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Linear modeling 

Linear modeling is a powerful tool in data analysis designed to use regression to demonstrate 
a relationship between a dependent variable and one or multiple independent variables. Simple 
regression involves an x-y relationship however multiple regressions allows for any number of 
x's and one y. Multiple regression is incredibly useful for analyzing very large data sets with a 
multitude of variables. At times a data set has more variables than are necessarily predictive of 
the dependent variable. There are methods that can be used to reduce a linear model to a smaller 
more optimal variation. 

 To begin let’s look at the following data set: 
             Data=read. table ("ZarEX7.4.txt",header=T) 
 
 

Faculty Salary Simulated Data 

Faculty Salary Gender Rank Dept Years Merit
1 38 0 3 1 0 1.47
2 58 1 2 2 8 4.38

3 80 1 3      1 9 3.65

4 30 1 1 1 0 1.64
5 50 1 1 3 0 2.54
6 49 1 1 3 1 2.06
7 45 0 3 1 4 4.76
8 42 1 1 2 0 3.05
9 59 0 3 3 3 2.73
10 47 1 2 1 0 3.14
11 34 0 1 1 3 4.42
12 53 0 2 3 0 2.36
13 35 1 1 1 1 4.29
14 42 0 1 2 2 3.81
15 42 0 1 2 2 3.84
16 51 0 3 2 7 3.15
17 51 1 2 1 8 5.07
18 40 0 1 2 3 2.73
19 48 1 2 1 1 3.56
20 34 1 1 1 7 3.54
21 46 1 2 1 2 2.71
22 45 0 1 2 6 5.18
23 50 1 1 3 2 2.66
24 61 0 3 3 3 3.7



25 62 1 3 1 2 3.75
26 51 0 1 3 8 3.96
27 59 0 3 3 0 2.88
28 65 1 2 3 5 3.37
29 49 0 1 3 0 2.84
30 37 1 1 1 9 5.12

Here is a description on what the numbers mean  

Faculty Salary Simulated Data 

 

Here is a description on what the numbers mea 

 

 

 

 

*Also note there are many different variables, and some of these variables are factors; treatment 
classes with multiple levels. The key to what these different factors mean is presented to the 
right. 

For this example Salary will be used as the dependent variable while the other variables will be 
used as independent variables to predict the values of Salary. 

 

Simple Regression: 
To begin let us look at how a simple regression using this data set might appear. 
Salary will be the dependent variable and Gender will be used as the independent variable. 
For this question we might ask if the variable Gender shows a significant correlation to Salary. 
Such a correlation would show a disparity in pay between different genders, a question that some 
might ask as a means to demonstrate inequality in the workplace. Worded as a null hypothesis: 
 
Ho: Β = 0, Gender has no correlation to Salary 
H1: Β ≠ 0, there is a correlation between Gender and Salary. 
 
 
The first step is to actually generate the linear model. This is done very simply in R via the linear 
model function 
>attach(Data) 
>X=factor(Gender) 
>Y=Salary 
>LM=lm(Y~X)                         #The variable LM is now assigned to our linear model 

  Salary  
  Gender (0=Male, 1=Female)  
  Rank (1=Assistant, 2=Associate, 3=Full)  
  Dept Department (1=Family Studies, 2=Biology, 
3=Business)  
  Years since making Rank  
  Average Merit Ranking 

 



>LM 
Call:lm(formula = Y ~ X) 
 
Coefficients: 
(Intercept)           X1   
47.786        1.214 
 

To analyze the linear model we can do any of three things, and it is generally useful to do all 
three. 
 
*The first would be a graphical representation, but as Gender is a factor with only two levels this 
is not a useful analysis here. It is also less useful in that it is difficult to apply to multiple 
regressions. 
 
* The second is the summary function. 
>summary(LM) 
Residuals: 
    Min      1Q  Median      3Q     Max  
‐19.000  ‐6.696  ‐0.500   4.714  31.000  
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   47.786      2.930  16.307 7.94e‐16 *** 
X1             1.214      4.013   0.303    0.764     
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
Residual standard error: 10.96 on 28 degrees of freedom 
Multiple R‐squared: 0.00326,    Adjusted R‐squared: ‐0.03234  

F‐statistic: 0.09157 on 1 and 28 DF,  p‐value: 0.7644. 
 
Interpretation:    

For the null hypothesis asked above we are concerned with the t-test for β = 0. The values 
for this test are found in the row labeled X1. The t-value was .303 and the p-value was .764. The 
p-value is greater than α=.05 therefore we cannot reject the null hypothesis and instead accept it. 
Β is roughly equivalent to 0. 
In the terms of the question asked, we can draw the conclusion that Gender does not demonstrate 
a significant impact upon salary. All in all the pay in this workplace appears to be fair between 
genders. The summary function generates several useful values for us. It also runs two basic t-
tests to determine if the α value is 0, and if the slope of the regression line, β, is 0. It also 
generates an r-squared value, the coefficient of correlation. 
For these t-tests we follow a standard decision rule that if p is less than the standard type I error 
rate α=.05 then we reject the null hypothesis, otherwise we accept the null hypothesis 
 
*The third method of analysis is to use the anova function. 
>anova(LM) 
 
Analysis of Variance Table 
 



Response: Y 
          Df Sum Sq Mean Sq F value Pr(>F) 
X          1   11.0   11.01  0.0916 0.7644 
Residuals 28 3366.4  120.23 
 
 
 
Interpretation:  

This generates an ANOVA table along with running an ANOVA F-test for β=0. 
For this test we obtained an F-value of .0916, and a p value of .7644. Note that the p-value 
between the t-test in the summary table is effectively equivalent to the p-value from this test. 
These tests ask the same question and generate the same result. 
All the same conclusions drawn from the t-test above can also be generated from this anova 
table. Both the summary function and the linear model function are highly useful in analyzing 
multiple regressions as well. 
 

Multiple Regression: 
In this dataset there are a multitude of other variables besides Gender that can be used to 

help predict the values of Salary. To analyze the data in terms of all of these variables it is 
possible to generate a linear model using all of these variables as independent variables. 
Before we can generate these variables, however, there is one problem to consider. While a 
linear model can use a factor as an independent variable with no special considerations if it has 
only two levels which are reduced to 1 and 0, some consideration is required for factors with 
more than two levels. Fortunately, R has a very powerful means of doing all the dummy coding 
required to properly analyze these factors, the factor() function. This function specifies that a 
variable is a factor and in doing so covers all the required considerations. As long as you are 
careful to specify variables as factors when necessary this will not be a problem. 
Now with the factor() function in mind we can generate a linear model for a multiple regression: 
 
>Y=Salary 
>X1=Gender 
>X2=factor(Rank) 
>X3=factor(Dept) 
>X4=factor(Years) 
>X5=Merit 
>LM=lm(Y~X1+X2+X3+X4+X5)                 to specify multiple x's in the lm function we just 
put a + for each additional X 
>LM 
Call: 
lm(formula = Y ~ X1 + X2 + X3 + X4 + X5) 

Coefficients: 
(Intercept)           X1          X22          X23          X32          X33   
     24.172        6.273       10.596       18.877        8.607       15.021   
        X41          X42          X43          X44          X45          X46   
      1.385        4.436        1.496       ‐3.281        5.234        6.527   



        X47          X48          X49           X5   
     ‐2.227        5.126       13.797        1.099   
 
 
 

The first and broadest question to ask in multiple regressions is if any of the variables are having 
any effect on y. This is the overall F-test for all β=0: 
Ho: all slopes, all β = 0 
H1: at least one β for any variable =/= 0 
To run this test in R we once again use the summary function 
>summary(LM) 
 

Residuals: 
       Min         1Q     Median         3Q        Max  
‐1.287e+01 ‐2.149e+00 ‐7.070e‐16  1.854e+00  1.287e+01  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   24.172      7.241   3.338 0.004878 **  
X1             6.273      3.444   1.821 0.089969 .   
X22           10.596      3.513   3.016 0.009248 **  
X23           18.877      3.255   5.799 4.61e‐05 *** 
X32            8.607      3.706   2.323 0.035782 *   
X33           15.021      3.448   4.356 0.000658 *** 
X41            1.385      4.695   0.295 0.772291     
X42            4.436      4.002   1.108 0.286330     
X43            1.496      4.515   0.331 0.745355     
X44           ‐3.281      8.638  ‐0.380 0.709769     
X45            5.234      7.851   0.667 0.515810     
X46            6.527      8.722   0.748 0.466649     
X47           ‐2.227      5.532  ‐0.403 0.693282     
X48            5.126      5.891   0.870 0.398896     
X49           13.797      6.684   2.064 0.058034 .   
X5             1.099      2.025   0.543 0.595766     
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 6.164 on 14 degrees of freedom 
Multiple R‐squared: 0.8425,     Adjusted R‐squared: 0.6738  
F‐statistic: 4.993 on 15 and 14 DF,  p‐value: 0.002261  
 

Interpretation:  
In the case of multiple regressions the summary function reports far more information 

than in simple regression. For this particular test we are only interested in the very last line, in 
which an F statistic of 4.933 and a p-value of .002261 are reported. Those values are the values 
specifically for the over-all test. In this case the p-value is less than .05, meaning we reject the 
null hypothesis that all β=0. 



 
Now that we have determined that at least one variable has an effect we can now try to determine 
which of the specific variables is having an effect.  
The summary function has reported a complex summary due to the fact that we have specified 
many of the variables as factors. As such it has tried to separate out the factors into a separate 
factor for each of the levels. For each of these variables, a partial t-test is run. This partial t-test is 
roughly equivalent to the t-test for β=0 for simple regression seen in the simple regression. 
However, in multiple regressions it does this for each of the variables in a marginal manner, 
meaning it does it for one independent of the others, then for the next, and so on. The null 
hypothesis is also identical for the test in the summary of the simple regression. 
 

 

In this manner we can look at the summary table and determine which variables we think are 
significant based on which marginal tests generated a p-value less than .05. From our summary 
table it looks as though the most important variables are Rank and Dept. Within these variables 
the differences in the treatment classes are also significant. 
 
The data for a multiple regression can also be analyzed via the anova function. 
>anova(LM) 
 
Analysis of Variance Table 
Response: Y 
          Df  Sum Sq Mean Sq F value    Pr(>F)     
X1         1   11.01   11.01  0.2898 0.5988122     
X2         2 1357.93  678.97 17.8714 0.0001399 *** 
X3         2  935.73  467.86 12.3148 0.0008212 *** 
X4         9  529.62   58.85  1.5489 0.2232873     
X5         1   11.20   11.20  0.2947 0.5957665     
Residuals 14  531.89   37.99                       
‐‐‐ 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
 
 

Description of multiple regressions in R:  

  In multiple regressions R reports a very different set of results than in simple regression. 
The anova function in multiple regressions runs a serial test, which refers to a test in which one 
variable is added and then the linear models with and without that variable is compared. A serial 
test does this for each variable, adding each variable one at a time. In this manner the serial test 
compares the linear model of Y to Y~X1, then Y~X1 to Y~X1+X2 then Y~X1+X2 to 
Y~X1+X2+X3 etc. until it reaches the last variable. The anova function runs the serial test in the 
order that you specified when you created your linear model. The F and p-values generated 
reflect whether the addition of that variable affected the linear model in a significant manner. 



From this anova we can determine that Years and Merit may be unimportant to the prediction of 
Salary. 

 

There also exists a marginal alternative to the serial test of the anova function. This is called the 
Anova function. This function is not found pre-loaded in R. It is necessary to install and load the 
car package to use this function. 
>Anova(lm) 
Analysis of Variance Table 
 
Response: Y 
          Df  Sum Sq Mean Sq F value    Pr(>F)     
X1         1   11.01   11.01  0.2898 0.5988122     
X2         2 1357.93  678.97 17.8714 0.0001399 *** 
X3         2  935.73  467.86 12.3148 0.0008212 *** 
X4         9  529.62   58.85  1.5489 0.2232873     
X5         1   11.20   11.20  0.2947 0.5957665     
Residuals 14  531.89   37.99                       
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Interpretation: 

The marginal test compares the full linear model we specified to reduced versions of the 
model. The first row labeled X1 is the comparison of the full model to the same model without 
the variable X1. Each other row is the comparison for when that variable is removed and all the 
others remain. From this table we can determine similar results as from the anova table; Years 
and Merit appear not to be useful in the model. 
 

 

Choosing an Optimal Model: 
The anova function and the Anova function are examples of methods by which the full 

linear model specified is compared to reduced versions to try and determine if some variables in 
the model may be unnecessary. The optimal linear model is one in which only the variables 
which are deemed necessary remain. It is the simplest model possible that still has the most 
predictive power.  
 
For this example the goal is to generate an optimal model that predicts Salary without 
unnecessary variables. As outlined above Years and Merit look as though they may be 
unnecessary in the model. There exists other ways to determine more quantitatively which model 
is more optimal. 
 
One of these is the Akaike's Information Criterion (AIC). By measuring certain changes between 
a full model and a reduced model and generating an AIC value for each it is possible to say 
which of the models is more optimal. AIC values can be calculated via a long-hand method in R; 
however R has three very useful functions for generating AIC values quickly. When interpreting 



AIC values, the best model is the model with the lowest AIC value. At times this is the AIC 
value that is most negative. 
 
 
 
The AIC value can be calculated explicitly for any model via the extract AIC function 
>extractAIC(LM) 
[1]  16.0000 118.2569 

We can compare this value to AIC values for any reduced model that we wish to specify. For 
example let us look at two reduced models: 

>RM1=lm(Y~X1+X2+X3+X4) 
>extractAIC(RM1) 
[1]  15.0000 116.8818 
 
>RM2=lm(Y~X1+X2+X3) 
>extractAIC(RM2) 
[1]   6.0000 119.3021 

Interpretation: 

Extract AIC reports both a degrees of freedom and the AIC value, the AIC value is the 
value on the right. From this comparison we can see that removing Merit, in comparison to the 
full model, gives a lower AIC value. However, if both Merit and Years are removed together, the 
AIC value is higher than that of the full model. In this case we might say that either Years or 
Merit are necessary variables but not both. 

 
The drop1 function is a marginal test that removes the variables one at a time, generates and then 
generates an AIC value for the reduced model of losing that one variable. 
>drop1(LM) 
 
Single term deletions 
 
Model: 
Y ~ X1 + X2 + X3 + X4 + X5 
       Df Sum of Sq     RSS    AIC 
<none>               531.89 118.26 
X1      1    126.05  657.93 122.64 
X2      2   1479.11 2010.99 154.16 
X3      2    723.24 1255.12 140.01 
X4      9    325.03  856.91 114.56 
X5      1     11.20  543.08 116.88 
 
Interpretation: 



In this case we can see that the AIC values that are lowest are for removing Years and 
Merit. This agrees with the Anova function tests earlier. 
 
There is also an automated version of the drop1 function called the step function. 
>step(LM) 
Start:  AIC=118.26 
Y ~ X1 + X2 + X3 + X4 + X5 
 
       Df Sum of Sq     RSS    AIC 
‐ X4    9    325.03  856.91 114.56 
‐ X5    1     11.20  543.08 116.88 
<none>               531.89 118.26 
‐ X1    1    126.05  657.93 122.64 
‐ X3    2    723.24 1255.12 140.01 
‐ X2    2   1479.11 2010.99 154.16 
 
Step:  AIC=114.56 
Y ~ X1 + X2 + X3 + X5 
 
       Df Sum of Sq     RSS    AIC 
<none>               856.91 114.56 
‐ X5    1    215.79 1072.70 119.30 
‐ X1    1    398.46 1255.37 124.02 
‐ X3    2   1137.29 1994.20 135.90 
‐ X2    2   1730.96 2587.87 143.72 
 
Call: 
lm(formula = Y ~ X1 + X2 + X3 + X5) 
 
Coefficients: 
(Intercept)           X1          X22          X23          X32          X33   
     18.069        9.186        9.975       19.340        9.501       16.229   
         X5   
      3.035   
 

Interpretation: 
 The step function runs a drop1, chooses the reduced model that has the lowest AIC value, 
and then runs a drop1 on that reduced model, treating it as though it were a new full model. The 
step function continues doing this until it finds that the 'full' model for that particular step has the 
lowest AIC value. In this example the step function removed X4 from the model based on the 
first drop1, and then in the second step the 'full model', a reduced model of Y~X1+X2+X3+X5, a 
removal of the variable years, gives the lowest AIC value and is thus the most optimal model. 
This agrees with the conclusions drawn from explicitly calculating AIC values above. 
 
 

GLM F-test  
 



Another method that can be used to compare a full model to a reduced model without 
using AIC values is the GLM F-test using the anova function. This test compares a full model to 
a reduced model under the following null hypotheses: 
 
 
Ho: coefficients, or β, in the full model but NOT INCLUDED in the reduced model = 0 
H1: at least one coefficient, or β, in the full model but not in the reduced model  ≠0 
 

In simpler terms, the null hypothesis is that all the variables that were excluded from the 
reduced model have no significant effect on the prediction of the independent variable, as 
defined by the β being 0. Acceptance of the null hypothesis is effectively acceptance of the 
reduced model as a more optimal model.  
 
To run this test we must specify a full model and a reduced model, and then run an anova 
function. 
>FullModel=LM 
>ReducedModel=lm(Y~X1+X2+X3+X5) 
>anova(ReducedModel,FullModel) 
 
For this Analysis of Variance Table 
 
Model 1: Y ~ X1 + X2 + X3 + X5 
Model 2: Y ~ X1 + X2 + X3 + X4 + X5 
  Res.Df    RSS Df Sum of Sq      F Pr(>F) 
1     23 856.91                            
2     14 531.89  9    325.03 0.9506  0.515 
 
Intepretation:  
 
 For this test a p-value greater than .05 was generated, signifying acceptance of the null 
hypothesis. The reduced model is a more optimal model. 
 
 
Conclusion: 

 
Using a multitude of different tests to determine which is a more optimal model we were 

able to prove that a reduced model using only the variables Gender, Rank, Dept, and Merit has 
effectively the same predictive power as the full dataset given at the start that also included the 
variable Years. Multiple regressions is a very powerful tool to take a large dataset and simplify it 
into a more parsimonious set. Moreover, we were also able to demonstrate that Multiple 
regression is able to demonstrate significance in variables that when taken alone do not appear 
significant but when put in the context of a larger set of data have an impact on the response 
variable. In the simple regression we were not able to demonstrate a significant impact of gender 
alone on Salary, however, in the multiple regression Gender consistently proved to be a variable 
that was necessary to the analysis of the data. Variables that may appear unimportant can prove 
to have a great effect in the context of more data and as such it is always more useful to use a 



multiple regression to determine an optimal model rather than trying to use many simple 
regressions to throw out certain variables. 
 
 
 


