2008 Linear Models 13
ORIGIN =0

Model Diagnositcs

Linear Model Regression Diagnostics

W. Stein

Regression analysis often involves a repetitive process fitting different linear models relating the dependent
variable Y with different sets of independent variables X;. Diagnostic plots or calculations are often helpful in
deciding whether particular X,'s belong in or out of the model. They are also helpful in identifying specific
cases, typically rows in the dataset (such as K below), that are somehow mis-specified often by

mis-measurement or mistaken entry into the data table. Other cases of '""mis-specification'" may in fact

involve a real phenomenon requiring additional study. Presented here are several important diagnostic

techniques useful for identifying mis-specification. What one does with the information, however, is very
much part of the science of the study, as opposed to the calculation of statistics. Examples below comes from
Chapter 10 in Kuter et al. (KNNL) Applied Linear Statistical Models S5th Edition.

Example & Calculations in R:

Body Fat Example KNNL Table 7.1
Compare results in Tables 10.3 & 10.4

Added Variable Plots:

#DIAGNOSTICS FOR LINEAR MODELS

require(car) #DOWNLOAD {car} FROM CRAN WEBSITE
#READ STRUCTURED DATA TABLE WITH NUMERIC CODED FACTOR
K=read.table("c:/2008LinearModelsData/BodyFatR.txt")

K

attach(K)
options(digits=6)
cor(K)

#MAKING ADDED VARIABLE PLOT FOR X2 GIVEN X1 IN THE MODEL

FM=Im(Y~X1+X2)

YM=Im(Y~X1)

XM=Im(X2~X1)
plot(residuals(XM),residuals(YM))
abline(0,0)

abline(0,coefficients(FM)[3],col="red")

av.plots(FM,X2) #ALTERNATE ADDED VARIABLE PLOT FUNCTION IN {car}

> cor(K)

X1
X1 1.000000
X2 0.923843
X3 0.457777
Y 0.843265

residuals(YM)

residuals(XM)
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0.9238425
1.0000000
0.0846675
0.8780896

X1 X2
5 43.1 29.
7 49.8 28.
7 51.9 37.
8 54.3 31.
1 42.2 30.
6 53.9 23.
4 58.5 27.
9 52.1 30.
1 49.9 23.
5 53.5 24.
1 56.6 30.
4 56.7 28.
7 46.5 23.
7 44.2 28.
6 42.7 21.
5 54.4 30.
7 55.3 25.
2 58.6 24.
7 48.2 27.
2 51.0 27.
X3
0.4577772
0.0846675
1.0000000
0.1424440

variable after entry into an expanded model.
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Residuals of Y on X's already in the model, and of a new
X; on X|'s already in the model are regressed. If the
scatter is better fit by a sloped line though the origin
(here in red), then the zero line (in black), evidence
suggests the new X will provide an additional reduction in
SSE if added to the existing model. Slope of the line is
equivalent to the regression coefficient for the new
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Diagnostics for Outlying Y values:

H#SETTING UP AND MAKING HAT MATRIX _
< n = number of cases

n=length(Y)

X=model.matrix(FM) < p = number of parameters
p=ncol(X) .
H=X%*%solve(t(X)%*%X)%*%t(X) #HAT MATRIX < hat matrix H

h=diag(H) #LEVERAGE < h = main diagonal of H

hatvalues(FM) #FUNCTION FOR DIRECT CALCULATION

#CALCULATIONS FOR OUTLYING Y OBSERVATIONS

. < sd = standard deviation derived
sd=summary(FM)S$sigma

from summary function in R

sd #SQUARE-ROOT OF MSE

MSE=sd /2 < MSE = sd?

SSE=(n-p)*MSE #SUM OF SQUARES ERROR < SSE = df; * MSE

#FINDING RESIDUALS

e=residuals(FM) #RESIDUAL < e = residuals extracted from FM

#CALCULATING SEMI-STUDENTIZED RESIDUALS KNNL Eq. 10-9
SEMISTUDRES=e/sd  #SEMI-STUDENTIZED RESIDUALS

#CALCULATING STUDENTIZED RESIDUALS KNNL Eq.10.19 & 10.20

STUDRES=e/sqrt(MSE*(1-h)) #STUDENTIZED RESIDUALS

rstandard (FM) #FUNCTION FOR DIRECT CALCULATION < calculation of Y diagnostics
#CALCULATING STUDENTIZED DELETED RESIDUALS KNNL Eq. 10.26

t=e*sqrt((n-p-1)/(SSE*(1-h)-en2))

DELSTUDRES=t #STUDENTIZED DELETED RESIDUALS

rstudent(FM) #FUNCTION FOR DIRECT CALCULATION
YRESULTS=cbind(e,h,SEMISTUDRES,STUDRES,DELSTUDRES) < put into a table for display
YRESULTS
In all "corrected" residual measures, > YRESULTS
one is looking for large Vallles for e h SEMISTUDRES STUDRES DELSTUDRES
. e 1 -1.682709311 0.2010125 -0.661659239 —-0.740226105 —0.729985403
particular cases as possible indication 2 3.642931179 0.0588948 1.432439373 1.476580603 1.534254132
of mis-specification. Large values 3 -3.175970140 0.3719330 -1.248825315 -1.575791342 -1.654329572
indicat ible outliers in Y i 4 -3.158465120 0.1109401 -1.241942154 -1.317151878 -1.348484207
Indicate possible outliers in Y even 1 5 -0.000288658 0.2480103 -0.000113503 -0.000130889 -0.000126981
they aren't visable in bivariate plots 6 -0.360815519 0.1286162 -0.141876508 -0.151986758 -0.147549094
£Y vs individual X.'s. 7 0.716199189 0.1555175 0.281617156 0.306452923 0.298127621
of Y vs individual X;'s 8  4.014732755 0.0962878 1.578635716 1.660606955 1.760092492
9 2.655105736 0.1146356 1.044015878 1.109547978 1.117648740
. . 10 -2.474811541 0.1102443 -0.973122279 -1.031649181 -1.033728421
Deleted Studentized Residuals (last 11 0.335806380 0.1203365 0.132042648 0.140784859 0.136661066
column) are perhaps the most 12 2.225511014 0.1092663 0.875094654 0.927216363 0.923178504
. 13 -3.946861346 0.1783818 -1.551947954 -1.712151262 -1.825902725
rceptive measure. H
Re cep Ve" casure. Here . 14 3.447456194 0.1480068 1.355576525 1.468608324 1.524763051
corrected" residual for a particular 15 0.570587104 0.3332120 0.224360932 0.274759900 0.267150092
case is computed with regard to 16 0.642298478 0.0952774 0.252558608 0.265524411 0.258132342
. 17 -0.850946475 0.1055947 -0.334601225 -0.353802041 -0.344509100
regression fit for all but that case, 18 -0.782919881 0.1967928 -0.307852443 —0.343501635 -0.334408084
thus maximizing apparent lack of fit 19 -2.857288765 0.0669542 -1.123516401 -1.163129129 -1.176171277
20 1.040448727 0.0500853 0.409115531 0.419762514 0.409356417

if the point is an outlier in Y.

A formal Bonferroni t-test is
available to allow statement that a
particular Deleted Studentized
Residual is beyond expectations (see
KNNL p. 395), but in my opinion
rarely is this the objective of
disgnostic work.
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Diagnostics for Outlying X values:

#CALCULATIONS FOR OUTLYING X OBSERVATIONS

#LEVERAGE KNNL p. 398

LEVERAGE=diag(H) #LEVERAGE = MAIN DIAGONAL OF HAT MATRIX
#DFFITS KNNL Eq. 10.30a

DFFITS=t*sqrt(h/(1-h)) #DFFITS

dffits(FM) #FUNCTION FOR DIRECT CALCULATION

#COOK'S DISTANCE KNNL Eq. 10.33b
COOKSDIST=((e"2)/(p*MSE))*(h/(1-h)"2)

cooks.distance(FM)  #FUNCTION FOR DIRECT CALCULATION
COOKSPC=pf(COOKSDIST,p,n-p) #F-DIST PERCENTILES OF COOK'S DISTANCE
#DFBETAS KNNL +++ NO EXPLICIT FORMULA GIVEN +++
DFBETAS=dfbetas(FM) #FUNCTION FOR DIRECT CALCULATION
XRESULTS=cbind(e,LEVERAGE,DFFITS,COOKSDIST,COOKSPC,DFBETAS)

XRESULTS
>XRESULTS (0)1:]3 7\ —
e LEVERAGE DFFITS COOKSDIST COOKSPC (Intercept) X1 X2

1 -1.682709311 .2010125 -3.66147e-01 .59505e-02 .35334e-02 -3.05182e-01 -1.31486e-01 2.32032e-01
2 3.642931179 0.0588948 3.83810e-01 4.54812e-02 1.33331e-02 1.72573e-01 1.15025e-01 -1.42613e-01
3 -=3.175970140 .3719330 -1.27307e+00 .90157e-01 .06265e-01 -8.47101e-01 -1.18252e+00 1.06690e+00
4 -3.158465120 0.1109401 -4.76348e-01 7.21619e-02 2.59185e-02 -1.01612e-01 -2.93520e-01 1.96072e-01
5 -0.000288658 .2480103 =-7.29235e-05 .88340e-09 1.17857e-13 -6.37212e-05 -3.05275e-05 5.02371e-05
6 -0.360815519 0.1286162 -5.66865e-02 1.13652e-03 5.51802e-05 3.96772e-02 4.00811e-02 -4.42676e-02
7 0.716199189 0.1555175 1.27937e-01 .76494e-03 .27314e-04 -7.75275e-02 -1.56129e-02 5.43163e-02
8 4.014732755 0.0962878 5.74521e-01 9.79385e-02 3.99070e-02 2.61431e-01 3.91126e-01 -3.32453e-01

4 1
4 1
4 3
7 2
1 1
1 5
5 6
9 3
5 1
4.39570e-02 1.26886e-02 2.37749e-01 2.44601e-01 -2.68809e-01
.1203365 5.05458e-02 9.03799%e-04 3
3 9
2 1
1 5
1 2
2 1
4 4
9 1
3 8
3 2

9 2.655105736 0.1146356 4.02165e-01 5.31335e-02 1.67022e-02 -1.51352e-01 -2.94656e-01 2.46909e-01
10 -2.474811541 0.1102443 -3.63873e-01

11 0.335806380 .91411e-05 -9.0208%e-03 1.70564e-02 -2.48452e-03
12 2.225511014 0.1092663 3.23337e-01 3.51544e-02 9.15878e-03 -1.30493e-01 2.24580e-02 6.99961le-02
13 -3.946861346 0.1783818 -8.50781e-01 2.12150e-01 1.13411e-01 1.19415e-01 5.92420e-01 -3.89491e-01
14 3.447456194 0.1480068 6.35514e-01 1.24893e-01 5.59078e-02 4.51744e-01 1.13172e-01 -2.97704e-01
15 0.570587104 0.3332120 1.88852e-01 1.25753e-02 2.00654e-03 -3.00428e-03 -1.24757e-01 6.87693e-02
16 0.642298478 0.0952774 8.37683e-02 2.47493e-03 1.77071e-04 9.30846e-03 4.31135e-02 -2.51250e-02
17 -0.850946475 0.1055947 -1.18373e-01 4.92614e-03 4.95950e-04 7.95121e-02 5.50436e-02 -7.60901e-02
18 -0.782919881 0.1967928 -1.65527e-01 9.63647e-03 1.35019e-03 1.32052e-01 7.53287e-02 -1.16100e-01
19 -2.857288765 0.0669542 -3.15071e-01 3.23601e-02 8.11248e-03 -1.29603e-01 -4.07203e-03 6.44293e-02
20 1.040448727 0.0500853 9.39971e-02 3.09679e-03 2.47677e-04 1.01905e-02 2.29080e-03 -3.31415e-03

Leverage:

Leverage values, the main diagonal of the hat matrix, range between 0 & 1 and sum to the number of
parameter in FM including the intercept (i.e., = p). Leverage values for each case measure how far the
set of X,'s for a specific case diverge from the centroid (average point for all X,'s). Large leverage values
indicate most influence on where the regression fit between Y & X;'s is placed (leverage of 1 indicates fit
with residual of zero). To identify outliers in X;'s, one therefore looks for large leverage values (> 0.5 for
moderate/large datasets AND/OR values that are > 2p/n) and for leverage values that are considerably
larger than average for all cases. Calculation of leverage may also be used to determine whether a certain
set of X,'s are suitable for predicting a new Y given the regression fit - see KNNL p. 400.

For above FM:

1]
o
w

p=3 n:=20 2.

= =]
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DFFITS:

DFFITS is a measure of the influence (i.e., practical effect) a particular case may have on the fitted
regression, and therefore residual, for each case. Influence is determined by considering how deviant a
particular residual in Y may be, plus also considering that case's leverage in X. Calculation of DFFITS
conceptually involves calculating the difference in fitted values when a specific case is either included (Yhat)
or excluded (Yhat;,). This difference is scaled by an estimation of the standard deviation of Yhat;. Actual
calculation is by explicit formula derived from the Deleted Studentized Residuals above. KNNL offer the
following guidelines for determining whether a particular case (DFFITS value) is to be considered influential
or not:

1) Influential if DFFITS > 1 for small to medium sized datasets.

2) Influential if DFFITS > 2. F for large datasets.
n

For above FM:

p=3 n:=20 2~\/£zO.7746
n

Cook's Distance:

Cook's Distance is an aggregate influence a particular case may have on all residuals of a linear fit. A sum
of squares of the difference for each residual value, with and without a particular case included, is
calculated and then scaled by a standardizing measure. Calculation of Cook's Distance is by explicit
formula involving residuals (e) and the main diagonal of the Hat matrix (h;). Cook's Distance is often
plotted against case index number to identify instances particularly large aggregate influence. Comparison
can also be made with the F distribution (see COOKSPC column in above chart) as follows:

For above FM:
p=3 n:=20 D := 0.490157
A for case i = 3 above and KNNL p. 404

pF(D,p,n — p) = 0.306265 < measure of influence

If for a case:
pF(D,p,n-p) <.30 then little aggregate influence can be inferred.

However if,
pF(D,p,n-p) > .50 then the case has "major" influence of the fitted regression - see KNNL p. 403.

DFBETAS:

DFBETAS measure the difference in regression coefficient values (one for each column in the design matrix X
including intercept) when a particular case is included versus excluded. Sign of DFBETAS indicate direction
of change of each coefficient, whereas magnitude indicates relative influence, for each case. No explicit
formula involving residuals (e) or Hat matrix (H or h) was given by KNNL, implying that unlike the other
measures, multiple regressions need to be fit in order to calculate DFBETAS - paperwork best left to
computer algorithms. For evaluation, KNNL suggest that a case is influential if:

DFBETAS > 1 for small to medium sized datasets, or

DFBETAS > % for large datasets.
n

For above FM:

p=3 n:=20 = 0.4472

Bk
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Model Diagnositcs

Variance Inflation Factors (VIF) and Tolerance:

#CALCULATING VARIANCE INFLATION FACTORS

FM=Im(Y~X1+X2+X3)
XM=cbind(X1,X2,X3)

#CONSTRUCTING FM WITH X1+X2+X3
#CONSTRUCTING MATRIX OF Xi's

R=cor(XM) #CORRELATION MATRIX OF Xi's

R

INVR=solve(R) #INVERSE OF R

INVR

VIF=diag(INVR) #VIF = VARINACE INFLATION FACTORS
VIF

vif(FM) #VIF FUNCTION IN {car} PACKAGE
mean(VIF) #AVERAGE VIF

TOLERANCE=1/VIF

TOLERANCE

Variance Inflation Factors comprise a formal method for
detecting multicolinearity between independent variables in a
multiple regression. Multicolinearity has detrimental effects on
reliability of predictions involving Y, ,, and on stability of
regresson coefficients when different X;'s are added or deleted
from a regression model. When there are multiple X|'s,
multicolinearity is almost always present to some extent but
difficult to detect by simple means involving bivariate plots.

The VIF vector is simply calculated as the main diagonal of the
Inverse of the Correlation Matrix. VIF values are 1 when the
X;'s are uncorrelated. Otherwise VIF's are larger than 1 and
unbound. The largest VIF is used to measure the extent of
multicolinearity among the X;'s, with max(VIF) > 10 indicating
'serious' multicolinearity adversely influencing regression
coefficient values. The average of VIF's is also used to detect
adverse influence in terms of how much the estimates (b's) of
regression coefficients may differ from true/actual (B's) values.
Mean values > 1 are indicative of problematic levels of
multicolinearity.

Tolerance is the inverse of each VIF value. The term is often
employed in automatic computer programs involved in serial
(stepwise) regressions. Frequently used cut-off values below
which an Xi will not be allowed to enter a stepwise regression
are often: 0.01, 0.001, or 0.0001.

H#TOLERANCE FACTORS IN AUTOMATED REGRESSIONS

>R

X1
X1 1.000000
X2 0.923843
X3 0.457777

> INVR

X1
X1 708.843
X2 -631.915
X3 -270.989

> VIF
X1
708.843 564

> TOLERANCE
X1

X2
0.9238425
1.0000000
0.0846675

X2

X3

-631.915 -270.989

564.343
241.495

X2 X3
.343 104.606

X2

241.495
104.606

X3

0.4577772
0.0846675
1.0000000

X3

0.00141075 0.00177197 0.00955968
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BUILT IN Diagnostic Plots in R:

#DIAGNOSTIC PLOTTING FUNCTIONS
par(mfrow=c(2,2), mex=0.6)
plot(FM)

par(mfrow=c(1,1), mex=1)

< Built-into plot()

Residuals vs Fitted Normal Q-Q
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Constructing your own plot in R:

Model Diagnositcs

#MORE DIAGNOSTIC PLOTS from P.Dalgaard p. 184

par(mfrow=c(2,2), mex=0.6)
plot(rstandard(FM))

plot(rstudent(FM))
plot(dffits(FM),type="1")
matplot(dfbetas(FM),type="1",col="red")

< constructed by extracting interesting
variables. Note use of framing with par()

lines(sqrt(cooks.distance(FM)),lwd=2,col="blue")

par(mfrow=c(1,1), mex=1)
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