Introduction:
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General Linear Modeling

e General Linear Modeling is the new hot thing in statistics. The idea of this category of statistical

tests is that it tries to fit the values of a dependent variable, Y, to an explanatory variable using a

linear function.

e We found data that recorded the petroleum tax (cents per gallon), average income (dollars),

paved highways (miles), Proportion of population with driver’s licenses, and the gallons of

petroleum consumed (millions). The gallons of petroleum consumed is the dependent variable

because the explanatory variables affect this directly.

Multiple Linear Regression:

e Since our data has more than one explanatory variable we can compare them all at once using in

R using multiple regression. The data looks like this:

R R Conscle
> data

I Tax
1 1 9.00
2 2 9.00
3 3 9.00
4 4 T.50
o o 8.00
& & 10.00
T T .00
o] o] .00
=] =] 8.00
10 10 T .00
11 11 8.00
1z 12 T.50
13 13 T.00
14 14 T .00
15 15 T.00
1l 1la T.00
17 17 T.00
18 18 T.00
19 19 T.00
20 20 &.50
21 21 T.00
22 22 8.00
24 2z o.oo
24 24 9.00
25 25 .50
20 2o 9.00
27T 27 .00
28 28 T.50
29 239 .00
30 30 9.00

Inc
3571
4092
3865
4870
4399
5342
5319
5126
4447
4512
4391
5126
4817
4207
4332
4318
4206
3718
4716
4341
4593
4983
4897
4258
4574
3721
3448
3846
4188
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1974
1250
1588
2351
431
1333
11868
ziss
8577
8507
5939
14186
5930
6580
2159
10340
8508
4725
5915
6010
TEI4
602
Z449
4688
Z6139
4745
5399
9061
975
4550
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e Model
Where:
Yi=BiXqi+ BoXoi + BsXg +a+ g a = is the intercept of the regression line
Bi = is the slope of the regression line for each X variable
&i = the residuals of the prediction of Y given they are
normal and random

e Overall F-test for Multiple Regression:
e Hy: all Bs = 0-->there is no relation between the variables

e Hjatleastl Bs#0

e Partial T/F-tests of single Coefficients:

o Hypotheses:
e Hy: Asingle B =0 -->There is no relation between the variables
e Hi: Asingle B #0-->There is a relation between the variable

o Test Statistic:
ot b;/sb
o Fii g 2

o Decision Rule:
e If P < a reject the null hypothesis
e If P> a fail to reject the null hypothesis

(o] e

Im(formula = ¥ ~ X1 + X2 + X3 + X4)

Residuals:
Min 1Q Median 3Q Max
-122.03 -45.57 -10.&6 31.53 234.%95

Coefficients:
Estimate Std. Error t wvalue Pr(>|t]|

(Intercept) 3.773e+02 1.855e+02 2.033 0.048207 *
X1 -3.47%e+01 1.297e+01 -2.682 0.010332 *
X2 -6.65%9e-02 1.722e-02 -3.867 0.000368 #*¥
X3 -2.426e-03 3.389e-03 -0.716 0.477989

X4 1.336e+03 1.923e+02 6.950 1.52e-08 #*#%

S5ignif. codes: 0 “*%*f (0,001 ***f Q0,01 **f Q.05 *." 0.1 * " 1

m

Residual standard error: 66.31 on 43 degrees of freedom
Multiple R—=guared: 0.&787, Adjusted R-=quared: 0.&488
F-statistic: 22.71 on 4 and 43 DF, p-value: 3.5%07e-10
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Conclusion:
The overall p-value (3.907x10'%) is less than alpha of .05 (chosen a priori), so we reject the null
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hypothesis and conclude that at least one of the slopes is not equal to zero.

Looking at the partial t-tests, we see that the p-value for the t-test regarding variable X3 fails to

reject the null hypothesis. This means that this single B is equal to 0. It would follow that since

this variable seems to not be relating to the dependent variable, we can take that variable out of

the linear model in order to achieve a reduced, optimal model that will reduce the sums of

square error and create a more parsimonious model.

R R Console

> RM1=Im (Y~X1+¥X2+X4)
> summary (EM1)

Call:

Im{formula

Y ~ X1 + X2 + X4)

Residuals:

Min 10 Median g
-110.10 -51.22 -12._.8%9 24 .45 23
Coefficients:

Eztimate 5td. Error t
[(Intercept) 307.32790 156.83067
X1 -29.48381 10.58358
X2 -0.06802 0.01701
X4 1374.76841 183.665954
Signif. codes: 0 Ye&¥&%F [ 001 ‘w®r

Rezidual standard error:
Multiple R-sguared: 0.&6749,
F-statistic: 30.44 on 3 and

Conclusion for RM1:

Max

g T7
o./f/

value
1.960
-2.786
-3.9%589
7.485

0.01

TEr

Here is the new reduced model without variable X3:

(=8 s
.
Fr({>|t])
0.056394
0.007848 **
0.00024D #**
2.24e-09 ®*%
0.05 .7 0.1 * " 1

65.94 on 44 degrees of freedom

Adjusted R-sguared: 0.6527

44 DF,

(1]

p—-value:

8.235e-11

m

Now the p-value for the overall F-test is 8.235x10™". This is still less than alpha so the null

hypothesis is still rejected.

Now looking at the partial t-tests, and none of the p-values are greater than alpha, so variables

X1, X2, X3 seem all to be important and relate to the dependent variable.
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Comparing Models:

e Now that there are two models, it is beneficial to compare them using the general F-test for
model comparison.

e This test will determine whether the fewer variables of the reduced model are sufficient enough
to explain the dependent variable, Y in the data set.
GLM F-test:
Assumptions:
e Y--->Y,is random and normal and specified before the test.

®  X-—>X, are fixed variables and are matched to a specific Y

Model: Where:
o Yi=Bo+2IBX +ei Bo=the y intercept of the regression line
o  Yi=Bo+IBX+e&i B;=are the slopes for the full model

g; = the error factor of Y and a random
normal variable

Hypothesis:
e Hy: the slope coefficients in J but not included in K are = 0.
e Hj: atleast one of these coefficients is not 0.

Example:

R R Console EI@ |

e
> anowva (EM1, LM)

Analysis of Variance Tabkle

MHodel 1: ¥ ~ X1 + X2 + X4
Model 2: ¥ ~ X1 + X2 + X3 + X4

Bes.Df ES5 Df Sum of Sg F Er(>F)

1 44 1891302

2 43 188050 1 2252.5 0.5123 0.478

=

F [;
Conclusion:

e Since the p-value is .478, you fail to reject the null hypothesis and conclude that the
reduced model is sufficient enough to describe the dependent variable, Y.
e So now | am sure that | have a good reduced model with RM1.
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Choosing an optimal linear model

e Creating an optimal linear model is sometimes very difficult. There are ways to help you to
reduce a full model into an optimal linear model based on parsimony.
Akaike’s information criterion
e This is a criterion that reports the parsimony of the model. This can be utilized using the
extractAlIC() function in R.
e A good way to go about doing this is utilizing the automated tests in R.
Drop 1:
This is an automated test that drops one variable at a time from a specified full model and calculates
the AIC for each independent varaible. Here is a the Drop one applied to my example

R R Console E'@

-
> dropl (LM)
Single term deletions

HModel:
¥ o~ ¥1 + X2 + ¥3 + X4
Df Sum of 5g R55 ATC

<none> 1859050 407.37

1 1 31632 220882 412.80

¥z 1 f5729 254779 419.&8%

X3 1 2252 191302 405.94

¥a 1 212355 401405 441.51

>

4 2
Conclusion:

e Since variable X3 has the lowest AIC, it would follow to possibly eliminate that variable from
the full model and only have variables X1, X2, and X4 in the reduced model...the same
conclusion that was taken from the summary() function shown above.



Backwards Stepwise Regression:
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e This is another automated way of utilizing AIC to create an optimal linear model. This

removes the variable with the smallest AIC for each round until a reduced model comes
about that has the lowest AlC.

R R Console

> step (LM, direction="backward")

Start: ATIC=407.37

¥ ~ K1 + K2 + K3 + K4

Df Sum of S5g

- X3 1 2252
<none>

- X1 1 31632
- X2 1 65729
- X4 1 212355

Step: AIC=405.94
T ~ K1 + ¥2 + X4

Df Sum of S5g

<none

- X1 1 33742

- X2 1 69532

- X4 1 243586

Call:

Im{formala = ¥ ~ X1

Coefficients:

[Intercept)
307.32790 —-29. 41

> |

4

e Conclusion:

R55
131302
185050
220882
254773
401405

R55
191302
225044
260834
434889

+ X2 +

I

ATC
405.94
407.37
412.8
419.69
441.51

AIC
405.94
411.74
418.82

443,36

X4)

-0.06802 1374.76841

(= ][O s

-

X2 X4

e At the start of this test, the full model is Y ~ X1 +X2+X3+X4. The test drops the variable with the
lowest AIC (X3) and compares that reduced model to the full model.

o Now Y ~ X1 +X2+X4 is the full model and it drops the variable with the lowest AIC and compares
it with the AIC of the full model. Since the full model has the lowest AIC, the test stops there.
Conclude that Y ~ X1+X2+X4 is a possible optimal linear model.

e Overall Conclusion:

e According to the tests we performed, X3 (the miles of highway) had no bearing on the

dependent variable as shown above. This variable does not contribute to the gallons of gas

consumed for a couple of reasons. First off, cars will get better gas mileage on a highway. So
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countries with more highways will consume less gas. Also, people may not even use the
highway is the system if the country has a successful public transportation system. This would
lessen the amount of people driving and lower the gas consumption of the country, devaluing
the highways relation to the gas consumption.



