$ORIGIN \equiv 1$

Nested 2-way ANOVA

1

Nested Two-way ANOVA Model - Balanced Case

Nested ANOVA designs occur when, either by efficiency of design or by necessity, not all combinations of factors are studied. Nested design in a two-way ANOVA (involving two factors) permits analysis of the independent factor (factor A below) in the same way as a crossed two-way ANOVA. The difference lies in factor B nested within A. Here effects of different cell blocks within single treatment levels of A are assessed much as if in single factor ANOVA. Example below comes from Chapter 26 in Kuter et al. (KNNL) Applied Linear Statistical Models 5th Edition. See particularly Table 26.2 for discussion of how this design relates to one-way (single-factor) ANOVA.

Data Structure:

Data are structured such that different levels of Nested Factor B occur only within single levels of independent Factor A. Other possible combinations are not studied.

Let index i,j indicate the ith row (treatment classes of Variable A) and jth column (treatment classes of Variable B)

Model:

$$Y_{i,jk} = \mu ... + \alpha_i + \beta_{j(i)} + \varepsilon_{ijk}$$

Restrictions:

$$\sum_{i} \alpha_{i} \coloneqq 0 \qquad \sum_{j} \beta_{j_in_i} \coloneqq 0$$

Assumptions:

 $-\varepsilon_{iik}$ are a random sample ~ N(0, σ^2) - variance is homogeneous across cells

KNNL dataset Table 26.1

Example:

K := READPRN("c:/2008LinearModelsData/TrainingSchoolR.txt")

Variable Assignment:

A₃

$Y := K^{\langle 2 \rangle}$	< respon	se (dependent) variable Y
	B ₁	B ₂

A ₁	$\mathbf{Y}_{11} := \begin{pmatrix} 25\\ 29 \end{pmatrix}$	Y ₁₂ :=
A ₂	$Y_{21} := \begin{pmatrix} 11 \\ 6 \end{pmatrix}$	Y ₂₂ :=

 $a := 3 \quad b := 2 \qquad n := 2$

 $\mathbf{Y}_{31} \coloneqq \begin{pmatrix} 17\\20 \end{pmatrix} \qquad \mathbf{Y}_{32} \coloneqq \begin{pmatrix} 5\\2 \end{pmatrix}$

N := length(Y)

< response blocks

	(Y ₁₁	Y ₁₂	
Y _{blocks} :=	Y ₂₁	Y ₂₂	
	Y ₃₁	Y_{32}	

Nested Two-Way ANOVA									
Treatm	reatment Classes of Variable B Nested Within A:								
#1	#2	#5	#6						
n	n								
		n	n						
				n	n				
	Treatm #1 n	Nes Treatment Class #1 #2 n n	Nested TwoTreatment Classes of Va#1#2#3nnnnnnImage: classifier of the state of t	Nested Two-Way ANGTreatment Classes of Variable B#1#2#3#4nnnnnn	Nested Two-Way ANOVATreatment Classes of Variable B Nested W#1#2#3#4#5nn11nnn1nnnn				

Each cell consists of n replicates with means Ybar_{ii}

Also let:

where:

Ybar _{i.} = mean over all columns for A	i۰
Ybar _{ij} = mean within data blocks.	

Ybar = overall mean.

Note: this model has no associated test for interactions because of the nested design.

 μ .. is a constant = grand mean of all objects.

x 71

 α_i are effect coefficients for classes i in Variable A.

 $\beta_i\,$ are nested coefficients for classes j of Variable B in A.

 ϵ_{iik} is the error term specific to each object i,j,k

i = 1 to a, j = 1 to b, k = 1 to n, N = abn

		25	I	1	ĺ
K =	2	29	1	1	
	3	14	1	2	
	4	11	1	2	
	5	11	2	1	
	6	6	2	1	
	7	22	2	2	
	8	18	2	2	
	9	17	3	1	
	10	20	3	1	
	11	5	3	2	
	12	2	3	2)	

Means:

$$\mu_{dotdot} := mean(Y) \qquad \mu_{dotdot} = 15 \qquad < \text{grand mean}$$

$$\mu := \begin{pmatrix} mean(Y_{11}) & mean(Y_{12}) \\ mean(Y_{21}) & mean(Y_{22}) \\ mean(Y_{31}) & mean(Y_{32}) \end{pmatrix} \qquad \mu = \begin{pmatrix} 27 & 12.5 \\ 8.5 & 20 \\ 18.5 & 3.5 \end{pmatrix} \qquad < \text{block means}$$

$$\mu_{idot} := \begin{pmatrix} mean(\mu_{1,1}, \mu_{1,2}) \\ mean(\mu_{2,1}, \mu_{2,2}) \\ mean(\mu_{3,1}, \mu_{3,2}) \end{pmatrix} \qquad \mu_{idot} = \begin{pmatrix} 19.75 \\ 14.25 \\ 11 \end{pmatrix} \qquad < \text{Independent Factor A means (row means)}$$

Model Parameters:

$$\alpha := \mu_{idot} - \mu_{dotdot} \qquad \qquad \alpha = \begin{pmatrix} -0.75 \\ -4 \end{pmatrix} \qquad \qquad < \alpha \text{ coefficients for Independent Factor A} \\ \beta_{BinA} := \begin{pmatrix} \mu_{1,1} - \mu_{idot_{1}} & \mu_{1,2} - \mu_{idot_{1}} \\ \mu_{2,1} - \mu_{idot_{2}} & \mu_{2,2} - \mu_{idot_{2}} \\ \mu_{3,1} - \mu_{idot_{3}} & \mu_{3,2} - \mu_{idot_{3}} \end{pmatrix} \qquad \qquad \beta_{BinA} = \begin{pmatrix} 7.25 & -7.25 \\ -5.75 & 5.75 \\ 7.5 & -7.5 \end{pmatrix} \qquad < \beta \text{ coefficients for Nested Factor B in A}$$

(4.75)

Fitted Values & Residuals:

Y =	<pre>(25) 29 14 11 11 6 22 18 17 20 5</pre>	μ _{vec} :=	 27 27 12.5 12.5 8.5 8.5 20 20 18.5 18.5 3.5 	$e := Y - \mu_{vec}$ $e =$	$ \begin{pmatrix} -2 \\ 2 \\ 1.5 \\ -1.5 \\ 2.5 \\ -2.5 \\ 2 \\ -2 \\ -1.5 \\ 1.5 \\ 1.5 \end{pmatrix} $	< e = residuals
	$\begin{pmatrix} 5\\2 \end{pmatrix}$		3.5 (3.5)		1.5 (-1.5)	

Sums of Squares:

^ means for each block in vector form associated with each value of Y

Σ form:

Vector form:

$$SSA := b \cdot n \cdot \sum_{i=1}^{a} (\alpha_{i})^{2}$$

$$SSA = 156.5$$

$$b \cdot n \cdot (\alpha^{T} \cdot \alpha) = (156.5)$$

$$SSB_{inA} := n \cdot \sum_{i=1}^{a} \sum_{j=1}^{b} (\beta_{BinA_{i,j}})^{2}$$

$$SSB_{inA} = 567.5$$

$$\beta := stack(\beta_{BinA}^{(1)}, \beta_{BinA}^{(2)})$$

$$\beta = \begin{pmatrix} 7.25 \\ -5.75 \\ 7.5 \\ -7.25 \\ 5.75 \\ -7.25 \end{pmatrix}$$

$$SSE := \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n} \left[(Y_{blocks_{i,j}})_{k} - \mu_{i,j} \right]^{2}$$

$$SSE = 42$$

$$e^{T} \cdot e = (42)$$

$$\beta \text{ in vector form } \wedge$$

$$SSTO := \sum_{k=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n} \left[(Y_{blocks_{i,j}})_{k} - \mu_{i,j} \right]^{2}$$

$$SSTO = 766$$

$$(Y - \mu_{dotdot})^{T} \cdot (Y - \mu_{dotdot}) = (766)$$

SSTO :=
$$\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n} \left[\left(Y_{blocks_{i,j}} \right)_{k} - \mu_{dotdot} \right]^{2}$$
 S

ANOVA Table for Nested design:

Sum of Squares:	Degrees of Freedo	om:	Mean Squares:				
SSA = 156.5	$df_A \coloneqq a - 1$	$df_A = 2$	$MSA := \frac{SSA}{df_A}$	MSA = 78.25			
$SSB_{inA} = 567.5$	$df_{BinA} \coloneqq a \cdot (b - 1)$	$df_{BinA} = 3$	$MSB_{inA} := \frac{SSB_{inA}}{df_{BinA}}$	MSB _{inA} = 189.1667			
SSE = 42	$df_E \coloneqq a \cdot b \cdot (n-1)$	$df_E = 6$	$MSE := \frac{SSE}{df_E}$	MSE = 7			
SSTO = 766	$df_T := N - 1$	$df_{T} = 11$	^ values verified K	NNL p. 1097			

F-Test for Independent Factor Effects:

Hypotheses:

$$\begin{split} H_0: & \alpha_i = 0 \ \text{for all } i \\ H_1: & \text{At least one } \alpha_i <> 0 \end{split}$$

Test Statistic:

 $F := \frac{MSA}{MSE} \qquad \qquad F = 11.1786$

Critical Value of the Test:

$\alpha := 0.05$	< Probability of Type I er	rror must be explicitly set	
CV := qF [1	$-\alpha,(a-1),(n-1)\cdot a\cdot b$]	CV = 5.1433	$\begin{aligned} \mathbf{a} - 1 &= 2 \\ (\mathbf{n} - 1) \cdot \mathbf{a} \cdot \mathbf{b} &= 6 \end{aligned}$

Decision Rule:

IF F > C, THEN REJECT H_0 OTHERWISE ACCEPT H_0

Probability Value:

 $P := 1 - pF[F, a - 1, (n - 1) \cdot a \cdot b]$ P = 0.0095

< test verified KNNL p. 1098

F-Test for Nested Factor Specific Effects:

Hypotheses:

 $\begin{array}{ll} H_0: & \beta_{j\,in\,i} = \ 0 \ for \ all \ values \ of \ j \ within \ a \ specific \ level \ i \\ H_1: & At \ least \ one \ \beta_{j\,in\,i} <> \ 0 \end{array}$

Test Statistic:

 $F := \frac{MSB_{inA}}{MSE} \qquad F = 27.0238$

Critical Value of the Test:

 $\alpha := 0.05$ < Probability of Type I error must be explicitly set

$$CV := qF \begin{bmatrix} 1 - \alpha, a \cdot (b - 1), (n - 1) \cdot a \cdot b \end{bmatrix} CV = 4.7571$$

Decision Rule:

IF F > C, THEN REJECT H_0 OTHERWISE ACCEPT H_0

Probability Value:

< test verified KNNL p. 1098

3

 $P := 1 - pF[F, a \cdot (b - 1), (n - 1) \cdot a \cdot b] \qquad P = 0.0007$

Prototype in R:

	> k	(
		Score	School	Instructor
	1	25	1	1
require(car)	2	29	1	1
	3	14	1	2
#READ STRUCTURED DATA TABLE WITH NUMERIC CODED FACTOR	4	11	1	2
K=read.table("c:/2008LinearModelsData/TrainingSchoolR.txt")	5	11	2	1
K	6	6	2	1
attach(K)	7	22	2	2
V-Score	8	18	2	2
	9	17	3	1
A=tactor(School)	10	20	3	1
B=factor(Instructor)	11	5	3	2

contrasts(A)=contr.sum contrasts(B)=contr.sum

FM=lm(Y~A+B%in%A)
anova(FM)
Anova(FM, type="3")
detach(K)

> anova(FM)
Analysis of Variance Table

Response: Y Df Sum Sq Mean Sq F value Pr(>F) A 2 156.50 78.25 11.179 0.009473 ** A:B 3 567.50 189.17 27.024 0.000697 *** Residuals 6 42.00 7.00 ---Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

ANOVA tables are identical >

> Anova(FM, type="3")

Anova Table (Type III tests)

	Response: Y										
		Sum Sq	Df	F value	Pr(>F)						
	(Intercept)	2700.0	1	385.714	1.130e-06	* * *					
factor A results confirmed >	A	156.5	2	11.179	0.009473	**					
factor B in A results confirmed >	A:B	567.5	3	27.024	0.000697	***					
Tactor D III A results commined >	Residuals	42.0	6								
KNNL p. 1098											
-	Signif. code	es: O	۰**	*′ 0.001	`**' 0.01	۱ */	0.05	`. <i>'</i>	0.1	`	' 1