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ORIGIN 1

Multivariate Data: Geometric Interpretations

In addition to matrix algebra formulae, operations on multivariate data often have highly useful geometric 
interpetations that provide part of the underlying rationale for different methods.  A Multivariate data matrix 
consisting of cases (typically rows) measured over several variables (columns) may be interpreted as consisting 
of a set of vectors usually considered column vectors in matrix algebra. Each vector may alternately or 
simultaneously be considered to have two interpretations: directed line segments (i.e., geometric vectors) and/or 
points in multidimensional space.  If the number of variables is two, the entire multidimensional space 
described occurs on a plane with either vectors or points residing on that plane. If there are three variables, 
vecors or point lie within 3-D space. Both situations may be graphed normally in 2-D or 3-D respectively.  
Typically, however, the number of variables in the dataset are greater than three, and although all matrix 
algebra formulae continue to work properly, the vectors or points occur in "hyperspace" and cannot be graphed 
directly. Nevertheless, discussion will often center around geometric properties, such as angle, projection, or 
distance in this hyperspace as if it were possible to do so. The purpose of this worksheet is to present some 
commonly discussed properties with their definition and examples. For more detail, see RA Johnson & DW 
Wichern Applied Multivariate Statistical Analysis 4th Edition 1998, or AC. Rencher Methods of Multivariate Analysis 
1995.     

Read Data: Prototype in R:

M READPRN "c:/DATA/Multivariate/Isetosastand.txt"( )

Data represent the standardized values of all 50 objects in
Anderson's Iris dataset for species Iris setosa only.

> #MULTIVARIATE DATA: GEOMETRIC INTERPRETATIONS
> #READ DATA:
> M=read.table("c:/DATA/MulƟvariate/Isetosastand.txt",header=F)

> M
            V1          V2         V3         V4
1   0.26667447  0.18994136 -0.3570112 -0.4364923
2  -0.30071802 -1.12909583 -0.3570112 -0.4364923
3  -0.86811050 -0.60148096 -0.9328358 -0.4364923
4  -1.15180675 -0.86528840  0.2188133 -0.4364923
5  -0.01702177  0.45374879 -0.3570112 -0.4364923
6   1.11776320  1.24517111  1.3704625  1.4613004
7  -1.15180675 -0.07386608 -0.3570112  0.5124040
8  -0.01702177 -0.07386608  0.2188133 -0.4364923
9  -1.71919923 -1.39290327 -0.3570112 -0.4364923
10 -0.30071802 -0.86528840  0.2188133 -1.3853887
11  1.11776320  0.71755623  0.2188133 -0.4364923
12 -0.58441426 -0.07386608  0.7946379 -0.4364923
13 -0.58441426 -1.12909583 -0.3570112 -1.3853887
14 -2.00289548 -1.12909583 -2.0844850 -1.3853887
15  2.25254817  1.50897854 -1.5086604 -0.4364923
16  1.96885193  2.56420830  0.2188133  1.4613004
17  1.11776320  1.24517111 -0.9328358  1.4613004
18  0.26667447  0.18994136 -0.3570112  0.5124040
19  1.96885193  0.98136367  1.3704625  0.5124040
20  0.26667447  0.98136367  0.2188133  0.5124040
21  1.11776320 -0.07386608  1.3704625 -0.4364923
22  0.26667447  0.71755623  0.2188133  1.4613004
...
50 -0.01702177 -0.33767352 -0.3570112 -0.4364923
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0.267 0.19 -0.357 -0.436

-0.301 -1.129 -0.357 -0.436

-0.868 -0.601 -0.933 -0.436

-1.152 -0.865 0.219 -0.436

-0.017 0.454 -0.357 -0.436

1.118 1.245 1.37 1.461

-1.152 -0.074 -0.357 0.512

-0.017 -0.074 0.219 -0.436

-1.719 -1.393 -0.357 -0.436

-0.301 -0.865 0.219 -1.385

1.118 0.718 0.219 -0.436

-0.584 -0.074 0.795 -0.436

-0.584 -1.129 -0.357 -1.385

-2.003 -1.129 -2.084 -1.385

2.253 1.509 -1.509 -0.436

1.969 2.564 0.219 1.461

1.118 1.245 -0.933 1.461

0.267 0.19 -0.357 0.512



X MT
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cos 1cos
projT X 6

 


proj X 6
 




A projection vector (green) by definition occurs at 
90 degrees (cos) to the vector projected 
onto (red) although it may not appear to be so 
since the graph is in 2-D not 4-D!

proj

0.4214033
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proj
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 T
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 


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 



Projection of X20 onto X6:

Projection of One Vector onto Another:

 3.141593

 31.935
180


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



 r
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> score
[1] 0.4214033 0.4694368 0.5166724 0.5509188

 r 0.557365 rad r acos cos 

cos 0.8486517cos
X( ) 6
 T

X 20
 



X 6
 

X 20
 




Angle between Vectors:

LX20 1.16LX20 X 20
 T

X 20
 



LX6 2.61LX6 X 6
 T

X 6
 



Vector Length:

X 20
 
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



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In 4-D describing all variables:

In 2-D graphing only two variables:

Data as vectors: #PLOT OF VECTORS
plot(V1,V2,asp=1)
segments(0,0,V1,V2)

#TWO SPECIFIC VECTORS:
arrows(0,0,V1[6],V2[6],col='red',lwd=3,code=2,length=0.1)
arrows(0,0,V1[20],V2[20],col='blue',lwd=3,code=2,length=0.1)
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^ Linear Tranformation of vectors 
    in X into vectors in Z

Z M XT

X=make.grid(20,20)

#LINEAR TRANSFORMATION:
M=matrix(c(1.0,0.3,0.3,1.0),nrow=2,ncol=2,byrow=T)
Z=M%*%t(X)
Z=t(Z)

#PLOT UNTRANSFORMED AND TRANSFORMED POINTS:
plot(Z,type='n',xlab='X',ylab='Y')
points(X,col='blue')
points(Z,col='red',pch=20)

< matrix of the linear transformationM
1

0.3

0.3

1










(function make.grid() defined in R script:)

X READPRN "c:\DATA\Multivariate\grid.txt" 

Linear transformation involve multiplying vectors, columns of matrix X (here visualized as representing points in space) 
by some matrix M.   Matrix X was made by using function make.grid() in the accompaning R script.

Linear Transformations:

^ squared Mahalanobis distance

X 20
 

X 6
 

 T S 1
 X 20

 
X 6
 

  2.186( )

Mahalanobis distance, also called "statistical distance" takes into 
account the covariance between variables as indicated in matrix S.
The role of matrix S will be considered further below.

< covariance matrix
S

1

0.743

0.267

0.278

0.743

1

0.178

0.233

0.267

0.178

1

0.332

0.278

0.233

0.332

1













S
1

n 1
MT I

1

n
lvec lvec

T





 M

I identity n( )

lvec
i

1

< index variablesj 1 pi 1 n

p cols M( ) 4( )

n rows M( ) 50( )

Squared Mahalanobis distance:

^ squared
   Euclidean distance

X 20
 

X 6
 

 T X 20
 

X 6
 

  3.021( )
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Squared Euclidean Distance between points:

In 2-D graphing only two variables:

#PLOT OF POINTS:
plot(V1,V2,asp=1)
points(V1[6],V2[6],col='red',pch=20)
points(V1[20],V2[20],col='blue',pch=20)
arrows(V1[20],V2[20],V1[6],V2[6],col='purple',
    lwd=3,code=3,length=0.1)

Data as points in space:



MTB 040 Geometry of Multivariate Data 4

-10 -5 0 5 10

-1
0

-5
0

5
1

0

X

Y

X

1 2

1

2

3

4

5

6

7

8

9

10

11

12

13

-9.5 -8.5

-9.5 -7.5

-9.5 -6.5

-9.5 -5.5

-9.5 -4.5

-9.5 -3.5

-9.5 -2.5

-9.5 -1.5

-9.5 -0.5

-9.5 0.5

-9.5 1.5

-9.5 2.5

-9.5 3.5

 ZT

1 2

1

2

3

4

5

6

7

8

9

10

11

12

13

-12.05 -11.35

-11.75 -10.35

-11.45 -9.35

-11.15 -8.35

-10.85 -7.35

-10.55 -6.35

-10.25 -5.35

-9.95 -4.35

-9.65 -3.35

-9.35 -2.35

-9.05 -1.35

-8.75 -0.35
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

^ original vectors in X (rows) ^ transformed vectors in Z (rows)

#PLOT TRANSFORMATION VECTORS:
plot(Z,type='n',xlab='X',ylab='Y')
arrows(X[,1],X[,2],Z[,1],Z[,2],col='purple',lwd=1,code=2,length=0.05)
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Note how the points in X transformed to Z in the 
graph above have been moved by "warping" the 
underlying two-dimensional space.  In the graph to 
the right the same warp is shown as vectors with 
the foot of each vector representing a point in X, 
and the head a point in Z.
 
Every unique transformation matrix M specifies a 
different warping of the space.

In general, symmetric matrices yield vector fields 
with Principal Directions (where orientations of 
vectors doesn't change) that are mutually 
perpendicular (i.e., dot product is 0).  These 
transformations are commonly encountered in 
multivariate statistics. 

From this, it is easy to see that Linear Transformations in two dimension have two Principal Directions in the fabric of the 
warp that involve lengthening or shortening vector lengths only - but not changing their directions.  In general there are n - 
many such Principal Directions in an n-dimensional space.

The Principal Directions are called "Eigenvector" directions (after German eigen = innate, peculiar, own) 
The amount of streatch or shrink in the Eigenvector directions are recorded by numbers called "Eigenvalues".
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^ matrix E of 
ellipse points (red)

The linear transformation converts the circle of points 
(blue) into an ellipse of transformed points (red).  This is an 
equally valid way to view the geometry of the transformation. 

DE

1

1

2

3

4

5

6

7

8

9

4.511

4.661

4.81

4.957

5.102

5.243

5.382

5.516

5.646


DE

i
E ET 

i i
< Euclidean distances of transformed
    points to the center

E

1 2

1

2

3

4

5

6

7

8

9

2.018 0.663

2.034 0.724

2.048 0.786

2.059 0.846

2.069 0.905

2.077 0.964

2.083 1.022

2.086 1.079

2.088 1.134

E ET

< matrix E of tranformed points (red)E M CT

< matrix of the linear transformation
    (same as above)

M
1

0.3

0.3

1










Varying Euclidean 
distance of ellipse 
points to the center:

Linear Transformation of the Circle:

^ squared Euclidean
   distance of each
   point to the center

^ original points of 
    the circle (blue)
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C
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1
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1.999 0.063

1.996 0.126

1.991 0.188

1.984 0.251

1.975 0.313

1.965 0.375

1.952 0.436

1.937 0.497

1.921 0.558



DC
i

C CT 
i i

< squared Euclidean distance 
   calculated for each of 200 points

-2 -1 0 1 2

-2
-1

0
1

2

X

Y

i 1 n

n 200n rows C( )

C READPRN "c:/DATA/Multivariate/circle.txt"( )

Squared Euclidean Distances of Circle:

C=make.circle(200,2)
C

#LINEAR TRANSFORMATION:
E=M%*%t(C)
E=t(E)

#PLOT UNTRANSFORMED AND TRANSFORMED CIRCLE:
plot(E,asp=1,type='n',xlab='X',ylab='Y')
points(0,0,col='black',pch=3)
points(C,col='blue',pch=20)
points(E,col='red',pch=20)

It is also useful to visualize linear transformations as above 
in terms of Euclidean and Mahalanobis distances.  Here we 
look at 200 points on a circle with each point a set distance 
(4 units) from then center of the reference system (0,0).  
Points of the circle, shown blue in the graph below, were 
constructed using function make.grid() in the accompaning 
R script.

make.grid() function in R script constructs 200 points 
equidistant from the center at (0,0) shown in blue.

Distances to the Center for each point:
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

Using the inverse of transformation 
matrix M (M-1) allows one to recover 
the original scale of points...

However, the problem is that in real situations involving 
elliptically scattered data, we lack prior knowledge of the 
original Linear Transformation represented by M and 

must use instead covariance matrix S-1

Until some statistician tells me otherwise, it would seem 
that recovering the "original scale" of the data is not 
possible from the variance/covariance matrix alone.

Such a concept of "original scale" in prior real data 
probabally doesn't mean much anyway, and statistically 
this limitation is unimportant.

^ Euclidean distances of 
    back transformed points

DI
i

CCT CC 
i i

^ back-transformed
    points (same as
    original circle)

^ellipse (red)^ original circle
    (blue)

CCT

1 2

1

2

3

4

5

6

7

8

9

1.999 0.063

1.996 0.126

1.991 0.188

1.984 0.251

1.975 0.313

1.965 0.375

1.952 0.436

1.937 0.497

1.921 0.558

E

1 2

1

2

3

4

5

6

7

8

9

2.018 0.663

2.034 0.724

2.048 0.786

2.059 0.846

2.069 0.905

2.077 0.964

2.083 1.022

2.086 1.079

2.088 1.134

C

1 2

1

2

3

4

5

6

7

8

9

1.999 0.063

1.996 0.126

1.991 0.188

1.984 0.251

1.975 0.313

1.965 0.375

1.952 0.436

1.937 0.497

1.921 0.558



^ transforming points in 
the ellipse through the 
inverse of linear 
tranformation matrix M

CC M
1
ET

Back-transforming the ellipse:

Although scaled differently, the important thing to note is 
that squared Mahalanobis distances are identical for all of 
the points on the ellipse whereas squared Euclidean 
Distances are not.

DE

1

1

2

3

4

5

6

7

8

9

1.99

1.99

1.99

1.99

1.99

1.99

1.99

1.99

1.99



^squared 
   Mahalanobis distance

DE
i

E S
1

 ET 
i i

Mahalanobis distances use the inverse of the calculated 
covariance matrix (S-1) to "correct" for the ellipse caused 
by the linear transformation specified by matrix M.  The 
result are squared distances from the center for all 200 
points that are all the same. 

^ covariance matrix calculation using matrix algebra

S
2.191

1.206

1.206

2.191









S
1

n 1
ET I

1

n
lvec lvec

T





 E

I identity n( )

lvec
i

1

Squared Mahalanobis distance:
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Plotting Mahalanobis corrected data points:

Multiplying each data vector by the 
inverse square root matrix of the 
covariance matrix X converts data into 
the "Mahalanobis corrected" space. 

See Multivariate Worksheet MTB 060 
for information on matrix square root.

The important thing to note in the graph 
below is that the original data (blue) 
originally showing covariance between 
variables V1 & V2 (as indicated by 
elliptical scatter of the points), now have 
been corrected (red) into a more cicular 
scatter.

( Function matrix.square.root() for square root of a matrix given in R script)

#MAHALANOBIS CORRECTED PLOT:
M=read.table("c:/DATA/MulƟvariate/Isetosastand.txt",header=F)
aƩach(M)
S=cov(M)
S

S.sqr=matrix.square.root(S)
S.sqr

M.mah=solve(S.sqr)%*%t(M)
M.mah=t(M.mah)

#PLOT OF POINTS:
plot(M.mah[,1],M.mah[,2],type='n',asp=1,xlab="V1",ylab="V2")
points(V1,V2,col='blue',pch=20)
points(M.mah[,1],M.mah[,2],col='red',pch=20)
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