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ORIGIN 0 GLM Test of Linear Fit W. Stein

The General Linear Models (GLM) Test using comparison between "full" and "reduced" statistical models 
allows one to formally argue whether a linear fit of the data is sufficient to describe the distribution of X,Y 
points in a dataset, or whether a more complex non-linear model (or transformed linear model) is required 
instead.  This example is "creepy" because on first sight the "full" model doesn't look as constrained as the 
"reduced" model.  However, one can tell that the "full" model is in fact  the more constrained by calculating 
the Sum of Squares Error for Full Model SSEF, and seeing that it is less than Sum of Squares Error for 
Reduced model SSER.  One can also compare the total number of parameters estimated for each model.  A Full 
Model always has more than the corresponing Reduced Model.  For the Full Model here, an expected level in 
dependent variable Y for each "bin" of independent variable X involves estimation of a separate parameter 
(mean Ybarj for each bin Xi -  estimating j for each j).  Thus, for the Full Model, a total of max(i)=c 
parameters are estimated.  The Reduced Model, by contrast, is fit using a single regression line, and this 
involves estimation of only 2 parameters (b0 & b1 estimating 0 & 1 respectively).  So, this set up works when 
c > 2.

This example is also instructive in giving us an expanded meaning for the Null Hypothesis H0.  In many GLM 
Full vs Reduced model tests, H0 involves setting one or more parameters of a linear full model to zero.  The 
two models neatly internest with "reduced" models comprising a subset of the "full" model.  However, in this 
case Full versus Reduced Models have different forms.  This points the generality and power of the GLM 
approach.  Worked example drawn from Kuter et al. (KNNL) Applied Linear Statistical Models  5th Edition.

Assumptions:
- Standard Linear Regression depends on specifying in advance which variable is to be  considered 'dependent' 
and which 'independent'.  This decision matters as changing roles for Y & X usually produces a different result.

- Y1, Y2, Y3, ... , Yn (dependent variable) is a random sample ~ N(,2).

- X1, X2, X3, ... , Xn (independent variable) with each value of Xi matched to Yi

Within this setup, two models for the relationship between X and Y variables are explicitly compared: 

Full Model:

Yij = j + ij where:  j are parameter means at specified Bin levels of X.  Bins are indicated by

                  index variable j, with j having c levels with c > 2

            ij are "within" errors compared to each mean j ~N(0,2)

Reduced Model: where: 0 is the y intercept of the regression line (translation),

 1 is the slope of the regression line (scaling coefficient),

 i is the error factor in prediction of Yi and 

             a random variable ~N(0,2).  

Yi = 01Xi + i

Example: Reading Bank Example KNNL Table 3.4:

K READPRN "c:/2008LinearModelsData/Bank.txt"( )

K

0 1

0

1

2

3

4

5

6

7

8

9

10

75 28

75 42

100 112

100 136

125 160

125 150

150 152

175 156

175 124

200 124

200 104

^ The data was first sorted in Excel by ascending 
values of the first column (X)  before importing. 
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   Statistical software typically have
   automated ways to efficiently
   handle the problem of binning.
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Calculating Sum of Squares Error for the Full Model:
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^ summing the square differences between YBj and Ybar

   Note that Mathcad had difficulty and reported a partial sum
   instead.  So I added them together with the extra  here. 
< Results confirmed p. 122.
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Assigning Variables and Calculating Simple Statistics:

X K 0
 



Y K 1
 



n length X( ) n 11 < total observations

Setting up Bins for the Full Model:

c 6 < defined number of bins

j 0 c 1 < range variable j for c bins
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b
1

0.4867 < sample estimate of slope 

b
0

Ybar b
1
Xbar b

0
50.7225 < sample estimate of intercept 0

Point Estimate of mean response (i.e., Regression line):

Yh
i

b
0

b
1
X
i

 < vector of points along the regression line.

Residuals: 

e
i

Yh
i
Y
i

 < vector of deviations of each value Yi from Regression line = Yhi

Calculating Sum of Squares Error for the Reduced Model:

SSER

i

e
i 2 SSER 14741.5707 < Results confirmed p. 123

Hypotheses:
H0: E(Y) = 0 +1X , that is a Linear association between Y & X

H1: E(Y) requires more specification than linear association such as j with j up to c > 2

Note that Null Hypotheses are, in general, a formal statement of parsimony (i.e., "simplicity" of explanation).  
The null hypothesis says that the simpler of two alternatives is to be preferred unless the data require us to 
reject it.  In a one population t-test of mean, for example, we ask whether an observed mean value Xbar is 
statistically indistinguishable from some specified value 0.  We normally interpret the Null Hypothesis H0 to 
say "the differences we observe between Xbar and 0 are the expected result of random behavior".  However, 
random must always be defined in light of some model of what we expect for random, such as ~N(,).  We 
might more accurately claim instead that H0 says "unless compelled to do so, prefer the simpler hypothesis 
about difference between Xbar and 0", namely that there is nothing more to explain about the relationship 
between Xbar and 0than ~N(,) .  The Null Hypothesis for GLM above works exactly this way.

Performing Linear Regression for the Reduced Model:
Initial calculations:

i 0 n 1 < range variable i 

Xbar mean X( ) Xbar 136.3636 Ybar mean Y( ) Ybar 117.0909 < means for X & Y

Lxx

i

X
i
Xbar 2 Lxx 21704.5455 < Corrected Sum of Squares for Xi

Lyy

i

Y
i
Ybar 2 Lyy 19882.9091 < Corrected Sum of Squares for Yi

Lxy

i

X
i
Xbar  Y

i
Ybar  Lxy 10563.6364 < Corrected Sum of Squares for Cross Product

Regression coefficients:

b
1

Lxy

Lxx

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# READ A STRUCTURED DATA TABLE
K=read.table("c:/2008LinearModelsData/bankR.txt")
K
X=K$deposit
Y=K$newacc
B=factor(K$bin)

# FINDING N & C
n=length(X)
n
c=nlevels(B)
c c 6n 11

Prototype in R: K
   deposit newacc bin
1       75     28   1
2       75     42   1
3      100    112   2
4      100    136   2
5      125    160   3
6      125    150   3
7      150    152   4
8      175    156   5
9      175    124   5
10     200    124   6
11     200    104   6

Although this test is formally designed to cover X,Y data with exact replicates in X, KNNL allow that sets 
of nearby X's with approximately similar Y's can be binned also.  Results with these so-called 

pseudoreplicates should then be considered only approximate.  The only problem I can see with 
pseudoreplicate binning is that perhaps one should be careful not to "cherry pick" sets of X's so as to force 
Ybar's into a specific a priori pattern.  Doing so necessarily biases conclusions against parsimony as described 
above, resulting in rejection of H0 perhaps more than one should.  On the other hand, the whole question is 
whether a linear model based on H0 suffices to explain the data.  If H0 suffices despite a concerted attempt 
to bias against it, perhaps one can consider the case well made.   

Note on Bins:

< results confirmed p. 124.P 0.0056P 1 pF F c 2 n c( )

Probability Value:

CV 11.3919F 14.8014

IF F > CV, THEN REJECT H0 OTHERWISE  ACCEPT H0

Decision Rule: ^ CV confirmed p. 124

Degrees of Freedom:
dfF n c dfF 5 < "full" model with c estimated parameters for bin means

dfR n 2 dfR 9 < "reduced" model with 2 parameters for regression coefficents 

GLM Test Statistic:

F

SSER SSEF

dfR dfF

SSEF

dfF

 F 14.8014 < results confirmed p. 124

Critical Value of the Test:
 0.01 < Probability of Type I error must be explicitly set

CV qF 1  c 2 n c  CV 11.3919 < note degrees of freedom here
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# ANOVA OF FITTED MODELS
anova(lm(Y~B)) #FULL MODEL
anova(lm(Y~X)) #REDUCED MODEL

# CALCULATING SUM OF SQUARES ERROR 
# FOR FULL MODEL
MF=summary(lm(Y~B),digits=10)
MSEF=MF$sigma^2
dfF=MF$df[2]
SSEF=dfF*MSEF
SSEF

# CALCULATING SUM OF SQUARES ERROR 
# FOR REDUCED MODEL
MR=summary(lm(Y~X),digits=10)
MSER=MR$sigma^2
dfR=MR$df[2]
SSER=dfR*MSER
SSER

# CALCULATING GLM F STATISTIC
F=((SSER‐SSEF)/(dfR‐dfF))/(SSEF/dfF)
F
# FINDING CRITICAL VALUE
alpha=0.01
CV=qf(1‐alpha,c‐2,n‐c)
CV
# PROBABILITY VALUE
P=1‐pf(F,c‐2,n‐c)
P

# THE EFFICIENT WAY TO DO THIS
# SPECIFY FULL VS REDUCED MODELS:
FM=lm(Y~B)
RM=lm(Y~X)
# CALCULATE ANOVA TABLE OF COMPARISON
anova(RM,FM)

> anova(lm(Y~B)) #FULL MODEL
Analysis of Variance Table

Response: Y
          Df  Sum Sq Mean Sq F value   Pr(>F)   
B          5 18734.9  3747.0  16.320 0.004085 **
Residuals  5  1148.0   229.6                    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 
0.1 ' ' 1 
> anova(lm(Y~X)) #REDUCED MODEL
Analysis of Variance Table

Response: Y
          Df  Sum Sq Mean Sq F value Pr(>F)
X          1  5141.3  5141.3  3.1389 0.1102
Residuals  9 14741.6  1638.0               

> SSEF
[1] 1148

> SSER
[1] 14741.57

> F
[1] 14.80136

> CV
[1] 11.39193

> P
[1] 0.005593812

> anova(RM,FM)
Analysis of Variance Table

Model 1: Y ~ X
Model 2: Y ~ B
  Res.Df   RSS Df Sum of Sq      F   Pr(>F)   
1      9 14742                                
2      5  1148  4     13594 14.801 0.005594 **
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

^ the parsimouious model is rejected...


