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There is a yummy variety of chocolates with different nutritional values based on their 

composition. Nutritional value can be associated with one or more variables such as protein, fat, 

carbohydrates, and sodium content. Additionally, perhaps the sizes, prices and unit prices of the 

chocolates are correlated with their nutritional value. 

 

Linear models are a good way to represent data that has either one independent variable, or 

multiple independent variables measured against a dependent variable. A simple linear regression is a 

linear model which represents the slope and intercept of a line best fitting a dependent variable against a 

single independent variable, while multiple regressions aid us in visualizing those data sets with multiple 

independent variables (either in quantitative or factor form). We can use analyses of multiple regressions 

to determine the most optimal model for a particular set of variables.  

 

The example used in the following pages refers to 16 different chocolate bar brands in terms of 

their energy level (the dependent variable, relying—at least in this case—on the other variables) in 

relation to their size, price, unit price, protein content, fat content, protein content, and sodium content 

(the independent variables).  

 

We can use a Multiple Regression Analysis to identify any correlations between the nutritional 

values of different brands of chocolate and their respective compositions and prices. Correlations between 

nutritional values and compositions can even be used to classify the large variety of chocolates into 

distinct collections such as chocolates with ―high nutritional value‖ and chocolates considered ―diet.‖ 

 

THE DATA SET 

 16 brands of chocolates sold in Queensland, Australia in 2002 

 Energy is a standard measurement of nutritional value and is the chosen dependent variable (Y) 

against which we test the composition for correlations 

 7 independent variables (Xi) chosen from the standard composition of each brand of chocolate 

  Y  Energy  kilojoules per 100 grams of the chocolate 

  X1  Size  size of the chocolate in grams 

  X2  Price  price in dollars of the chocolate 

X3  Unit.Price unit price in dollars of the chocolate 

X4  Protein  % of protein in the chocolate 

X5  Fat  % of fat in the chocolate 

X6  Carbo  % of carbohydrate in the chocolate 

X7  Sodium  sodium content of the chocolate in milligrams 
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USING THE R INTERPRETER 

 Upload and save the chocolates data set into your working directory 

CHOC=read.table("chocolates.txt",header=TRUE) 
 Attach the data set into R interpreter 

attach(CHOC) 
CHOC 

 Assign the dependent variable Y to ―Energy" and the independent variables Xi to the rest 

Y=Energy 
X1=Size 
X2=Price 
X3=Unit.Price 

X4=Protein 
X5=Fat 
X6=Carbo 
X7=Sodium 

 

TEST THE NORMALITY OF THE SAMPLE 

 Before we perform statistical tests, use the qqnorm() or the qqmath() (run the lattice package) 

function to test the Normal Distribution of each variable in the chocolate data set. A normal 

distribution is an underlying assumption for creating a multiple regression, so this is a necessary 

step. 

 We can use the par(mfcol=c(,)) function to display all of the graphs onto one screen 

par(mfcol=c(2,4))   
qqnorm(Y,main="Y Normal Q-Q 
Plot") 
qqline(Y,lty=2) 
qqnorm(X1,main="X1 Normal 
Q-Q Plot") 
qqline(X1,lty=2) 
qqnorm(X2,main="X2 Normal 
Q-Q Plot") 
qqline(X2,lty=2) 
qqnorm(X3,main="X3 Normal 
Q-Q Plot") 
qqline(X3,lty=2) 

qqnorm(X4,main="X4 Normal 
Q-Q Plot") 
qqline(X4,lty=2) 
qqnorm(X5,main="X5 Normal 
Q-Q Plot") 
qqline(X5,lty=2) 
qqnorm(X6,main="X6 Normal 
Q-Q Plot") 
qqline(X6,lty=2) 
qqnorm(X7,main="X7 Normal 
Q-Q Plot") 
qqline(X7,lty=2) 
par(mfcol=c(1,1)) 
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 Although the graphs show slight S-shape, the qqline() function shows that the data fits without 

striking evidence of non-normality. 

 

TEST THE CORRELATIONS USING X vs Y GRAPHS 

 It is also important to use a scatter plot to plot each independent variable against each other to 

determine whether there is correlation between any of them. Correlation between the independent 

variables themselves can skew the multiple regression and report false results.  
 

par(mfcol=c(3,7))       
plot(X1,X2) 
plot(X1,X3) 
plot(X1,X4) 
plot(X1,X5)  
plot(X1,X6)      
plot(X1,X7)    
plot(X2,X3)  
plot(X2,X4) 
plot(X2,X5) 
plot(X2,X6) 
plot(X2,X7) 

plot(X3,X4) 
plot(X3,X5) 
plot(X3,X6) 
plot(X3,X7) 
plot(X4,X5) 
plot(X4,X6) 
plot(X4,X7) 
plot(X5,X6) 
plot(X5,X7) 
plot(X6,X7) 
par(mfcol=(1,1)))

 

 We expect the independent variables to graph in random scatter. However, a linear set of points 

illustrates an association between the variables. We must remove these related variables because 

they will skew our regression tests.  
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 According to our graphs, we remove the interrelated variables Size (X1), Price (X2) and 

Unit.Price (X3). This makes sense because biologically Energy (nutritional value) should not 

depend on these external variables (they are not parts of the chocolate‘s composition) 

 

 Next, we plot each independent variable (X) against Energy (Y) for any visual correlations 

par(mfcol=c(2,4))       
plot(X1,Y,xlab="Size",ylab="Energy") 
plot(X2,Y,xlab="Price",ylab="Energy") 
plot(X3,Y,xlab="Unit.Price",ylab="Energy") 
plot(X4,Y,xlab="Protein",ylab="Energy")    
plot(X5,Y,xlab="Fat",ylab="Energy")        
plot(X6,Y,xlab="Carbo",ylab="Energy")    
plot(X7,Y,xlab="Sodium",ylab="Energy")     
par(mfcol=(1,1))) 

 

 The graphs further prove that Size, Price and Unit.Price are not correlated with Energy.  

 In contrast, the Protein (X4) and Fat (X5) variables show positive correlation with Energy, and 

Carbo (X6) shows a negative correlation with Energy. These results make sense because 

biologically these variables are expected to supply Energy (and affect nutritional value). 

 

SIMPLE LINEAR REGRESSION 

 Now that we have reduced our original model to a simpler equation, we can run simple linear 

regressions on each of the independent variables (X4, X5, X6 and X7) against the dependent 

variable in order to determine whether there is an association between each one individually 

against the dependent variable. This is important because once we begin the multiple regression, 

there is no way to determine the impact each independent variable has on its own on the 

dependent variable.  
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LM=lm(Y~X4)   
LM 
Yhat=fitted(LM) 
e=residuals(LM) 
RESULTS=data.frame(X4,Y,Yhat,e)  
anova(LM) 

 
VARIABLE      PROBABILITY (α = 0.05)         CONCLUSION  CORRELATED? 

Protein (X4)     0.01989       p < α    reject H0   YES 

Fat (X5)    6.818e-07      p < α    reject H0   YES 

Carbo (X6)   0.007538      p < α    reject H0   YES 

Sodium (X7)    0.5032       p > α    do not reject H0  NO 

 

 Model:  Y =  α + βX +ε 

α = y intercept of regression line (translation) 

β = slope of regression line (scaling coeff) 

ε = error factor in prediction of Y given that it is a random variable distributed as N(0,σ2
).  

 Hypotheses:  

H0: β = 0 the slope of regression equals zero, that is, X & Y are not related    

H1: β ≠ 0 the slope of regression does not equal zero, X & Y are related 

 Using the Type I error set to α = 0.05 and comparing the probability value from ANOVA table, 

we conclude that Protein, Fat and Carbo but not Sodium are correlated with Energy. 

 These results make sense because in biological comparison to the other variables, Sodium should 

not contribute to the Energy (nutritional value) 

 THEREFORE: our reduced model is Y = α + β(X4+X5+X6) +ε 

 Plot the regression line and points for X4, X5 and X6 

par(mfcol=c(1,3)) 
plot(X4,Y) 
abline(LM4,col="blue") 
segments(X4,Yhat,X4,Y,col="red")    
plot(X5,Y) 
abline(LM5,col="blue") 
segments(X5,Yhat,X5,Y,col="red") 
plot(X6,Y) 
abline(LM6,col="blue") 
segments(X6,Yhat,X6,Y,col="red") 
par(mfcol=c(1,1))) 
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LINEAR MODEL 

 Now we construct the linear model using a multiple regression.  

 The null hypothesis for this test is: 

H0: all slope β‘s = 0 

This is to say that none of the regression lines for any of the dependent vs independent variable 

relationships has a slope other than zero. Thus none have a relationship. 

 And the alternative hypothesis is: 

H1: at least some slope β‘s ≠ 0 

This is to say that at least one of the regression line (representing a particular independent 

variable vs the dependent variable) has a slope other than zero, indicating that that/those 

particular comparison(s) have a relationship(s).  

 We run the model by assigning the X and Y variables to the example variables, and telling R 

what we want to be included in our full LM (linear model). As discussed before, we are including 

Protein, Fat, Carbo, and Sodium, all in relation to Energy. 

Y=Energy 
X4=Protein 
X5=Fat 
X6=Carbo 
X7=Sodium 
LM=lm(Y~X4+X5+X6+X7) 
LM 

This LM command gives us a set of information, none of which is very useful to us: 

 

Call: 

lm(formula = Y ~ X4 + X5 + X6 + X7) 

 

Coefficients: 

   (Intercept)              X4              X5              X6              X7   

366.7358678495   17.6682265304   35.0077388533   11.5704086885   -0.0355955293   

 
 Then we can use a summary function on the full linear model, which will most importantly give 

us the F statistic and p-value for the overall F-test on the linear model. This is provided at the 

very end of the test‘s output. This tests for differences in slopes of all the regression lines in the 

model, and we are able to use this p-value to reject or retain the null hypothesis. The summary 

also gives us p-values for each individual/partial t-test for each of the variables. These statistics 

are provided in the table, and can be used to reject hypotheses specifically designed to determine 

a relationship between that particular variable and the dependent variable.  

 

summary(LM) 
 

Call: 

lm(formula = Y ~ X4 + X5 + X6 + X7) 

 

Residuals: 

          Min            1Q        Median            3Q           Max  

-105.70499263  -18.03618468    7.27507654   19.63443565   79.21752771  

 

Coefficients: 

                  Estimate     Std. Error  t value   Pr(>|t|)     

(Intercept) 366.7358678495 353.8391196641  1.03645   0.322241     
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X4           17.6682265304   6.7532750361  2.61625   0.023989 *   

X5           35.0077388533   4.3319486262  8.08129 5.9327e-06 *** 

X6           11.5704086885   4.5432453565  2.54673   0.027153 *   

X7           -0.0355955293   0.3306187071 -0.10766   0.916201     

--- 

Signif. codes:  0 ‗***‘ 0.001 ‗**‘ 0.01 ‗*‘ 0.05 ‗.‘ 0.1 ‗ ‘ 1  

 

Residual standard error: 52.1448944 on 11 degrees of freedom 

Multiple R-squared: 0.936823508,        Adjusted R-squared: 0.913850238  

F-statistic: 40.7788494 on 4 and 11 DF,  p-value: 1.55635612e-06  

 

The p-value we see is less than an alpha value of either 0.05 or 0.01, which is sufficient to reject the null 

hypothesis and thus conclude that at least one of the regression lines is not equal to zero, and therefore 

represents a relationship between a particular independent variable and the dependent variable. From 

the partial t-tests, we can see that the p-value for the association between X7 (sodium) and Y (energy) is 

very high, which leads us to conclude that there is no relationship between the two. The other 

independent variables have relatively low p-values, so we will definitely continue to look into their 

association with Energy. 

 

 Next we can use an anova function on the linear model to further analyze the data: 

 

anova(LM) 
 

Analysis of Variance Table 

 

Response: Y 

          Df       Sum Sq      Mean Sq  F value     Pr(>F)     

X4         1 156339.57930 156339.57930 57.49702 1.0831e-05 *** 

X5         1 261830.57846 261830.57846 96.29346 8.9255e-07 *** 

X6         1  25323.77157  25323.77157  9.31333   0.011013 *   

X7         1     31.51807     31.51807  0.01159   0.916201     

Residuals 11  29909.99009   2719.09001                         

--- 

Signif. codes:  0 ‗***‘ 0.001 ‗**‘ 0.01 ‗*‘ 0.05 ‗.‘ 0.1 ‗ ‘ 1  

 

CREATING REDUCED LINEAR MODELS 

 Next we want to use a marginal sums of squares test to create reduced linear models. Reduced 

models are variations of the full model, which includes all of the variables. The reduced forms of 

the model strive to be more fit for the model, by reducing the error term. If eliminating only one 

of the independent variables at a time causes the model to fit the data better, the marginal sums of 

squares test will tell us so. The key concept here is that this test runs marginally, meaning it only 

eliminates one X variable from the test at a time. R requires that we generate these reduced 

models in the following way: 

 
RM1=lm(Y~X5+X6+X7) 

RM2=lm(Y~X4+X6+X7) 

RM3=lm(Y~X4+X5+X7) 

RM4=lm(Y~X4+X5+X6) 

 

Notice that each reduced model (RM) eliminates 

one X variable. In RM1, it is X4 that is 

eliminated, in RM2, it is X5 that is eliminated, 

and so on. 
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 We are then able to do an Anova on each reduced model. Notice that this is Anova, a command 

with a capital A, an ANOVA function dedicated to the marginal test. A summary of each reduced 

model can also be used, with the command summary(RM1), etc. In the case of summary, the 

overall F-test will again provide, at the very end, the p-value to which the following hypotheses 

can be applied: 

 The null hypothesis is: 

H0: βi = 0 

This is to say that the slope of the reduced model is zero, and that there is no relationship between 

the independent and dependent variables in the model 

 And the alternative hypothesis is: 

H1: βi ≠ 0 

This is to say that the slope of the reduced model is a value other than zero, implying that some 

relationship exists between the independent and dependent variables in the model. 

 

*For Anova p-values (not the overall F-test p-values provided by the summary function), their meaning is 

relative to the probability that the variable of that row is associated with the dependent variable in the 

absence of the variable that has been eliminated from that particular reduced model. The results of each of 

our reduced Anovas are shown below. 

 

Anova(RM1) 
 

Anova Table (Type II tests) 

 

Response: Y 

                Sum Sq Df  F value     Pr(>F)     

X5        199405.61074  1 49.31565 1.3899e-05 *** 

X6         10758.31127  1  2.66067    0.12881     

X7          3002.76531  1  0.74262    0.40571     

Residuals  48521.45797 12                         

--- 

Signif. codes:  0 ‗***‘ 0.001 ‗**‘ 0.01 ‗*‘ 0.05 ‗.‘ 0.1 ‗ ‘ 1  

 

Anova(RM2) 
 
Anova Table (Type II tests) 

 

Response: Y 

                Sum Sq Df F value   Pr(>F)   

X4         40440.73471  1 2.33890 0.152102   

X6         78972.61782  1 4.56739 0.053865 . 

X7          4765.34189  1 0.27560 0.609160   

Residuals 207486.33400 12                    

--- 

Signif. codes:  0 ‗***‘ 0.001 ‗**‘ 0.01 ‗*‘ 0.05 ‗.‘ 0.1 ‗ ‘ 1  

 
Anova(RM3) 

 
Anova Table (Type II tests) 

 

Response: Y 
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                Sum Sq Df  F value     Pr(>F)     

X4         11734.24575  1  2.96160    0.11092     

X5        238913.42832  1 60.29929 5.0934e-06 *** 

X7          7719.75624  1  1.94839    0.18805     

Residuals  47545.52350 12                         

--- 

Signif. codes:  0 ‗***‘ 0.001 ‗**‘ 0.01 ‗*‘ 0.05 ‗.‘ 0.1 ‗ ‘ 1  

 

Anova(RM4) 
 

Anova Table (Type II tests) 

 

Response: Y 

                Sum Sq Df  F value     Pr(>F)     

X4         21582.71512  1  8.64995  0.0123472 *   

X5        182310.16773  1 73.06653 1.8962e-06 *** 

X6         25323.77157  1 10.14930  0.0078364 **  

Residuals  29941.50816 12                         

--- 

Signif. codes:  0 ‗***‘ 0.001 ‗**‘ 0.01 ‗*‘ 0.05 ‗.‘ 0.1 ‗ ‘ 1  

 

AIC CRITERION FOR CREATING REDUCED MODELS 

 Next we need to utilize a very important function in R for developing a reduced model based on a 

statistic other than p-values. There is a criterion called the AIC, or Akaike‘s Information 

Criterion, which considers the sums of squares of different forms of reduced models to determine 

the ideal one. The reason it works this way is that when an independent variable is dropped from 

a linear model, such as in the instance of a reduced model, that variable‘s sums of squares are 

transferred to the error term. This correlates to a good way to evaluate each reduced model.  

 The AIC actually has a unique function called the automated backwards stepwise regression. This 

procedure begins with the full linear model (the dependent variable as well as all the independent 

variables) and eliminates one at a time, measuring the AIC value with each elimination. The 

eliminations continue for as long as at least one independent variable as a lower AIC value than 

the dependent variable (coded as <none>) in the data table. When the dependent variable has the 

lowest AIC, the eliminations stop and the remaining ones form the reduced model. 

 

FM=lm(Y~X4+X5+X6+X7) 
step(FM,direction="backward") 

 
The program gives us the following: 

 

Start:  AIC=130.53 

Y ~ X4 + X5 + X6 + X7 

 

       Df    Sum of Sq          RSS         AIC 

- X7    1     31.51807  29941.50816 128.5505969 

<none>                  29909.99009 130.5337456 

- X6    1  17635.53340  47545.52350 135.9496672 

- X4    1  18611.46788  48521.45797 136.2747630 

- X5    1 177576.34391 207486.33400 159.5237125 

 

The <none> variable is always the dependent 

variable, and we look for the AIC values that are 

lower than that one. We see that the one lowest 

than that AIC is that of variable 7. R removes it 

and generates a new AIC for the next step. Then 

the program starts over, beginning with the now-

reduced model 
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Step:  AIC=128.55 

Y ~ X4 + X5 + X6 

 

       Df    Sum of Sq          RSS         AIC 

<none>                  29941.50816 128.5505969 

- X4    1  21582.71512  51524.22328 135.2354977 

- X6    1  25323.77157  55265.27974 136.3569826 

- X5    1 182310.16773 212251.67589 157.8870284 

 

Call: 

lm(formula = Y ~ X4 + X5 + X6) 

 

Coefficients: 

(Intercept)           X4           X5           X6   

383.4489316   17.3716578   34.9262970   11.2862945   

 

Since the program eliminated variables 4 and 6 before it concluded, the reduced linear model is 

displayed, and is Y ~ X4 + X5 + X6 

 

This is the reduced linear model, with the X7 (Sodium) variable excluded. This result is consistent 

with our previous findings with the original simple regression analysis of Sodium against Energy, 

as well as with the multiple regression in which we began to suspect that Sodium is not 

associated with the dependent variable. We are then able to analyze this reduced model against 

the full model using an ANOVA or summary function. 

 

FINAL ANOVA ANALYSIS 

 The last step in our evaluation is to run an ANOVA on the reduced model versus the full model to 

decide whether or not the reduced model is truly the ideal option. The test we use is the general F 

test for model comparison.  

 The null hypothesis is: 

H0: coefficients in j but not included in k = 0 

In other words, the parsimonious model is preferred. The parsimonious (more simple) model is 

always preferred unless there is significant statistical proof otherwise. Thus the null hypothesis 

implies that the reduced model is more ideal. 

 The alternative hypothesis is: 

H1: at least some of these coefficients not 0 

This is to say that there is statistical reason to prefer the full model over the more parsimonious 

reduced model. 

 
FM=lm(Y~X4+X5+X6+X7) 
RM=lm(Y~X4+X5+X6) 
anova(RM,FM) 

 
Analysis of Variance Table 
 
Model 1: Y ~ X4 + X5 + X6 
Model 2: Y ~ X4 + X5 + X6 + X7 
  Res.Df         RSS Df   Sum of Sq       F Pr(>F) 
1     12 29941.50816                               
2     11 29909.99009  1 31.51807241 0.01159 0.9162 

In this step, we see that the lowest AIC value is 

that of the dependent variable, which is the 

program‘s cue to stop. This is because the object 

is to have the dependent variable have the lowest 

AIC value of all of the variables in the model. 
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This table‘s most important feature is the p-value, 0.9162. Since this p-value is not less than 

alpha, we are not able to reject our null hypothesis. Thus we retain the null hypothesis, which 

implies that the parsimonious model is preferred. We conclude that the reduced model is 

preferred, and thus that the model including only variables X4, X5 and X6 (Protein, Fat, and 

Carbo) are meaning full in relation to the dependent variable of the model (Energy).  

 

Based on a series of statistical analyses, we conclude that the optimal 

linear model for this dataset is the reduced model Y ~ X4 + X5 + X6. 

 
 


