#GETTING STARTED WITH R:

The website address for the R Project for Statistical Computing can be found at:
http://www.r-project.org/

Under “Getting Started” go to Download R

Choose a nearby CRAN site

Under “Download & Install R” choose your platform and follow the instructions
For Windows, you want the base package.

FINDING USEFUL INFORMATION:
The R main page above contains much information including the online manual:
An Introduction to R that may prove helpful. Also, check FAQs.

The CRAN sites also have extensive documentation including Task Views for subject
areas, and documentation associated with Packages.

In Contributed, are extensive contributed documentation and tutorials of all kinds.
Personally, | use Google a lot to find documentation to specific things.

RUNNING THE R INTERPRETER:

When the R Interpreter is activated by the host computer, up pops a window called “R
Console”. The console, in terminology derived from ancient days when a computer could
only be addressed by its attached keyboard, is the primary means of interacting with R by
means of a script.

#To see a script in action, cut and paste the following red lines into the console on the final
line where you see the prompt sign ‘>’, and press ‘Enter’ or ‘Return’.

#

Note that every line prefaced by # is written but otherwise ignored by the R
interpreter.

#

#SAMPLE SCRIPT

iris

class(iris)

summary(iris)

#

#As you can see, each line of the script that doesn’t start with # consists of a command
that produces a response from R. Scripts such as this are exceedingly useful for producing
prototypes or statistical results automatically.

#In fact, this whole document is one large script which you can also run if you like!

#When working with R, | typically have a small text editor open and work on the script line
by line cutting and pasting as | go.

#From time to time, and at a end of the session, | save the script as a text file so next time |
work with a statistical procedure | remember what I've done, and repeat all properly
prototyped steps exactly.

#

#In what follows, we will play with commands one line at a time to see what they do.

USEFUL ACTIVITIES FOR SUMMARIZING DATA IN R:

Examples datasets come already installed with R that may be consulted right away.

For instance, the famous iris dataset of Anderson.

Type or cut and paste the following line into the R interpreter and see what happens be
sure to also hit ‘Return’:

iris

Note the structure of this data with rows (each iris flower often called statistical
"objects" “replicates”or "individuals") and columns (variables). One variable includes the
species name for each individual.

This kind of data structure is typical in statistics. In R, the data structure is given a special
name.
H#Try:

class(iris)

the class "data.frame" is R's way of specifying flexible kinds of data including both
numbers and character information (as in the species name in the final column) along with
labels for rows and columns.

Most commands in the R statistical system consist of built-in functions with the typical
structure f(x) including the function name f() and called object (or domain) x. Pushing
Return on the keyboard causes the function to run, usually producing the function’s result
(or range) often including information printed to the console.

For summary information on the iris dataset, try the function:

summary(iris)

#Now, each variable (column) of the iris dataset is summarized with minimum and
maximum values, means and medians, quartiles — all good statistical information. Note
also that the Species column contains counts for each of the three species names in the
iris dataset.

For pairwise plots of all variables, try:

plot(iris)

#Now, you get pairwise plots of all columns. Because unlike MathCad, R is specifically set
up for doing statistical analysis, its functions are typically much more powerful.

#Note that some plots don't make much sense! Why? In all statistical analysis, your job
will be to interpret reports such as this and decide which are meaningful and which are
not.

It is often useful to be able to extract particular pieces of data from larger data tables.
In R, you can extract the columns using the symbol S. Type:

irisSsepal.length

What you get is an error message "NULL" meaning that R reports nothing! It is important
to compare this line with the column variable label "Sepal.Length" reported above. Note
the difference? Now try:

iris$Sepal.Length

The R statistical language requires that you be case specific for all names. It turns out we
were lucky in the first place that "iris" was all in lower case letters. However,
"Sepal.Length" has both upper and lower case letters, and we must type things correctly.
"Sepal.Length" is different from "Sepal.length" and so on. Irritating, perhaps, but not a big

problem now that you have been warned!

To avoid much typing, it is possible to simplify names for different data columns by
“attaching” a datafile to the console’s current ‘environment’. Type:

Sepal.Length

#The interpreter returns the complaint: “Error: object "Sepal.Length"” not found”. But if
you:

attach(iris)
#and then:
Sepal.Length

you can now view each data column by name directly. In R, the opposite of attach() is
detach(). Try this function and see what happens.

PLOTTING WITH R:
Now, let's do something useful with a single column of the iris dataset. After attaching
the iris datafile to the environment, try:

hist(Petal.Length)

A histogram like this is useful for investigating the distribution of the individual
measurements of this variable (called "values" in this "sample" of measurements) in order
to make a guess at the distribution of all possible values (called the "population" of
measurements). This distinction is very important in statistics.

#To make the histogram more useful, you can specify the number of bins using “nclass”
and colors to the bars as follows:

#

hist(Petal.Length,nclass=25,col="gray",border="red")

#

#Now, let's make a scatter plot of two variables. We will place Sepal.Length on the x axis
and Sepal.Width on the y axis:

#

plot(Sepal.Length,Sepal.Width,col="red",pch=21,bg="green")

#

VECTORS, MATRICES AND USING AN INDEX:

Note that in R, as with many statistical programs, a single column of data such as
Sepal.Length is called a "vector". A vector is simply an ordered list of numbers (sometimes
other things) with the order indicated by an "index" indicating placement within the list.

To access individual items within a vector in R, we use []. For instance, try:
Sepal.Length[7]

#What does this number mean? Compare this with the entire data frame, and find the 7th
item in vector Sepal.Length.

An entire list of data numbers, consisting of vectors side by side is called a data "matrix".
The data frame "iris" consists of a data matrix of four variable vectors plus a vector of
species names.

To access any piece of information in a matrix, [] may be used as well. Here, however,
you must specify both row and column indices:

iris[3,4]

Can you find this number in the data matrix?
Now try:

iris[3,5]

Here the R interpreter tells you that the word "setosa" sits in this spot and is one of three
possible alternatives (called "levels") including "setosa", "versicolor" and "virginica". Thisis
the way R describes nominal variables (variables with discrete alternatives that need not

be ordered) that it terms “factors”.

For a little more fun, vectors consisting of multiple values from the data frame can be
extracted by using an index vector we make on the fly, using the c() concatenation
function:

iris[c(3,4,5,6,7),2]

Compare with the entire iris data set to see how this works. As an extension, here's a
powerful (and cool) way to make a vector by specifying start and end points in a series of

indices using ":". Try this and see what it does:
iris[c(1:6),3]
#ASSIGNMENT AND EVALUATION:

One of the powerful features of R, like many programming languages, is the ability to
name new variables and assign them new values. This is done by use of an "assignment"
operator. In R, the assighment operator "<-" or "=" (two different ways to say the same
thing) places values you give it into a variable you name. Let's name a new vector variable
called "NewVar" and assign it the values "1,2,3,4,5,6,7,8,9,10":

NewVar <- ¢(1:10)

#Assuming all went well, the console reports absolutely nothing. This is because the
assignment function lacks output that would print to the console.

#Now, let’s evaluate the variable we have just made:

NewVar

#The evaluation shows that you have placed the values derived from the concatenation
function c()inside NewVar. Now let's make another:

NewVar2 = ¢(5,6,7,8)

and evaluate:

NewVar2

Easy.

BUILT-IN FUNCTIONS:

We can now use "functions" to do many important things. For instance, to calculate the

"mean" (average) of a vector, use the built-in R function "mean()" placing whatever
variable you want within the parentheses:

mean(NewVar)

The median, with "median()":

median(NewVar2)

Can you find the median of Sepal Length in iris?
median(Sepal.Length)

Or, how about the mean of the first 50 rows in of iris for Petal Width?
mean(irisSPetal.Width[1:50])

There are many other useful functions in R, such as:

min(NewVar) # minimum value in vector

max(NewVar2) # maximum value in vector

sum(NewVar) # adding the elements of the vector.
length(NewVar2) # finding how many numbers occur in the vector.

var(Petal.Length[1:50]) # for the variance of Petal Length for iris setosa.

What kind of variance does the function var() in R calculate? It remains for you to
prototype it!
Many more functions may be found by typing:

help.start()

As you have probably noticed, learning about and remembering the syntax of a
programming language such as R is a major challenge and fundamental to using it
effectively. To find more information about any built in function in R, type a "?" followed
by function name, eg:

?var

PARTITIONING DATA:

#It is often very useful to look at some variables according to values exhibited by another.
For instance, looking at the iris dataset:

iris

one can see that data for iris species “setosa” are found in the first 50 lines, data for

“versicolor” in the next 50 lines, and for “virginica” in the last 50 lines. We can calculate
the number of lines, minimum value, maximum value, mean value, standard deviation, and

variance for one variable by applying the above functions. For Sepal.Length in species
“versicolor”, try:

length(Sepal.Length[51:100])
min(Sepal.Length[51:100])

As you can see, this is somewhat tedious, and requires manually checking rows in the iris
dataset to determine which belong to the species “versicolor”.

#Alternatively, one can use “==" (double equal sign indicating logical evaluation rather
than assignment) and allow R to do the counting for you:

max(Sepal.Length[Species=="versicolor"])
mean(Sepal.Length[Species=="versicolor"])
sd(Sepal.Length[Species=="versicolor"])
var(Sepal.Length[Species=="versicolor"])

#An easier way to combine such functions is to use the function called “tapply” creating
variables like this:

xbar=tapply(Sepal.Length,Species,mean)
n=tapply(Sepal.Length,Species,length)
mn=tapply(Sepal.Length,Species,min)
mx=tapply(Sepal.Length,Species,max)
s=tapply(Sepal.Length,Species,sd)
v=tapply(Sepal.Length,Species,var)

and then using the “column combine: function:

cbind("NUMBER"=n,

"MINIMUM"=mn,

"MAXIMUM"=mx,

"MEAN"=xbar,

"STD DEV'"=s,

"VARIANCE"=v) #Note use of multiple lines only to make this more readable! R doesn’t
care as long as you break the line properly such as at a comma.

The result is a tabulation of these variables for each species in turn. Note in the
command above, that words in " " are used to specify labels; the symbol ' 'work also, but
should not be intermixed. Also, it is important to use the generic symbol " obtained from a
simple text editor, and not the similar-looking “or ” obtained from a word processor such
as MS Word.

PLOTTING PARTIONED DATA:
The easiest plot to make for portioned data are default box and whisker plots made using
the generic plot() function when you pass a factor to the function in the first position:

plot(Species,Sepal.Length) # Species is a factor variable in the first position of plot()

Alternativelly, one can call the boxplot() function directly, and if desired, display each box
with a waist (informally indicating 95% confidence intervals). Note the different syntax:

boxplot(Sepal.Length~Species,notch=TRUE)

We can histogram each species separately by making the following Sepal.Length
variables:

SL.setosa=Sepal.Length[Species=="setosa"]
SL.versicolor=Sepal.Length[Species=="versicolor"]
SL.virginica=Sepal.Length[Species=="virginica"]

Then by plotting:

par(mfcol=c(3,1)) # setting par() function for plots in 3 rows and 1 column
hist(SL.setosa,nclass=15,col="red")
hist(SL.versicolor,nclass=15,col="blue")
hist(SL.virginica,nclass=15,col="green") # making the histograms
par(mfcol=c(1,1)) # resetting par() back to a single plot.

The last line is a good idea unless you intend to continue plotting graphs in groups of
three indefinitely. A similar call using “mfrow” allows graphing in rows instead of columns:

par(mfrow=c(1,3))
hist(SL.setosa,nclass=15,col="red")
hist(SL.versicolor,nclass=15,col="blue")
hist(SL.virginica,nclass=15,col="green")
par(mfrow=c(1,1))

To allow comparison between histograms, limits based on maximum and minimum
values (observed on the graphs or calculated above) can be applied to the x and y axes:
par(mfcol=c(3,1))

hist(SL.setosa,nclass=15,col="red",

xlim=c(4,8),ylim=c(0,10))

hist(SL.versicolor,nclass=15,col="blue",

xlim=c(4,8), ylim=c(0,10))

hist(SL.virginica,nclass=15,col="green",

xlim=c(4,8), ylim=c(0,10))

par(mfcol=c(1,1))

Now for making scatter plots with multiple coded points, we make variables by
extracting Sepal.Width for each Species:

SW.setosa=Sepal.Width[Species=="setosa"]
SW.versicolor=Sepal.Width[Species=="versicolor"]
SW.virginica=Sepal.Width[Species=="virginica"]

Now we make a plot using function “plot”. Limits xlim and ylim are specified to allow
plotting of all points in the graph. We then add points for the others using function
“points”:

plot(SL.setosa,SW.setosa,pch=19,col="red",
xlim=c(4,8),ylim=c(2,4.5))

points(SL.versicolor,SW.versicolor,pch="v',col="blue",
xlim=c(4,8),ylim=c(2,4.5))

points(SL.virginica,SW.virginica,pch=22,col="green",
xlim=c(4,8),ylim=c(2,4.5))

Of course, points are color coded using “col” and different symbols are used using “pch”.
To find available options, consult:

?plot
?par
?points
?pch

SAVING PLOTS:

To save your histograms or plots, it is a simple matter of cutting and pasting them into
your favorite word processor such as MS Word. They can then be printed out in the
normal way.

READING AND WRITING DATA:

Writing and Reading data from external files is an important aspect of any statistical
analysis. Simple text files are the most general way to exchange data between formats
and nearly all programs have ability to do this in one way or another. To write the “iris”
data table to a text file, the easiest way is to cut and paste. Open a text file editor, and
then cut and paste normally. Be sure to include the first line containing names of the
variables. Use your text editor to make a simple text file named “iris.txt” and place this
within R’s working directory. You can find out where the working directory is located by
looking under “File/Change dir” on the R console.

After writing the file, let’s see how to read it back into R. For this, we will make a new
variable called “newlris”. Use the function “read.table” and then list the file.

newlris=read.table("iris.txt")
newlris

As you can see, read.table in R has correctly interpreted the “iris.txt” file and read all the
data points into the appropriate columns. From this, you can obtain summary information
like before:

summary(newlris)

To import iris.txt into MS Excel, open Excel and then under “File/Open” choose R’s
working directory, and “All Files” in the “Files of type” box. Open “iris.txt” and follow
Excel’s formatting instructions. Click the “Delimited” radio button with “Start import at
row 1” then, click “Next”. Check the “Space” box and now field delimitation is shown by
vertical lines. The lines should correctly separate each data point within its own field. Now
click “Next”. Now you can change data format or just accept the defaults, click “Finish”. At
this point, everything should look like the original and you can save the file as a normal
Excel worksheet. To reverse the process and import a data file into R from Excel, it’s best
to have Excel write a simple text file. Open your data in Excel, and choose “File/Save As...”
Make a new name for your file such as: “IrisfromExcel” and “Tab delimited Text” in the
“Save as type” box. Excel then complains that changing to text format may loose
formatting information, but say “Yes” anyway. Now exit Excel WITHOUT SAVING (this
preserves your original file in Excel). Now, on the R console, make a new variable and use
function “read.table” again:

Iris2=read.table("IrisFromExcel.txt")
And to verify all went well:

summary(lris2)
Iris2

READING FILES FROM OTHER FOLDERS/DIRECTORIES:

Finding files in other folders/directories on your computer can be easily done

using the embedded browser function file.choose():
Newfile=read.table(file.choose()) # choose a file in the normal way!

Newfile

To reset your working directory, you can use File/Change dir... from the console, or:
setwd("c:/temp") # for directory “work” on the c drive.

To find your current working directory, use:

getwd()

USING & INSTALLING PACKAGES:
#Useful functions abound in R’s extensive and ever-growing system of libraries. In general,
there are two kinds of software “packages”: internal and external.

#You can find internal packages available to you (as part of the base system or already
installed external packages) in the R console using the “Packages” menu item and “load
package”. Up will pop a list and you can choose one. R then responds with a relatively
long statement which is the R program language equivalent to using the menu. Don’t
worry about this. Following this, any function that is part of the package will be available
for use.

To call an internal package from a script, use this function:
library(car) # loading the installed library {car} previously downloaded from CRAN.
?car # for documentation.

#External libraries are handled in a similar way, but they must be downloaded and installed
first. Go to the “Packages” menu item and choose Install package(s). This sends you to the
CRAN mirror list. Choose your favorite site. In a few seconds a Packages list will appear.
Choose one, and it will be downloaded and installed to your internal package library. After
that, you can load the package as described above. You only need to download and install
an external package once.

To install an external package from a script, use:
install.packages("car") # Note quotes here!

#To download, install, and load a package by script:

#first DOWNLOAD AND INSTALL the “psych” external library:
install.packages("psych")

H#THEN DO THE FOLLOWING:

library(psych)

?psych # To find useful commands in the {psych} package
attach(iris)

harmonic.mean(Sepal.Length)

