolino (SSarrhenius), 219
SSmicmen, 214, 220
SSweibull, 214, 220
step, 6, 7, 46, 67, 68, 153–155
stepacross, 23, 37, 38, 71, 72, 96–98, 110,

111, 113, 193, 194, 211, 221
stressplot, 118, 250
stressplot (goodness.metaMDS), 90
stripchart, 101
strsplit, 103
substring, 103
summary.anosim (anosim), 14
summary.bioenv (bioenv), 32
summary.cca, 45, 46, 48
summary.cca (plot.cca), 176
summary.clamtest (clamtest), 53
summary.decorana (decorana), 57
summary.eigenvals (eigenvals), 77
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summary.glm, 120
summary.humpfit (humpfit), 91
summary.isomap (isomap), 96
summary.meandist (mrpp), 122
summary.mlm, 20
summary.ordiellipse (ordihull), 141
summary.ordihull (ordihull), 141
summary.permat (permat), 168
summary.poolaccum (specpool), 216
summary.prc (prc), 179
summary.procrustes (procrustes), 184
summary.radfit.frame (radfit), 189
summary.simper (simper), 206
summary.specaccum (specaccum), 212
summary.taxondive (taxondive), 224
svd, 44, 77, 78
swan, 223
swan (beals), 22
swap.web, 170, 171
symbols, 81

tabasco (vegemite), 244
tail.summary.cca (plot.cca), 176
taxa2dist (taxondive), 224
taxondive, 76, 224, 229
terms, 13, 47
text, 35, 140, 142, 144, 145, 151, 162, 163,

178, 179
text.cca (plot.cca), 176
text.decorana (decorana), 57
text.metaMDS (metaMDS), 109
text.ordiplot, 148, 149
text.ordiplot (ordiplot), 145
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