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ORIGIN 1

Multivariate Normal Distribution and Confidence Ellipses

Multivariate statistics is largely built upon a straight-forward extension of the Normal Distribution seen in 
Introductory Biostatistics.  The classic formula for the Normal Distribution looks like this:
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where f(x) refers to the probability density function (as accessed by dnorm() in R),  is the parameter for 

population mean, and 
2
 is the population variance.  In this equation, the multiplied term:
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 doing much of the work in shaping the 

the Normal Distribution's familiar "bell curve".  The latter term can be interpreted as a description of squared 
of distance (x -  between some value of x who's probability is being assessed (along the x axis), and  the 
center of the probability density distribution, "standardized" by the distribution's known variance 2.  It 
should be noted that f(x) only depends on this single scalar range variable x, and as such, is "one- 
dimensional".

The Multivariate Normal Distribution now extends this idea of a probability density function into a number p 
of multiple directions x1, x2, ... xp.  To do so, the single mean of the distribution  becomes a vector specifying 
means for each of x1, x2, ... xp, and interpreted as a point in p-dimensional space.  In addition, 2 is replaced by 
covariance matrix .  This square matrix, by definition, contains variance for each of the x1, x2, ... xp variables 
along the main diagonal along with covariances between each pair of x variables interpreted as indicating 
degree of "colinearity" of these variables in p-dimensional space.  As a result of these modifications, the 
probability density function p(x), still a scalar value, now becomes:  
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In this formulation, the exponent part x    1
 x    is squared Mahalanobis distance, the extension of 

the concept of squared standardized distance 
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 seen in the univariate case.  As described in MTB 040, 

the matrix 
1
 can be viewed as "correcting" the multivariate p-dimensional space for all covariances 

between the x variables, yielding a space of statistically equivalent distances.  

In interpreting the multivariate density function, it is important to remember that f(x) is still a scalar value of 
probability that may be assigned to a position in p-dimensional space indicated by column vector x = (x1, x2, 
... xp)T.  If p = 2 dimensions, the familiar "bell curve" is now a peak in the z direction along a plane defined 
by x1 and x2, and any slice in the z direction along a diameter of the peak yields the "bell curve".  For p >2 
the situation becomes harder to visualize, but the geometric concepts and mathematics remain identical. 
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As in univariate statistics, the Multivariate Normal Distribution, designated Np(,), has wonderfully useful 
propterties, and is often invoked as an assumption in multivariate statistical tests.  However, assessing the 
validity of this assumption in real data, is typically much more difficult.  For one thing, a collection of data of 
useful size, typically yields a "sparce" distribution of points in p-dimensional space that is typically hard to 
visualize.  Moreover, covariance (colinearity)  between variables in these p dimensions greatly complicates 
interpretation of this non-orthogonal space itself.  However, in defense of  mutivariate statistics, the wealth 
of information embedded especially in the off diagonal elements in  allows for greatly expanded field of 
inquiry with typically greater precision.     

For extended discussion of properties assignable to the Multivariate Normal Distribution, see RA Johnson & 
DW Wichern (JW) Applied Multivariate Statistical Analysis 4th Edition 1998, and especially AC. Rencher (AR) 
Methods of Multivariate Analysis 1995.  Following both, useful propterties may be summarized as follows:

Linear combinations of variables with Multivariate Normal Distribution are Normally distributed.

All subsets of Multivariate Normally distributed variables are (Multivariate) Normally distributed.  

However, the reverse is not necessarily true: individual or sets of variables may be (Multivariate) Normally 
distributed, but this doesn't ensure that the whole ensemble of variables is Multivariate Normally distributed.

Variables x1, x2, ... xp are independent if their covariances in  are 0.

Conditional distributions of Multivariate Normally distributed variables are (Multivariate) Normally 
distributed.

If data are Multivariate Normally distributed then:

Sample mean vector Xbar is a sufficient statistic for population mean  and is distributed Np(,(1/n)).

Sample covariance matrix S is a sufficient statistic for population covariance   with

(n-1).S is a distributed according to the Wishart random matrix distribution with n-1 degrees of freedom.

Xbar and S are independent. 

Squared Mahalanobis distance DM = x    1
 x    is distributed according to the chi-square (2) 

distribution with p degrees of freedom.

Even if the data is NOT Multivariate Normally distributed, an extension of the Central Limit Theorem 
applies: With large enough sample size, sample statistics Xbar, S and DM still work as reasonable 
approximations.

What follows here is an examination of simulated bivariate data (p=2) to get an sense of what the 
Multivariate Normal Distribution looks like in reality, and the use of confidence ellipses based on the 2 
statistical distribution for DM in characterizing the Multivariate Normal Distribution.

Generating Simulated Data in R:

#MULTIVARIATE NORMAL DISTRIBUTION AND CONFIDENCE ELLIPSE:
# CREATE DATA USING RANDOM NUMBER GENERATOR:
X1=rnorm(1000,0,2)
X2=rnorm(1000,0,1)
X=cbind(X1,X2)
#WRITE DATASET:
write.table(X,file="c:/DATA/MulƟvariate/randombivariate.txt")

< 1000 data points simulated for each of two variables X1 & X2
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^ covariance between X1 & X2 is
    essentially 0.  Variances for X1 & X2
    occur along the main diagonal

^ close to (2,1) as
    originally specified

sd
2.0010215

1.0406923









sd

S
1 1

S
2 2











S
4.0040869

0.0113922

0.0113922

1.0830404









S
1

n 1
M

T
 I

1

n
lvec lvec

T






 M

Covariance Matrix: Standard deviation:
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Mean Vector:
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lvec
i

1

< index variablesj 1 pi 1 n

p cols M( ) 2( )

n rows M( ) 1000( )

M READPRN "c:/DATA/Multivariate/randombivariate.txt"( )

Data is written to disk and read by MathCAd here.
Reading Data:
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plot(X,asp=1,cex=0.5,pch=19,col='blue')

Plotting Data:
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 eigenvals S( )  eigenvecs S( ) < Eigenvalues and Eigenvectors of S

sqrt diag  

Ssqrt  sqrt 
T

 < Square root matrix of S

Major axis of ellipse M: Minor axis of ellipse m:
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 T < points on the confidence ellipse based on S
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Confidence ellipses based on (JW eq. 4-8):
> summary(M)
       X1                 X2          
 Min.   :-9.16418   Min.   :-3.87029  
 1st Qu.:-1.40422   1st Qu.:-0.65055  
 Median : 0.03787   Median : 0.02150  
 Mean   :-0.03276   Mean   : 0.02683  
 3rd Qu.: 1.35983   3rd Qu.: 0.71904  
 Max.   : 6.11437   Max.   : 3.19310  

> sd(M)
      X1       X2 
2.001021 1.040692

Making a set of ellipse points:

 0.05 df 2 < Set  as desired 

< radius of circle
c qchisq 1  df  c 2.448

Constructing the points:

j 1 100  j
j

100
2 

x1
j

c cos  j  x2
j

c sin  j 

x augment x1 x2  < points on a circle of radius c

Constructing Confidence Ellipse:
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Plotting in R:

#CONFIDENCE ELLIPSE:
library(laƫceExtra)
aƩach(M)

xyplot(X2 ~ X1, 
       scales = "free",aspect='iso',
       par.seƫngs = list(plot.symbol = list(col='blue',cex = 0.5, pch=19)),
       panel = funcƟon(x, y, ...) {
           panel.xyplot(x, y, ...)
           panel.ellipse(x,y,lwd = 1,level=0.68,col='green', ...
           panel.ellipse(x,y,lwd = 1,level=0.90,col='brown', ...)
           panel.ellipse(x,y,lwd = 2,level=0.95,col='red', ...)
       },
       auto.key = list(x = .1, y = .8, corner = c(0, 0)))
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^ Although method for calculating Confidence Ellipses is not specified
    here, they appear to match explicit calculation in MathCad above.

Applying correlation structure to the data:

#APPLYING CORRELATION BETWEEN VARIABLES IN 
MATRIX M 
#USING LINEAR TRANSFORMATION:
A=matrix(c(1,1.5,1.5,1),nrow=2,ncol=2,byrow=TRUE)
A

Mnew1=t(A%*%as.matrix(t(M)))

cor(Mnew1)

> A
     [,1] [,2]
[1,]  1.0  1.5
[2,]  1.5  1.0

> cor(Mnew1)
          [,1]      [,2]
[1,] 1.0000000 0.9469233
[2,] 0.9469233 1.0000000
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#USING A DIFFERENT LINEAR TRANSFORMATION:
A=matrix(c(1,‐0.25,‐0.25,1),nrow=2,ncol=2,byrow=TRUE)
A

Mnew2=t(A%*%as.matrix(t(M)))
cor(Mnew2)

#USING A DIFFERENT LINEAR TRANSFORMATION:
A=matrix(c(1,‐0.25,‐0.25,1),nrow=2,ncol=2,byrow=TRUE)
A

Mnew2=t(A%*%as.matrix(t(M)))

cor(Mnew2)

> A
      [,1]  [,2]
[1,]  1.00 -0.25
[2,] -0.25  1.00

> cor(Mnew2)
           [,1]       [,2]
[1,]  1.0000000 -0.5421729
[2,] -0.5421729  1.0000000
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AR presents a useful discussion and a graph concering confidence ellipses calculated in this manner.  Confidence ellipses 
generally do not match univariate confidence intervals (such as for X1 or X2 above) because the multivariate analysis takes in
account covariance in  (or S) whereas univariate intervals act as if the variables are independent.  As a result, there are two 
discordant cases:

The multivariate confidence ellipse will determine that a case is outside the confidence limit set by  whereas one or both 
univariate analysis will consider the same case to be within a confidence intervals.  This results because covariance between th
variables has not been considered in the univariate analyses.

The multivariate confidence ellipse will determine that  a case resides within the confidence ellipse whereas one of both 
univariate analysis will consider the same case to lie outside the confidence interval.  This is an example of "Rao's paradox" 
resulting from the fact that the univariate analyses are run on the same dataset thus have a "family-wise"  that should be 
considered, but is not.


