
MTB 040 Geometry of Multivariate Data 1

ORIGIN 1

Multivariate Data: Geometric Interpretations

In addition to matrix algebra formulae, operations on multivariate data often have highly useful geometric
interpetations that provide part of the underlying rationale for different methods. A Multivariate data matrix
consisting of cases (typically rows) measured over several variables (columns) may be interpreted as consisting
of a set of vectors usually considered column vectors in matrix algebra. Each vector may alternately or
simultaneously be considered to have two interpretations: directed line segments (i.e., geometric vectors) and/or
points in multidimensional space. If the number of variables is two, the entire multidimensional space
described occurs on a plane with either vectors or points residing on that plane. If there are three variables,
vecors or point lie within 3-D space. Both situations may be graphed normally in 2-D or 3-D respectively.
Typically, however, the number of variables in the dataset are greater than three, and although all matrix
algebra formulae continue to work properly, the vectors or points occur in "hyperspace" and cannot be graphed
directly. Nevertheless, discussion will often center around geometric properties, such as angle, projection, or
distance in this hyperspace as if it were possible to do so. The purpose of this worksheet is to present some
commonly discussed properties with their definition and examples. For more detail, see RA Johnson & DW
Wichern Applied Multivariate Statistical Analysis 4th Edition 1998, or AC. Rencher Methods of Multivariate Analysis
1995.

Read Data: Prototype in R:

M READPRN "c:/DATA/Multivariate/Isetosastand.txt"()

Data represent the standardized values of all 50 objects in
Anderson's Iris dataset for species Iris setosa only.

> #MULTIVARIATE DATA: GEOMETRIC INTERPRETATIONS
> #READ DATA:
> M=read.table("c:/DATA/MulƟvariate/Isetosastand.txt",header=F)

> M
 V1 V2 V3 V4
1 0.26667447 0.18994136 -0.3570112 -0.4364923
2 -0.30071802 -1.12909583 -0.3570112 -0.4364923
3 -0.86811050 -0.60148096 -0.9328358 -0.4364923
4 -1.15180675 -0.86528840 0.2188133 -0.4364923
5 -0.01702177 0.45374879 -0.3570112 -0.4364923
6 1.11776320 1.24517111 1.3704625 1.4613004
7 -1.15180675 -0.07386608 -0.3570112 0.5124040
8 -0.01702177 -0.07386608 0.2188133 -0.4364923
9 -1.71919923 -1.39290327 -0.3570112 -0.4364923
10 -0.30071802 -0.86528840 0.2188133 -1.3853887
11 1.11776320 0.71755623 0.2188133 -0.4364923
12 -0.58441426 -0.07386608 0.7946379 -0.4364923
13 -0.58441426 -1.12909583 -0.3570112 -1.3853887
14 -2.00289548 -1.12909583 -2.0844850 -1.3853887
15 2.25254817 1.50897854 -1.5086604 -0.4364923
16 1.96885193 2.56420830 0.2188133 1.4613004
17 1.11776320 1.24517111 -0.9328358 1.4613004
18 0.26667447 0.18994136 -0.3570112 0.5124040
19 1.96885193 0.98136367 1.3704625 0.5124040
20 0.26667447 0.98136367 0.2188133 0.5124040
21 1.11776320 -0.07386608 1.3704625 -0.4364923
22 0.26667447 0.71755623 0.2188133 1.4613004
...
50 -0.01702177 -0.33767352 -0.3570112 -0.4364923

M

1 2 3 4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

0.267 0.19 -0.357 -0.436

-0.301 -1.129 -0.357 -0.436

-0.868 -0.601 -0.933 -0.436

-1.152 -0.865 0.219 -0.436

-0.017 0.454 -0.357 -0.436

1.118 1.245 1.37 1.461

-1.152 -0.074 -0.357 0.512

-0.017 -0.074 0.219 -0.436

-1.719 -1.393 -0.357 -0.436

-0.301 -0.865 0.219 -1.385

1.118 0.718 0.219 -0.436

-0.584 -0.074 0.795 -0.436

-0.584 -1.129 -0.357 -1.385

-2.003 -1.129 -2.084 -1.385

2.253 1.509 -1.509 -0.436

1.969 2.564 0.219 1.461

1.118 1.245 -0.933 1.461

0.267 0.19 -0.357 0.512



X MT

MTB 040 Geometry of Multivariate Data 2

cos 1cos
projT X 6

 


proj X 6
 




A projection vector (green) by definition occurs at
90 degrees (cos) to the vector projected
onto (red) although it may not appear to be so
since the graph is in 2-D not 4-D!

proj

0.4214033

0.4694368

0.5166724

0.5509188











proj
X 20
 T

X() 6
 



X 6
 T

X 6
 



X 6
 



Projection of X20 onto X6:

Projection of One Vector onto Another:

 3.141593

 31.935
180







 r

-3 -2 -1 0 1 2 3

-3
-2

-1
0

1
2

V1

V
2

> score
[1] 0.4214033 0.4694368 0.5166724 0.5509188

 r 0.557365 rad r acos cos 

cos 0.8486517cos
X() 6
 T

X 20
 



X 6
 

X 20
 




Angle between Vectors:

LX20 1.16LX20 X 20
 T

X 20
 



LX6 2.61LX6 X 6
 T

X 6
 



Vector Length:

X 20
 

0.267

0.981

0.219

0.512











X 6
 

1.118

1.245

1.37

1.461













-3 -2 -1 0 1 2 3

-3
-2

-1
0

1
2

V1

V
2

In 4-D describing all variables:

In 2-D graphing only two variables:

Data as vectors: #PLOT OF VECTORS
plot(V1,V2,asp=1)
segments(0,0,V1,V2)

#TWO SPECIFIC VECTORS:
arrows(0,0,V1[6],V2[6],col='red',lwd=3,code=2,length=0.1)
arrows(0,0,V1[20],V2[20],col='blue',lwd=3,code=2,length=0.1)

MTB 040 Geometry of Multivariate Data 3

^ Linear Tranformation of vectors
 in X into vectors in Z

Z M XT

X=make.grid(20,20)

#LINEAR TRANSFORMATION:
M=matrix(c(1.0,0.3,0.3,1.0),nrow=2,ncol=2,byrow=T)
Z=M%*%t(X)
Z=t(Z)

#PLOT UNTRANSFORMED AND TRANSFORMED POINTS:
plot(Z,type='n',xlab='X',ylab='Y')
points(X,col='blue')
points(Z,col='red',pch=20)

< matrix of the linear transformationM
1

0.3

0.3

1










(function make.grid() defined in R script:)

X READPRN "c:\DATA\Multivariate\grid.txt" 

Linear transformation involve multiplying vectors, columns of matrix X (here visualized as representing points in space)
by some matrix M. Matrix X was made by using function make.grid() in the accompaning R script.

Linear Transformations:

^ squared Mahalanobis distance

X 20
 

X 6
 

 T S 1
 X 20

 
X 6
 

  2.186()

Mahalanobis distance, also called "statistical distance" takes into
account the covariance between variables as indicated in matrix S.
The role of matrix S will be considered further below.

< covariance matrix
S

1

0.743

0.267

0.278

0.743

1

0.178

0.233

0.267

0.178

1

0.332

0.278

0.233

0.332

1













S
1

n 1
MT I

1

n
lvec lvec

T





 M

I identity n()

lvec
i

1

< index variablesj 1 pi 1 n

p cols M() 4()

n rows M() 50()

Squared Mahalanobis distance:

^ squared
 Euclidean distance

X 20
 

X 6
 

 T X 20
 

X 6
 

  3.021()

-3 -2 -1 0 1 2 3

-3
-2

-1
0

1
2

V1

V
2

Squared Euclidean Distance between points:

In 2-D graphing only two variables:

#PLOT OF POINTS:
plot(V1,V2,asp=1)
points(V1[6],V2[6],col='red',pch=20)
points(V1[20],V2[20],col='blue',pch=20)
arrows(V1[20],V2[20],V1[6],V2[6],col='purple',
 lwd=3,code=3,length=0.1)

Data as points in space:

MTB 040 Geometry of Multivariate Data 4

-10 -5 0 5 10

-1
0

-5
0

5
1

0

X

Y

X

1 2

1

2

3

4

5

6

7

8

9

10

11

12

13

-9.5 -8.5

-9.5 -7.5

-9.5 -6.5

-9.5 -5.5

-9.5 -4.5

-9.5 -3.5

-9.5 -2.5

-9.5 -1.5

-9.5 -0.5

-9.5 0.5

-9.5 1.5

-9.5 2.5

-9.5 3.5

 ZT

1 2

1

2

3

4

5

6

7

8

9

10

11

12

13

-12.05 -11.35

-11.75 -10.35

-11.45 -9.35

-11.15 -8.35

-10.85 -7.35

-10.55 -6.35

-10.25 -5.35

-9.95 -4.35

-9.65 -3.35

-9.35 -2.35

-9.05 -1.35

-8.75 -0.35

-8.45 0.65



^ original vectors in X (rows) ^ transformed vectors in Z (rows)

#PLOT TRANSFORMATION VECTORS:
plot(Z,type='n',xlab='X',ylab='Y')
arrows(X[,1],X[,2],Z[,1],Z[,2],col='purple',lwd=1,code=2,length=0.05)

-10 -5 0 5 10

-1
0

-5
0

5
1

0

X

Y

Note how the points in X transformed to Z in the
graph above have been moved by "warping" the
underlying two-dimensional space. In the graph to
the right the same warp is shown as vectors with
the foot of each vector representing a point in X,
and the head a point in Z.

Every unique transformation matrix M specifies a
different warping of the space.

In general, symmetric matrices yield vector fields
with Principal Directions (where orientations of
vectors doesn't change) that are mutually
perpendicular (i.e., dot product is 0). These
transformations are commonly encountered in
multivariate statistics.

From this, it is easy to see that Linear Transformations in two dimension have two Principal Directions in the fabric of the
warp that involve lengthening or shortening vector lengths only - but not changing their directions. In general there are n -
many such Principal Directions in an n-dimensional space.

The Principal Directions are called "Eigenvector" directions (after German eigen = innate, peculiar, own)
The amount of streatch or shrink in the Eigenvector directions are recorded by numbers called "Eigenvalues".

MTB 040 Geometry of Multivariate Data 5

^ matrix E of
ellipse points (red)

The linear transformation converts the circle of points
(blue) into an ellipse of transformed points (red). This is an
equally valid way to view the geometry of the transformation.

DE

1

1

2

3

4

5

6

7

8

9

4.511

4.661

4.81

4.957

5.102

5.243

5.382

5.516

5.646


DE

i
E ET 

i i
< Euclidean distances of transformed
 points to the center

E

1 2

1

2

3

4

5

6

7

8

9

2.018 0.663

2.034 0.724

2.048 0.786

2.059 0.846

2.069 0.905

2.077 0.964

2.083 1.022

2.086 1.079

2.088 1.134

E ET

< matrix E of tranformed points (red)E M CT

< matrix of the linear transformation
 (same as above)

M
1

0.3

0.3

1










Varying Euclidean
distance of ellipse
points to the center:

Linear Transformation of the Circle:

^ squared Euclidean
 distance of each
 point to the center

^ original points of
 the circle (blue)

DC

1

1

2

3

4

5

6

7

8

9

4

4

4

4

4

4

4

4

4

C

1 2

1

2

3

4

5

6

7

8

9

1.999 0.063

1.996 0.126

1.991 0.188

1.984 0.251

1.975 0.313

1.965 0.375

1.952 0.436

1.937 0.497

1.921 0.558



DC
i

C CT 
i i

< squared Euclidean distance
 calculated for each of 200 points

-2 -1 0 1 2

-2
-1

0
1

2

X

Y

i 1 n

n 200n rows C()

C READPRN "c:/DATA/Multivariate/circle.txt"()

Squared Euclidean Distances of Circle:

C=make.circle(200,2)
C

#LINEAR TRANSFORMATION:
E=M%*%t(C)
E=t(E)

#PLOT UNTRANSFORMED AND TRANSFORMED CIRCLE:
plot(E,asp=1,type='n',xlab='X',ylab='Y')
points(0,0,col='black',pch=3)
points(C,col='blue',pch=20)
points(E,col='red',pch=20)

It is also useful to visualize linear transformations as above
in terms of Euclidean and Mahalanobis distances. Here we
look at 200 points on a circle with each point a set distance
(4 units) from then center of the reference system (0,0).
Points of the circle, shown blue in the graph below, were
constructed using function make.grid() in the accompaning
R script.

make.grid() function in R script constructs 200 points
equidistant from the center at (0,0) shown in blue.

Distances to the Center for each point:

MTB 040 Geometry of Multivariate Data 6

DI

1

1

2

3

4

5

6

7

8

9

4

4

4

4

4

4

4

4

4



Using the inverse of transformation
matrix M (M-1) allows one to recover
the original scale of points...

However, the problem is that in real situations involving
elliptically scattered data, we lack prior knowledge of the
original Linear Transformation represented by M and

must use instead covariance matrix S-1

Until some statistician tells me otherwise, it would seem
that recovering the "original scale" of the data is not
possible from the variance/covariance matrix alone.

Such a concept of "original scale" in prior real data
probabally doesn't mean much anyway, and statistically
this limitation is unimportant.

^ Euclidean distances of
 back transformed points

DI
i

CCT CC 
i i

^ back-transformed
 points (same as
 original circle)

^ellipse (red)^ original circle
 (blue)

CCT

1 2

1

2

3

4

5

6

7

8

9

1.999 0.063

1.996 0.126

1.991 0.188

1.984 0.251

1.975 0.313

1.965 0.375

1.952 0.436

1.937 0.497

1.921 0.558

E

1 2

1

2

3

4

5

6

7

8

9

2.018 0.663

2.034 0.724

2.048 0.786

2.059 0.846

2.069 0.905

2.077 0.964

2.083 1.022

2.086 1.079

2.088 1.134

C

1 2

1

2

3

4

5

6

7

8

9

1.999 0.063

1.996 0.126

1.991 0.188

1.984 0.251

1.975 0.313

1.965 0.375

1.952 0.436

1.937 0.497

1.921 0.558



^ transforming points in
the ellipse through the
inverse of linear
tranformation matrix M

CC M
1
ET

Back-transforming the ellipse:

Although scaled differently, the important thing to note is
that squared Mahalanobis distances are identical for all of
the points on the ellipse whereas squared Euclidean
Distances are not.

DE

1

1

2

3

4

5

6

7

8

9

1.99

1.99

1.99

1.99

1.99

1.99

1.99

1.99

1.99



^squared
 Mahalanobis distance

DE
i

E S
1

 ET 
i i

Mahalanobis distances use the inverse of the calculated
covariance matrix (S-1) to "correct" for the ellipse caused
by the linear transformation specified by matrix M. The
result are squared distances from the center for all 200
points that are all the same.

^ covariance matrix calculation using matrix algebra

S
2.191

1.206

1.206

2.191









S
1

n 1
ET I

1

n
lvec lvec

T





 E

I identity n()

lvec
i

1

Squared Mahalanobis distance:

MTB 040 Geometry of Multivariate Data 7

Plotting Mahalanobis corrected data points:

Multiplying each data vector by the
inverse square root matrix of the
covariance matrix X converts data into
the "Mahalanobis corrected" space.

See Multivariate Worksheet MTB 060
for information on matrix square root.

The important thing to note in the graph
below is that the original data (blue)
originally showing covariance between
variables V1 & V2 (as indicated by
elliptical scatter of the points), now have
been corrected (red) into a more cicular
scatter.

(Function matrix.square.root() for square root of a matrix given in R script)

#MAHALANOBIS CORRECTED PLOT:
M=read.table("c:/DATA/MulƟvariate/Isetosastand.txt",header=F)
aƩach(M)
S=cov(M)
S

S.sqr=matrix.square.root(S)
S.sqr

M.mah=solve(S.sqr)%*%t(M)
M.mah=t(M.mah)

#PLOT OF POINTS:
plot(M.mah[,1],M.mah[,2],type='n',asp=1,xlab="V1",ylab="V2")
points(V1,V2,col='blue',pch=20)
points(M.mah[,1],M.mah[,2],col='red',pch=20)

-3 -2 -1 0 1 2 3

-3
-2

-1
0

1
2

V1

V
2

