$ORIGIN \equiv 0$

Regression Testing & Extra Sums of Squares

In Multiple regression, multiple tests are available to determine the potential value of including particular independent variables in a Linear model fit. Terminology is nicely summarized in Section 7.3 of Kuter et al. (KNNL) Applied Linear Statistical Models 5th Edition. Standard statistical packages present results of these tests directly, but often in a way that requires decipherment. Below is an analysis of the R statistical package. For information on how to fit a multiple regression model, see KNNL Chapter 6 & 2008 Linear Models 07.

Example:

Continuing our example from 2008 Linear Models 07, data comes from R's ISwR package as dataset "cystfibr".

	> cy	/stfib	r								
Prototype in R:		age	sex	height	weight	bmp	fev1	rv	frc	tlc	pemax
	1	7	0	109	13.1	68	32	258	183	137	95
#LOAD PACKAGES	2	7	1	112	12.9	65	19				85
require(ISwR)	3	8	0	124	14.1	64	22		268		100
require(car)	4	8	1	125	16.2	67	41		146		85
#LOAD DATA FROM ISWR	5	8	0	127	21.5	93	52	202			95
data(cystfibr)	6	9	0	130	17.5	68	44		155		80
	7	11	1	139	30.7	89	28		179		65
attach(cystfibr)	8	12	1	150	28.4	69	18		198		110
cystfibr	9	12	0	146	25.1	67	24		194		70
	10	13	1	155	31.5	68	23		225		95
	11	13	0	156	39.9	89		206		95	110
	12	14	1	153	42.1	90		253			90
	13	14	0	160	45.6	93	45		139		100
	14	15	1	158	51.2	93		158		90	80
	15	16	1	160	35.9	66	31		133		134
	16	17	1	153	34.8	70	29		118		134
	17	17	0	174	44.7	70		187			165
	18	17	1	176	60.1	92		188			120
	19 20	17	0	171	42.6	69 72	38		130	103 81	130
	20 21	19 19	1	156 174	37.2 54.6	86	37	216	118	101	85 85
	21	20	0	174	54.6 64.0	86 86	37 34		148		85 160
	22	20	0	1/0	73.8	00 97		171		135 98	165
	23 24	23 23	0	180	/3.8 51.1	97 71	33				165 95
	24 25	23	0	175	71.5	95	52		127		95 195
	20	20	0	1/9	/1.5	90	JZ	223	121	TOT	190

Fitting Full Model:

#FITTING FULL MODEL FM=lm(pemax~age+sex+height+weight +bmp+fev1+rv+frc+tlc) FM

Reporting Coefficients:

> FM Call: lm(formula = pemax ~ age + sex + height + weight + bmp + fev1 + rv + frc + tlc) Coefficients: (Intercept) 176.0582 age sex -2.5420 -3.7368 rv frc 0.1970 -0.3084 height weight bmp -0.4463 2.9928 -1.7449 fev1 tlc 1.0807 0.1886

W. Stein

Overall F test and Partial t/F tests:

#OVERALL F TEST & PARTIAL t/F TESTS summary(FM)

> summary(FM)

```
Call:
lm(formula = pemax ~ age + sex + height + weight + bmp +
fev1 +
    rv + frc + tlc)
Residuals:
             1Q Median 3Q
   Min
                                         Max
-37.338 -11.532 1.081 13.386 33.405
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 176.0582 225.8912 0.779 0.448
age -2.5420
                           4.8017 -0.529 0.604
             -3.7368 15.4598 -0.242 0.812
sex

        sex
        -3.7368
        15.4598
        -0.242
        0.812

        height
        -0.4463
        0.9034
        -0.494
        0.628

        weight
        2.9928
        2.0080
        1.490
        0.157

              -1.7449 1.1552 -1.510 0.152
bmp
                                                            < Partial t tests for each \beta
              1.0807 1.0809 1.000 0.333
fev1
                                                               reported by R
              0.1970 0.1962 1.004 0.331
rv
              -0.3084 0.4924 -0.626
                                              0.540
frc
tlc
              0.1886 0.4997 0.377
                                                0.711
Residual standard error: 25.47 on 15 degrees of freedom
Multiple R-squared: 0.6373, Adjusted R-squared: 0.4197
F-statistic: 2.929 on 9 and 15 DF, p-value: 0.03195
```

^ Overall F test for all β 's $\,$ - See F_T under Type I anova {stats} below

>

Calculation of Partial F-tests from Type II Anova{car}

#Anova{car} SET FOR TYPE II SS #RETURNS REGRESSION SS DIFFERENCE FOR EACH VAR #AND RESIDUAL SS WHEN ALL VARS ARE INCLUDED #RESIDUAL SS SAME AS IN TYPE I Anova(FM,type="2")

Anova() in the {car} package provides the same *Partial* test using F statistic, as can be verified by squarring each value of the t statistic above. As expected, probability values are identical.

Note: as described in R's documentation for Anova{car}, Anova Types II & III are derived from similar terminology in SAS, although with some disagreement about exact usage (involving "higher-order" terms in the models). Anova Types II/III are "marginal" tests in which a difference in Sums of Squares Error SSE (or equivalently difference in Sums of Squares Regression SSR) is calculated for a single independent variable when compared with all other independent variables *already* within the regression model.

> Anova(FM,type="2")

Anova Table (Type II tests)

Response:	pemax			
	Sum Sq	Df	F value	Pr(>F)
age	181.8	1	0.2803	0.6043
sex	37.9	1	0.0584	0.8123
height	158.3	1	0.2440	0.6285
weight	1441.2	1	2.2215	0.1568
bmp	1480.1	1	2.2815	0.1517
fev1	648.4	1	0.9995	0.3333
rv	653.8	1	1.0077	0.3314
frc	254.6	1	0.3924	0.5405
tlc	92.4	1	0.1424	0.7112
Residuals	9731.2	15		

$$F_{P} := \frac{\frac{(1480.1)}{1}}{\frac{9731.4}{15}} < MSE \text{ for FM}$$

GLM F test for Full versus Reduced Model:

```
#FITTING REDUCED MODEL - ONLY "age", "sex", "weight", "bmp"
RM=lm(pemax~age+sex+weight+bmp)
#GLM F TEST of RM vs FM
anova(RM,FM)
                      > anova(RM,FM)
                      Analysis of Variance Table
                      Model 1: pemax ~ age + sex + weight + bmp
                      Model 2: pemax ~ age + sex + height + weight + bmp + fev1 + rv + frc + tlc
                        Res.Df
                                   RSS Df Sum of Sq
                                                       F Pr(>F)
Reduced Model SSE >
                      1
                            20 12602.1
Full Model SSE
                  >
                    2
                            15 9731.2 5
                                             2870.9 0.885 0.5149
                                                   ^ GLM F test
```

^ "Extra" Sum of Squares

Calculation of GLM F-test from function anova{stats}

 $F_{GLM} := \frac{\frac{2870.9}{20-15}}{\frac{9731.2}{15}} < SSE_{Reduced Model} - SSE_{Full Model} < df_{Reduced Model} - df_{Full Model} < MSE_{Full Model}$ $F_{GLM} = 0.8851 < same as above$

Note: this test is quite general. Any combination of independent variables may be tested against any other by specifying a comparison between FM and RM. Here the difference between Residual (Error) Sum of Squares SSE for the Full model and for the Reduced model is reported by R:anova. This is the "extra" sum of squares for the test.

Extra Sums of Squares:

Multiple "Extra" Sums of Squares, all derived from a difference in SSE (or SSR) between Full models (FM) versus Reduced models (RM), are usually calculated by statistical packages and form the basis for F tests of the GLM type as above. In general, F tests can be described as "marginal" tests if an RM excludes *only one* independent variable from the FM. In this case, an "Extra" Sum of Squares measures the change in SSE/SSR directly attributed to the excluded variable with all other independent variables already fitted in a linear model. By contrast, other F tests can be described as "serial" in which independent variables are added one at a time into a progressively more complex linear model. With each step of addition into a growing linear model, both FM and RM may exclude some, or even most, independent variables. In this case, "Extra" Sums of Squares, as calculated above, only measure differences in SSE (or SSR) for partial RM & FM models as specified by each step. Order of addition of variables is also important because different orders of entry to different growing linear models typically produce different partitions of SSE (or SSR). In R, as in most statistical packages, order of entry into a "serial" linear model is specified by the order given in the formula from left to right.

Calculation of Overall F-test from Type I anova{stats}

	v I						
#anova{stats} = TYPE I SS		> anova(F	-				
#RETURNS DIFFERENCE IN REGF	RESSION SS	Analysis	of V	ariance	Table		
#AT TIME OF ENTRY INTO THE N	IODEL						
IN ORDER FROM TOP TO BOTTO	MC	Response	-			- 1	
anova(FM)							Pr(>F)
		age					0.001296
		sex	1	955.4			0.243680
Note that anova{stats} repor		height	1				0.632089 0.339170
Type I "Extra" Sums of Squ	ares & F tests	weight bmp					0.053010
using a GLM type tests betw	een RM & FM	fev1					0.143120
sequentially as specified in th	he formula in	rv					0.366757
lm(FM) as read from left to		frc					0.592007
this is calculated, anova() car	-	tlc					0.711160
models at each step - see belo		Residuals				0.1101	0.711100
mouels at each step - see beid	,						
(10098.5+955.4+155.0+632.3+2	2862.2+1549.1+561.9+19	94.6+92.4)	< add	serial SS	SR's & di	vide bv Σ	df=1 for ea
FT:=	9						
97	731.1		< M6	E for FM	r		
	15		< IN 5		L		
$(15.3061 + 1.4/2/ + 0.2389 + 0.9)^{-1}$	9					colculativ	n of F fro
alculation of Partial F-tes $F_{S} := \frac{\frac{(92.4+194.6+561.9)}{3}}{\frac{9731.1}{3}}$	9	nova{stats	s }	^ 2	alternate F-test val	lues in an	on of F _T fro nova(FM)
$F_{S} := \frac{3}{\frac{9731.1}{15}} < $	9 sts from Type I a <Σ partial SSR's for <Σ partial df's	nova{stats tlc,frc,rv (w	8} orkin	^ १ g in reve	llternate F-test val	lues in an of entry)	nova(FM)
alculation of Partial F-tes $F_{S} := \frac{\frac{(92.4+194.6+561.9)}{3}}{\frac{9731.1}{15}} < F_{S} = 0.4362$ Factor Solution Frequencies (Sector Solution of Partial F-tes)	9 sts from Type I a <Σ partial SSR's for <Σ partial df's <mse fm<br="" for="">llt as in anova{stats}</mse>	nova{stats tlc,frc,rv (w	8} orkin	^ e g in reve <u>424 + 0.2</u>	alternate F-test val	lues in an of entry)	nova(FM)
alculation of Partial F-tes $F_{S} := \frac{\frac{(92.4+194.6+561.9)}{3}}{\frac{9731.1}{15}} < F_{S} = 0.4362$ Factor Solution From Figure 1 (92.4+194.6+561.9)	9 sts from Type I a <Σ partial SSR's for <Σ partial df's <mse fm<br="" for="">llt as in anova{stats}</mse>	nova{stats tlc,frc,rv (w	8} orkin	^ 2 g in revea <u>424 + 0.2</u>	llternate F-test val rse order <u>999 + 0.86</u> 3	lues in an of entry) <u>662</u> = 0.4.	nova(FM) 362
alculation of Partial F-tes $F_{S} := \frac{\frac{(92.4+194.6+561.9)}{3}}{\frac{9731.1}{15}} < F_{S} = 0.4362$ < same resu omparing RM & FM from	9 sts from Type I a < Σ partial SSR's for < Σ partial df's <mse fm<br="" for="">alt as in anova{stats} m anova{stats}</mse>	nova{stats tlc,frc,rv (w	8} orkin	^ 2 g in revea <u>424 + 0.2</u>	llternate F-test val rse order <u>999 + 0.86</u> 3	lues in an of entry) <u>662</u> = 0.4.	nova(FM)
alculation of Partial F-tes $F_{S} := \frac{\frac{(92.4+194.6+561.9)}{3}}{\frac{9731.1}{15}}$ $F_{S} = 0.4362$ < same resu omparing RM & FM from #COMPARING RM & FM FOR PART	9 sts from Type I a < Σ partial SSR's for < Σ partial df's <mse fm<br="" for="">alt as in anova{stats} m anova{stats} TIAL F-TEST</mse>	nova{stats tlc,frc,rv (w	8} orkin	^ & g in rever <u>424 + 0.2</u> ^ al	llternate F-test val rse order <u>999 + 0.86</u> 3	lues in an of entry) 662 = 0.4. alculatior	nova(FM) 362 1 of F _S fron
alculation of Partial F-tes $F_{S} := \frac{\frac{(92.4+194.6+561.9)}{3}}{\frac{9731.1}{15}} < F_{S} = 0.4362$ < same resu omparing RM & FM from #COMPARING RM & FM FOR PART RM=lm(pemax~age+sex+height+	9 sts from Type I a < Σ partial SSR's for < Σ partial df's <mse fm<br="" for="">alt as in anova{stats} m anova{stats} TIAL F-TEST weight+bmp+fev1)</mse>	nova{stats tlc,frc,rv (w below	8} orkin	^ & g in rever <u>424 + 0.2</u> ^ al	lternate F-test val rse order 999 + 0.86 3 ternate ca	lues in an of entry) 662 = 0.4. alculatior	nova(FM) 362 1 of F _S fron
alculation of Partial F-tes $F_{S} := \frac{\frac{(92.4+194.6+561.9)}{3}}{\frac{9731.1}{15}} < F_{S} = 0.4362 < same resu omparing RM & FM from #COMPARING RM & FM FOR PART RM=lm(pemax~age+sex+height++FM=lm(pemax~age+sex+height++)$	9 sts from Type I a < Σ partial SSR's for < Σ partial df's <mse fm<br="" for="">alt as in anova{stats} m anova{stats} TIAL F-TEST weight+bmp+fev1)</mse>	nova{stats tlc,frc,rv (w below	8} orkin	^ & g in rever <u>424 + 0.2</u> ^ al	lternate F-test val rse order 999 + 0.86 3 ternate ca	lues in an of entry) 662 = 0.4. alculatior	nova(FM) 362 1 of F _S fron
alculation of Partial F-tes $F_{S} := \frac{\frac{(92.4+194.6+561.9)}{3}}{\frac{9731.1}{15}}$ $F_{S} = 0.4362$ < same resu omparing RM & FM from #COMPARING RM & FM FOR PART RM=lm(pemax~age+sex+height++FM=lm(pemax~age+sex+height++vanova(RM,FM))	9 sts from Type I a < Σ partial SSR's for < Σ partial df's <mse fm<br="" for="">alt as in anova{stats} m anova{stats} TIAL F-TEST weight+bmp+fev1) weight+bmp+fev1+rv</mse>	nova{stats tlc,frc,rv (w below	8} orkin	^ & g in rever <u>424 + 0.2</u> ^ al	lternate F-test val rse order 999 + 0.86 3 ternate ca	lues in an of entry) 662 = 0.4. alculatior	nova(FM) 362 1 of F _S fron
alculation of Partial F-test $F_{S} := \frac{\frac{(92.4+194.6+561.9)}{3}}{\frac{9731.1}{15}} < $ $F_{S} = 0.4362 \qquad < \text{same resu}$ omparing RM & FM from #COMPARING RM & FM FOR PART RM=lm(pemax~age+sex+height++FM=lm(pemax~age+sex+height++vanova(RM,FM))} > ar	9 sts from Type I a < Σ partial SSR's for < Σ partial df's <mse fm<br="" for="">alt as in anova{stats} m anova{stats} TIAL F-TEST weight+bmp+fev1) weight+bmp+fev1+rv</mse>	nova{stats tlc,frc,rv (w below /+frc+tlc)	8} orkin	^ & g in rever <u>424 + 0.2</u> ^ al	lternate F-test val rse order 999 + 0.86 3 ternate ca	lues in an of entry) 662 = 0.4. alculatior	nova(FM) 362 1 of F _S fron
alculation of Partial F-test $F_{S} := \frac{\frac{(92.4+194.6+561.9)}{3}}{\frac{9731.1}{15}} < $ $F_{S} = 0.4362 \qquad < \text{same resu}$ omparing RM & FM from #COMPARING RM & FM FOR PART RM=lm(pemax~age+sex+height++FM=lm(pemax~age+sex+height++vanova(RM,FM))} > ar	9 sts from Type I a < Σ partial SSR's for < Σ partial df's <mse fm<br="" for="">alt as in anova{stats} m anova{stats} TIAL F-TEST weight+bmp+fev1) weight+bmp+fev1+rv</mse>	nova{stats tlc,frc,rv (w below /+frc+tlc)	8} orkin	^ & g in rever <u>424 + 0.2</u> ^ al	lternate F-test val rse order 999 + 0.86 3 ternate ca	lues in an of entry) 662 = 0.4. alculatior	nova(FM) 362 1 of F _S fron
alculation of Partial F-test $F_{S} := \frac{\frac{(92.4+194.6+561.9)}{3}}{\frac{9731.1}{15}} < $ $F_{S} = 0.4362 \qquad < \text{same resu}$ omparing RM & FM for #COMPARING RM & FM FOR PART RM=Im(pemax~age+sex+height+ FM=Im(pemax~age+sex+height+ anova(RM,FM) \qquad > ar Ana	9 sts from Type I a < Σ partial SSR's for < Σ partial df's <mse fm<br="" for="">alt as in anova{stats} m anova{stats} TIAL F-TEST weight+bmp+fev1) weight+bmp+fev1+rv</mse>	nova{stats tlc,frc,rv (w below +frc+tlc)	s} ′orkin	^ & g in rever 424 + 0.2	lternate F-test val rse order <u>999 + 0.80</u> 3 ternate ca '-test valu	lues in an of entry) $\frac{662}{} = 0.43$ alculation ues in ano	nova(FM) 362 1 of F _S fron
alculation of Partial F-test $F_{S} := \frac{\frac{(92.4+194.6+561.9)}{3}}{\frac{9731.1}{15}} < T_{S} = 0.4362$ $F_{S} = 0.4362 < \text{same resu}$ omparing RM & FM from #COMPARING RM & FM FOR PART RM=lm(pemax~age+sex+height++FM=lm(pemax~	9 sts from Type I a < Σ partial SSR's for < Σ partial df's <mse fm<br="" for="">alt as in anova{stats} m anova{stats} TIAL F-TEST =weight+bmp+fev1) weight+bmp+fev1+rv nova(RM,FM) alysis of Variance age</mse>	<pre>inova{stats tlc,frc,rv (w below +frc+tlc) Table + sex + he</pre>	s} orkin <u>0.1</u>	^ & g in rever 424 + 0.2 ^ al F + weight	lternate F-test val rse order 999 + 0.86 3 ternate ca '-test valu	lues in an of entry) $\frac{662}{} = 0.43$ alculation tes in ano + fev1	362 1 of F _S fron wa(FM)
alculation of Partial F-test $F_{S} := \frac{\frac{(92.4+194.6+561.9)}{3}}{\frac{9731.1}{15}} < $ $F_{S} = 0.4362 \qquad < \text{same resu}$ omparing RM & FM from #COMPARING RM & FM FOR PART RM=lm(pemax~age+sex+height++ FM=lm(pemax~age+sex+height++ anova(RM,FM) \qquad > ar Ana $\frac{848.9}{(18-15)} = 0.4362$	9 sts from Type I a < Σ partial SSR's for < Σ partial df's <mse fm<br="" for="">alt as in anova{stats} m anova{stats} TIAL F-TEST =weight+bmp+fev1) weight+bmp+fev1+rv nova(RM,FM) alysis of Variance</mse>	<pre>inova{stats tlc,frc,rv (w below +frc+tlc) Table + sex + he</pre>	s} orkin <u>0.1</u>	^ & g in rever 424 + 0.2 ^ al F + weight	lternate F-test val rse order 999 + 0.86 3 ternate ca '-test valu	lues in an of entry) $\frac{662}{} = 0.43$ alculation tes in ano + fev1	362 1 of F _S fron wa(FM)
alculation of Partial F-tes $F_{S} := \frac{\frac{(92.4+194.6+561.9)}{3}}{\frac{9731.1}{15}} < $ $F_{S} = 0.4362 $ same resu omparing RM & FM from #COMPARING RM & FM FOR PART RM=Im(pemax~age+sex+height++ FM=Im(pemax~age+sex+height++vanova(RM,FM)) > ar $\frac{848.9}{\frac{(18-15)}{9731.2}} = 0.4362$	9 sts from Type I a <Σ partial SSR's for <Σ partial df's <mse fm<br="" for="">alt as in anova{stats} m anova{stats} TIAL F-TEST weight+bmp+fev1) weight+bmp+fev1 weight weight weight weight weight weight weight weight weigh</mse>	<pre>inova{stats tlc,frc,rv (w below +frc+tlc) Table + sex + he</pre>	s} forkin <u>0.1</u> ight	^ & g in rever 424 + 0.2 ^ al F + weight	lternate F-test val rse order 999 + 0.86 3 ternate ca '-test valu	lues in an of entry) $\frac{662}{} = 0.43$ alculation tes in ano + fev1	362 1 of F _S fron wa(FM)
alculation of Partial F-tes $F_{S} := \frac{\frac{(92.4+194.6+561.9)}{3}}{\frac{9731.1}{15}} < $ $F_{S} = 0.4362 $ same resu omparing RM & FM from #COMPARING RM & FM FOR PART RM=Im(pemax~age+sex+height++ FM=Im(pemax~age+sex+height++vanova(RM,FM)) > ar $\frac{848.9}{\frac{(18-15)}{9731.2}} = 0.4362$	9 sts from Type I a <Σ partial SSR's for <Σ partial df's <mse fm<br="" for="">alt as in anova{stats} m anova{stats} TIAL F-TEST weight+bmp+fev1) weight+bmp+fev1 weight weight weight weight weight weight weight weight weigh</mse>	below + frc+tlc) Table + sex + he + sex + he	s} forkin <u>0.1</u> ight	^ & g in rever 424 + 0.2 ^ al F + weight + weight	lternate F-test val rse order 999 + 0.86 3 ternate ca '-test valu	lues in an of entry) $\frac{662}{} = 0.43$ alculation tes in ano + fev1	362 1 of F _S fron wa(FM)
alculation of Partial F-test $G(92.4+194.6+561.9)$ < $F_S := \frac{(92.4+194.6+561.9)}{3}$ < $F_S := \frac{9731.1}{15}$ < $F_S = 0.4362$ $F_S = 0.4362$ same result omparing RM & FM for PART #COMPARING RM & FM FOR PART RM=Im(pemax~age+sex+height++ FM=Im(pemax~age+sex+height++ anova(RM,FM) > ar $\frac{848.9}{(18-15)}$ $\frac{848.9}{15}$ Mod $\frac{9731.2}{15}$ R	9 sts from Type I a <Σ partial SSR's for <Σ partial df's <mse fm<br="" for="">alt as in anova{stats} m anova{stats} TIAL F-TEST weight+bmp+fev1) weight+bmp+fev1, weight weight weigh</mse>	<pre>helow helow h</pre>	s} forkin <u>0.1</u> ight ight	^ & g in rever 424 + 0.2 ^ al F + weight + weight - Pr(>F)	lternate F-test val rse order 999 + 0.86 3 ternate ca '-test valu	lues in an of entry) $\frac{662}{} = 0.43$ alculation tes in ano + fev1	362 a of F _S fron wa(FM)
alculation of Partial F-test $F_S := \frac{(92.4+194.6+561.9)}{3}$ <	9 sts from Type I a < Σ partial SSR's for < Σ partial df's <mse fm<br="" for="">alt as in anova{stats} m anova{stats} TIAL F-TEST weight+bmp+fev1) weight+bmp+fev1) weight+bmp+fev1+rv nova(RM,FM) altysis of Variance lel 1: pemax ~ age lel 2: pemax ~ age tlc tlc tlc RSS Df RSS Df S 18 10580.1</mse>	<pre>below r+frc+tlc) Table + sex + he. Sum of Sq</pre>	<pre>\$} orkin <u>0.1 ight ight F .4362</u></pre>	^ & g in rever 424 + 0.2 ^ al F + weight + weight - Pr(>F)	elternate F-test val rse order 999 + 0.86 3 ternate ca -test valu	lues in an of entry) $\frac{662}{} = 0.43$ alculation tes in ano + fev1	362 a of F _S fron wa(FM)

Note: this demonstrates the general usefulness of using Type I ANOVA, as long as one loads FM in a proper order. From this setup, one can easily test last entered independent variables to determine whether they are acturally needed, or not.

Comparing serial anova{stats} with GLM's RM & FM at one step in "serial" model construction:

#COMPARING RM & FM UPON ENTRY OF "fev1" FM=lm(pemax~age+sex+height+weight+bmp+fev1) RM=lm(pemax~age+sex+height+weight+bmp) anova(RM,FM)

"Extra" Sum of Squares calculated at fev1 step corresponds to entry in the anova{stats} report above. Note also that at this step in "serial" model construction, FM includes some but not all of the independent variables. The F tests based on these RM & FM are thus "partial" tests in a non-marginal sense. If a researcher views the partial RM and *limited* FM models to have meaning, then Type I tests make sense. Otherwise they do not.

< note *limited* FM (missing rv, frc, tlc)

> anova(RM,FM)

Analysis of Variance Table

Model 1: pemax ~ age + sex + height + weight + bmp Model 2: pemax ~ age + sex + height + weight + bmp + fev1 Res.Df RSS Df Sum of Sq F Pr(>F) 1 19 12129.2 2 18 10580.1 1 1549.1 2.6355 0.1219

$$F_{GLM} := \frac{\frac{1549.1}{19-18}}{\frac{10580}{18}} \qquad F_{GLM} = 2.6355$$

#EQUIVALENT anova{stats} APPROACH

#INVOLVING A LIMITED FM IGNORING LAST ENTERED VARIABLES FM=lm(pemax~age+sex+height+weight+bmp+fev1) > anova(FM) anova(FM)

E	<u>1549.1</u> 1	Note: Same partial F approach as above: < Extra SS for fev1 divided by df=1
F _S :=	<u>10580.1</u> 18	< MSE for <i>limited</i> FM as defined here and for GLM approach

 $F_S = 2.6355$ < same as F_{GLM} above

Analysis of Variance Table

Response:	per	nax				
	Df	Sum Sq	Mean Sq	F value	Pr(>F)	
age	1	10098.5	10098.5	17.1806	0.0006083	***
sex	1	955.4	955.4	1.6255	0.2185424	
height	1	155.0	155.0	0.2637	0.6138681	
weight	1	632.3	632.3	1.0758	0.3133741	
bmp	1	2862.2	2862.2	4.8695	0.0405636	*
fev1	1	1549.1	1549.1	2.6355	0.1218847	
Residuals	18	10580.1	587.8			

Automated Comparisons in R: drop1{stats}

#RECOVERY OF TYPE II SS USING drop1{stats} #RSS RETURNS RESIDUAL SS WHEN SPECIFIC VAR IS EXCLUDED FM=lm(pemax~age+sex+height+weight+bmp+fev1+rv+frc+tlc) drop1(FM)

drop1{stats} provides an alternate way to calculate "marginal" or Type II SS and F tests by taking FM and dropping each independent variable at a time. Each comparision involves the complete FM, but different RM's one for each variable exluded. Compare with the GLM type result below. For definition of AIC, see KNNL Ch.9.

> drop1(FM	l)								
Single term deletions										
Model:										
pemax ~	ac	ge + sex +	height +	weight	+ bmp	+	fev1	+	rv	+
frc + t	lc									
	Df	Sum of Sq	RSS	AIC						
<none></none>			9731.2	169.1						
age	1	181.8	9913.1	167.6						
sex	1	37.9	9769.2	167.2						
height	1	158.3	9889.6	167.5						
weight	1	1441.2	11172.5	170.6						
bmp	1	1480.1	11211.4	170.6						
fev1	1	648.4	10379.7	168.7						
rv	1	653.8	10385.0	168.7						
frc	1	254.6	9985.8	167.8						
tlc	1	92.4	9823.7	167.3						

Comparing "marginal" deletion of one variable:

#CREATING RM - EXCLUI RM=lm(pemax~age+sex anova(RM,FM)	DING ONLY "rv" +height+weight+bmp+fev1+frc+tlc)
	<pre>>anova(RM,FM) Analysis of Variance Table</pre>
SSE and "Extra" SS here match report > from drop1{stats}.	<pre>Model 1: pemax ~ age + sex + height + weight + bmp + fev1 + frc + tlc Model 2: pemax ~ age + sex + height + weight + bmp + fev1 + rv + frc + tlc Res.Df RSS Df Sum of Sq F Pr(>F) 1 16 10385.0 2 15 9731.2 1 653.8 1.0077 0.3314</pre>

Automated Comparisons in R: add1{stats}

#CREATING RM - WITH ONLY "age" RM=lm(pemax~age) #MARGINAL COMPARISION BY ADDING EACH VARIABLE IN TURN add1(RM,~age+sex+height+weight+bmp+fev1+rv+frc+tlc)

> add1(RM,~age+sex+height+weight+bmp+fev1+rv+frc+tlc)

Single term additions

Model:

add1{stats} calculates "Extra" SS
and Residual or Error SSE upon
adding a single independent variable
above what is already in RM.
Compare with GLM Result below

1100.01				
pemax ~	aq	je		
	Df	Sum of Sq	RSS	AIC
<none></none>			16734.2	166.7
sex	1	955.4	15778.7	167.2
height	1	182.3	16551.8	168.4
weight	1	945.2	15789.0	167.2
bmp	1	0.2	16734.0	168.7
fev1	1	2185.1	14549.0	165.2
rv	1	20.5	16713.7	168.6
frc	1	28.3	16705.8	168.6
tlc	1	389.1	16345.0	168.1

Comparing "marginal" entry of one variable:

anova(RM,FM)	> anova(RM,FM)
	Analysis of Variance Table
	Model 1: pemax ~ age
Same result for SSE & "Extra" SS	Model 2: pemax ~ age + fev1
considering only variable "fev1" >	Res.Df RSS Df Sum of Sq F Pr(>F)
considering only variable levi	1 23 16734.2
	2 22 14549.0 1 2185.1 3.3042 0.08275 .

Automated Simple Regression SS:

#SIMPLE REGRESSIONS WITH add1{stats} #NOTE IN MODEL 1=include constant, -1=no constant RM=lm(pemax~1) add1(RM,~age+sex+height+weight+bmp+fev1+rv+frc+tlc)

> add1(RM,~age+sex+height+weight+bmp+fev1+rv+frc+tlc)
Single term additions

Model:								
pemax ~ 1								
	\mathtt{Df}	Sum of Sq	RSS	AIC				
<none></none>			26832.6	176.5				
age	1	10098.5	16734.2	166.7				
sex	1	2234.4	24598.2	176.3				
height	1	9634.6	17198.0	167.3				
weight	1	10827.2	16005.5	165.5				
bmp	1	1413.5	25419.2	177.1				
fev1	1	5515.4	21317.2	172.7				
rv	1	2671.8	24160.9	175.8				
frc	1	4670.6	22162.1	173.7				
tlc	1	885.1	25947.6	177.6				

#SIMPLE REGRESSION FOR WEIGHT ONLY anova(Im(pemax~weight))

> anova(Im(pemax~weight))

Analysis of Variance Table

Response: pemax Df Sum Sq Mean Sq F value Pr(>F) weight 1 10827.2 10827.2 15.559 0.0006457 *** Residuals 23 16005.5 695.9 ---Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Automated Stepwise Regressions:

#AUTOMATED STEPWISE REGRESSION USING AIC FM=lm(pemax~age+sex+height+weight+bmp+fev1+rv+frc+tlc) RM=lm(pemax~1)

LOAD R PACKAGE {MASS} require(MASS) stepAIC(FM,direction="backward")

stepAIC(RM,~age+sex+height+weight+bmp+fev1+rv+frc+tlc,direction="forward")