Full-Sib Analysis involves data derived from "families" of one parent (often the male = "sire" to reduce maternal effects) mated with several partners (often the female = "dam"). The typical objective is to estimate variance components. Example below is derived from Chapter 18 Example 3 from (LW) Michael Lynch \& Bruce Walsh 1998 Genetics and Analysis of Quantitative Traits, Sinauer Associates. The authors show calculations for balanced \& unbalanced designs following from their prior discussion in Chapter 18 of half-sib analysis. Definition and a test for significance of additive genetic variance is provided. At the end of their Example, they show an example calculation of how to estimate variance components including: (1) additive genetic variance, (2) dominance genetic variance, (3) maternal-effects variance \& (4) variance for "unobserved causes (presumably special environmental effects)"

Data Design:

Multiple offspring (full-sibs) are collected as replicates from different females mated to a single male, thus comprising "half-sib" families.

ANOVA Model:

$\mathrm{z}_{\mathrm{ijk}}=\mu+\mathrm{s}_{\mathrm{i}}+\mathrm{d}_{\mathrm{j}(\mathrm{i})}+\mathrm{e}_{\mathrm{ijk}} \quad<$ Nested ANOVA model

\wedge modified slightly from LW to
Assumptions: show nesting similar to terminlolgy in KNNL
$e_{i j} \sim N\left(0, \sigma_{e}{ }^{2}\right) \quad s_{i} \sim N\left(0, \sigma_{s}{ }^{2}\right) \quad d_{j(i)} \sim N\left(0, \sigma_{d}{ }^{2}\right)$
all families have equal variance $=\sigma^{2}$

Factor variances uncorrelated
Example: LW Example 3 p. 578
The example proceeds from results of an ANOVA table, presumably published by the orignal authors (Berenbaum et al. 1986), not from the original data.

Reported Dimensions \& ANOVA table results:

	df	Mean Squares		$\mathrm{N}:=29+1$	$\mathrm{~N}=30$	< number sires = flour beetle families		
Sires	$\mathrm{df}_{\mathrm{S}}:=29$	$\mathrm{MSS}:=5.949$	$\mathrm{k}_{1}:=9.1$		56	$\mathrm{M}=1.8065$		< average number of
:---								
dams within sires								

Calculated Estimates:

Estimated variance components:

$$
\begin{aligned}
& \operatorname{Var}_{\mathrm{S}}:=\frac{\text { MSS }- \text { MSE }-\left(\frac{\mathrm{k}_{2}}{\mathrm{k}_{1}}\right) \cdot(\text { MSD }- \text { MSE })}{\mathrm{k}_{3}} \\
& \operatorname{Var}_{\mathrm{d}}:=\frac{\text { MSD }- \text { MSE }}{\mathrm{k}_{1}} \\
& \operatorname{Var}_{\mathrm{e}}:=\text { MSE } \\
& \operatorname{Var}_{\mathrm{Z}}:=\operatorname{Var}_{\mathrm{S}}+\operatorname{Var}_{\mathrm{d}}+\operatorname{Var}_{\mathrm{e}} \\
& \text { Eq 18.32a-c: } \\
& \operatorname{Var}_{\mathrm{S}}=0.078755 \quad \text { < estimate of } \sigma_{\mathrm{S}}{ }^{2} \\
& \operatorname{Var}_{d}=0.286923 \quad<\text { estimate of } \sigma_{\mathbf{d}}{ }^{2} \\
& \operatorname{Var}_{\mathrm{e}}=1.314 \quad<\text { estimate of } \sigma_{\mathbf{e}}{ }^{2} \\
& \wedge \text { verified LW p. } 578
\end{aligned}
$$

Table 13.3 giving general formulas for unbalanced designs. Note terms $\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}$ and average \mathbf{M}.

Table 18.3 Summary of a nested analysis of variance involving N sires, M_{i} dams within the i th sire, and $n_{i j}$ offspring within the $i j$ th full-sib family.

Factor	df	Sums of Squares	MS	$E(\mathrm{MS})$
Sires	$N-1$	$\sum_{i=1}^{N} \sum_{j=1}^{M_{i}} n_{i j}\left(\bar{z}_{i}-\bar{z}\right)^{2}$	$\mathrm{SS}_{s} / \mathrm{df}_{s}$	$\sigma_{e}^{2}+k_{2} \sigma_{d}^{2}+k_{3} \sigma_{s}^{2}$
Dams (sires)	$N(\bar{M}-1)$	$\sum_{i=1}^{N} \sum_{j=1}^{M_{i}} n_{i j}\left(\bar{z}_{i j}-\bar{z}_{i}\right)^{2}$	$\mathrm{SS}_{d} / \mathrm{df}_{d}$	$\sigma_{e}^{2}+k_{1} \sigma_{d}^{2}$
Sibs (dams)	$T-N \bar{M}$	$\sum_{i=1}^{N} \sum_{j=1}^{M_{i}} \sum_{k=1}^{n_{i j}}\left(z_{i j k}-\bar{z}_{i j}\right)^{2}$	$\mathrm{SS}_{e} / \mathrm{df}_{e}$	σ_{e}^{2}
Total	$T-1$	$\sum_{i=1}^{N} \sum_{j=1}^{M_{i}} \sum_{k=1}^{n_{i j}}\left(z_{i j k}-\bar{z}\right)^{2}$		

$$
\begin{aligned}
& k_{1}=\frac{1}{N(\bar{M}-1)}\left(T-\sum_{i=1}^{N} \frac{\sum_{j}^{M_{i}} n_{i j}^{2}}{n_{i}}\right) \\
& k_{2}=\frac{1}{N-1}\left(\sum_{i=1}^{N} \frac{\sum_{j}^{M_{i}} n_{i j}^{2}}{n_{i}}-\frac{\sum_{i}^{N} \sum_{j}^{M_{i}} n_{i j}^{2}}{T}\right) \\
& k_{3}=\frac{1}{N-1}\left(T-\frac{\sum_{i}^{N} n_{i}^{2}}{N}\right)
\end{aligned}
$$

Note: T is the total number of individuals in the experiment, \bar{M} is the mean number of dams/sire, and n_{i} is the total number of offspring of the i th sire. MS denotes an observed mean square, $E(\mathrm{MS})$ denotes its expected value, and df denotes degrees of freedom.

Intraclass correlations:

$$
\begin{array}{ll}
\mathrm{t}_{\mathrm{PHS}}:=\frac{\mathrm{Var}_{\mathrm{s}}}{\operatorname{Var}_{\mathrm{z}}} & \mathrm{t}_{\mathrm{PHS}}=0.046887 \\
\mathrm{t}_{\mathrm{FS}}:=\frac{\mathrm{Var}_{\mathrm{s}}+\mathrm{Var}_{\mathrm{d}}}{\operatorname{Var}_{\mathrm{z}}} & \mathrm{t}_{\mathrm{FS}}=0.2177
\end{array}
$$

Eq 18.33a-b:
< partial half sibs
<full sibs
\wedge verified LW p. 578

$$
\begin{align*}
& \operatorname{Var}_{\text {MSS }}:=\frac{2 \cdot \text { MSS }^{2}}{\mathrm{df}_{\mathrm{S}}+2} \quad \quad \operatorname{Var}_{\text {MSE }}:=\frac{2 \cdot \text { MSE }^{2}}{\mathrm{df}_{\mathrm{e}}+2} \quad \operatorname{Var}_{\text {MSD }}:=\frac{2 \cdot \text { MSD }^{2}}{\mathrm{df}_{\mathrm{d}}+2} \quad \phi:=\frac{\left(\frac{\mathrm{k}_{2}}{\mathrm{k}_{3}}\right)-1}{\mathrm{k}_{1}} \\
& \operatorname{Var}_{\mathrm{tPHS}}:=\frac{\operatorname{Var}_{\mathrm{MSS}}+\left(\frac{\mathrm{k}_{2}}{\mathrm{k}_{1}{ }^{2}}\right) \cdot \operatorname{Var}_{\mathrm{MSD}}+\left[1-\left(\frac{\mathrm{k}_{2}}{\mathrm{k}_{1}}\right)\right]^{2} \cdot \operatorname{Var}_{\text {MSE }}}{\left(\mathrm{k}_{3} \cdot \operatorname{Var}_{\mathrm{z}}\right)^{2}} \quad \operatorname{Var}_{\mathrm{tPHS}}=0.0013 \\
& \operatorname{Var}_{\mathrm{tFS}}:=\frac{\operatorname{Var}_{\mathrm{MSS}}+\mathrm{k}_{3}{ }^{2} \cdot\left[\phi^{2} \cdot \operatorname{Var}_{\mathrm{MSD}}+(1+\phi)^{2} \cdot \operatorname{Var}_{\mathrm{MSE}}\right]}{\left(\mathrm{k}_{3} \cdot \operatorname{Var}_{\mathrm{z}}\right)^{2}} \\
& \mathrm{Var}_{\mathrm{tFS}}=0.0037
\end{align*}
$$

$$
\begin{aligned}
& \mathrm{SE}_{\mathrm{tPHS}}:=\sqrt{\mathrm{Var}_{\mathrm{tPHS}}} \\
& \mathrm{SE}_{\mathrm{tFS}}:=\sqrt{\mathrm{Var}_{\mathrm{tFS}}}
\end{aligned}
$$

$$
\mathrm{SE}_{\mathrm{tPHS}}=0.0354
$$

Standard Errors:

$$
\mathrm{SE}_{\mathrm{tFS}}=0.0607
$$

< these do NOT match LW p. 578 ^

Note: LW p. 579 mention "more precise" estimates of variance for intraclass correlations based on their Eq 18.37a-b. However, these equations were presented by LW specifically under the context of balanced design leaving open definitions of $\mathbf{n} \& \mathbf{M}$ in their equations for this unbalanced problem. I don't think their discussion in Problem 3 makes much sense here.

Heritibility:

$$
\mathrm{h}:=4 \cdot \text { tPHS } \quad \mathrm{h}=0.1875
$$

\wedge confirmed LW p. 579
Test of $\sigma_{\mathrm{s}}{ }^{2}$:
Works with both balanced or unbalanced data LW p. 567.
Hypotheses:

$$
\begin{array}{ll}
\mathbf{H}_{0}: & \sigma_{\mathrm{s}}^{2}=0 \\
\mathbf{H}_{1}: & \sigma_{\mathrm{S}}^{2}<>0
\end{array}
$$

Test Statistic:

$$
\mathrm{F}:=\frac{\mathrm{k}_{1} \cdot \mathrm{MSS}+\left(\mathrm{k}_{2}-\mathrm{k}_{1}\right) \cdot \mathrm{MSE}}{\mathrm{k}_{2} \cdot \mathrm{MSD}}
$$

$$
\mathrm{F}=1.5157
$$

Critical Value of the Test:

$$
\alpha:=0.05 \quad \text { < Probability of Type I error must be explicitly set }
$$

Satterthwaite numerator degree of freedom (r) - LW Eq 18.35a-c:

Probability:

$$
\mathrm{P}:=1-\mathrm{pF}\left(\mathrm{~F}, \mathrm{r}, \mathrm{df}_{\mathrm{d}}\right) \quad \mathrm{P}=0.0908
$$

Note: LW p. 576 explicitly state: "Recalling that the variance associated with sires is an estimate of $\sigma_{\mathrm{A}} 2 / 4$, the F ratio defined by Eq 18.35 c provides a test for significant additive genetic variance." This is as definite as I can find for the relationship: $4 \sigma_{\mathrm{S}}{ }^{2}=\sigma_{\mathrm{A}}{ }^{2}$. The definition clearly distinguishes both population (i.e., theoretical) variances: $\sigma_{s}{ }^{2}, \sigma_{d}{ }^{2}, \sigma_{\mathrm{e}}^{2} \& \sigma_{\mathrm{z}}^{2}$ from their estimates: Var $_{\mathrm{S}} \&$ Var $_{\mathrm{e}}$ and from associated sample measures: MSS \& MSE. In the context of this study design the estimate of $\sigma_{S}{ }^{2}$, based on observed data, is Var_{S} defined above. By implication, a test of $\sigma_{S}{ }^{2}=0$ is the same as a test of $\sigma_{\mathrm{A}}{ }^{2}=4 \sigma_{\mathrm{S}}{ }^{2}=0$.

$$
\begin{aligned}
& \mathrm{c}_{\mathrm{S}}:=\frac{\mathrm{k}_{1}}{\mathrm{k}_{2}} \quad \mathrm{c}_{\mathrm{e}}:=\frac{\left(\mathrm{k}_{2}-\mathrm{k}_{1}\right)}{\mathrm{k}_{2}} \quad \mathrm{Q}:=\mathrm{c}_{\mathrm{S}} \cdot \mathrm{MSS}+\mathrm{c}_{\mathrm{e}} \cdot \mathrm{MSE} \quad<\mathbf{Q} \text { is a linear combination } \\
& r:=\frac{Q^{2}}{\left(c_{S} \cdot M S\right)^{2}\left(c_{e} \cdot M S\right)^{2}} \quad r=29 \\
& \overline{\frac{\left(c_{S} \cdot M S S\right)^{2}}{N-1}+\frac{\left(c_{e} \cdot M S E\right)^{2}}{T-N \cdot M}} \\
& \mathrm{CV}:=\mathrm{qF}\left(1-\alpha, \mathrm{r}, \mathrm{df}_{\mathrm{d}}\right) \quad \mathrm{df}_{\mathrm{d}}=56 \quad \text { < use of } \mathbf{d f}_{\mathbf{d}} \text { here makes this an } \quad \mathrm{CV}=1.6699 \\
& \text { Decision Rule: } \\
& \text { ANOVA Type II test } \\
& \text { IF F > C, THEN REJECT } \mathbf{H}_{0} \text { OTHERWISE ACCEPT H } \mathbf{0}_{0} \\
& \wedge \mathbf{F}, \mathrm{r}, \boldsymbol{\&} \mathrm{df}_{\mathrm{d}} \\
& \text { confirmed LW p. } 578
\end{aligned}
$$

Test of $\sigma_{d}{ }^{2}$:

Works with both balanced or unbalanced data LW p. 567.
Hypotheses:

$$
\begin{array}{ll}
H_{0}: & \sigma_{d}^{2}=0 \\
H_{1}: & \sigma_{d}^{2}<>0
\end{array}
$$

Test Statistic:

$$
\mathrm{F}:=\frac{\mathrm{MSD}}{\mathrm{MSE}}
$$

$$
\mathrm{F}=2.9871
$$

Critical Value of the Test:
$\alpha:=0.01 \quad$ Probability of Type I error must be explicitly set

$$
\mathrm{CV}:=\mathrm{qF}\left(1-\alpha, \mathrm{df}_{\mathrm{d}}, \mathrm{df}_{\mathrm{e}}\right) \quad \mathrm{df}_{\mathrm{d}}=56 \quad \mathrm{df}_{\mathrm{e}}=695 \quad \mathrm{CV}=1.5228
$$

Decision Rule:

$$
\text { IF F > C, THEN REJECT } \mathbf{H}_{0} \text { OTHERWISE ACCEPT } \mathbf{H}_{0}
$$

Probability:

$$
\mathrm{P}:=1-\mathrm{pF}\left(\mathrm{~F}, \mathrm{r}, \mathrm{df}_{\mathrm{d}}\right)
$$

${ }^{\wedge} \mathrm{F}, \mathrm{df}_{\mathrm{d}}$, \& df e_{e} confirmed p .578
As above, LW's table for CV
seems a little off...
$\mathrm{P}=0.0002$

Final Estimates:

LW p. 579
last paragraph of Example 3 in Chapter 18 seems to do some heavy lifting...

Thus, we see that the heritability estimates based on paternal half sibs and on the paternal-offspring regression are quite consistent, averaging about 0.15 . The fact that maternal half sibs are much more similar than paternal half sibs, and that offspring are much more similar to mothers than to fathers, suggests that maternal effects are a significant source of variation. In the absence of significant epistatic sources of variation, the covariance between maternal half sibs is $\sigma_{A}^{2} / 4+\sigma_{E_{c}}^{2}$. Thus, multiplying the maternal half-sib correlation by four inflates the heritability estimate by $4 \sigma_{E_{c}}^{2} / \sigma_{z}^{2}$. This suggests that the fraction of the phenotypic variance that is due to variation in maternal effects is approximately $(0.41-0.15) / 4=0.06$. Finally, we recall that twice the intraclass correlation between full sibs (0.436) actually estimates $\left[\sigma_{A}^{2}+\left(\sigma_{D}^{2} / 2\right)+2 \sigma_{E_{c}}^{2}\right] / \sigma_{z}^{2}$. Thus, with our previous results, the contribution to the phenotypic variance from dominance can be estimated as $2[0.436-0.15-(2 \times 0.06)] \simeq 0.33$. In summary, assuming that epistasis is of negligible importance, these results suggest that the variance in developmental rate is approximately partitioned as: 15% additive genetic variance, 33% dominance genetic variance, 7% maternal-effects variance, and 45% unobserved causes (presumably special environmental effects).
$\mathrm{h}=0.1875$ < our estimate above
$\mathrm{h}:=0.15$ < LW's "average" estimate for this paragraph.

Ultimate partion of variance seems important. Presumably their description of how to do it has something to do with LW Eq 18.29a-c \& 18.31a-c, but I'll need some genetic advice/translation to de-gookify it.

