AM 010 Loess Regression & Cubic Splines

ORIGIN = 0 Localized Polynomial Regression & Splines

Localized Polynomial Regression, termed "loess" or "lowess" more-or-less synonymously (although some
authors imply weighted for the latter), comprise a family of methods designed to fit complex curvilinear
data. The general principal involves using a variant of least-squares regression to fit various order
polynomial functions, sometimes weighted, to local regions of the curve, followed by seamless splicing of all
fits into a single, often complex, overall curve. Within usual implementations of the method are
parameters that allow one to define complexity of each sub-curve and the size of local regions. These
parameters often need adjustment in order to produce visually acceptable results. The general purpose for
most applications of loess is graphic visualization and heuristic description of the data without further
testing. Recent advancements with General Additive Models (GAM), however, allow users to compare
curvilinear models in a way analogous to Linear Models. For examples of testing with GAM, see Worksheet
AM 020. For further details on the method of loess fitting, see:
http://en.wikipedia.org/wiki/Local_regression.

This example is drawn from Zuur et al. 2009, Mixed Effects Models and Extensions in Ecology with R, although
the data is not used as they intended.

Example in R:
The data "clams.txt" was input and

#READING AND SORTING DATA FRAME ON LENGTH then the entire dataframe was sorted
setwd("c:/DATA/Models") based on values in the column labeled
L=read.table("clams.txt",header=T) "LENGTH". This is a useful example
L of the syntax in R that allows effortless
LL=L[order(LSLENGTH), ] sorting. However, many users may
#order() SORTS DATA FRAME BY ROWS USING VARIALBLE LENGTH prefer to sort in a spreadsheet such as
#NOTE USE OF , TO INDICATE SORT BY ROWS MS Excel.

LL

length(LLSAFD) >LL

MONTH LENGTH AFD LNLENGTH LNAFD

>|ength(LL$AFD) 278 4 5.66 0.002 1.733 -6.215

[1] 398 279 4 5.82 0.002 1.761 -6.502

277 4 5.99 0.002 1.790 -6.266

276 4 7.13 0.003 1.964 -5.952

Total length of the dataset is 398. Sorting 274 4  7.46 0.004 2.010 -5.449
messes up order of numerals in the first colum, ...

but this doesn't affect R's use of the data. 6 11 28.13 0.187 3.337 -1.679

1 11 28.38 0.248 3.346 -1.394

#USING loess() FIT OF DATA IN R BASE PACKAGE 229 2 28.83 0.271 3.361 -1.307

LOW=Ioess(AFD"’LENGTH,data=LL) 253 4 29.01 0.250 3.368 -1.387

summary(LOW) 227 2 29.13 0.342 3.372 -1.074

245 4 30.25 0.274 3.409 -1.295

196 2 30.32 0.366 3.412 -1.006

212 2 30.37 0.336 3.413 -1.092

205 2 30.59 0.314 3.421 -1.157

198 2 30.85 0.312 3.429 -1.165

211 2 31.32 0.338 3.444 -1.086

200 2 31.63 0.420 3.454 -0.868

7 11 32.58 0.361 3.484 -1.020

199 2 34.19 0.565 3.532 -0.572

#PLOTTING ORIGINAL DATA & loess() PREDICTION

#BY CALLING VARIABLES WITHIN LL USING $
plot(LLSLENGTH,LLSAFD,pch=19,col="blue',xlab="LENGTH",ylab="AFD")
points(LLSLENGTH, predict(LOW),type="l',col="red’)
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> summary(LOW)
Call:
loess (formula = AFD ~ LENGTH, data = LL)

Number of Observations: 398
Equivalent Number of Parameters: 4.77
Residual Standard Error: 0.01557
Trace of smoother matrix: 5.21

Control settings:
normalize: TRUE

span : 0.75

degree : 2

family :  gaussian

surface : interpolate cell = 0.2
> LOW
Call:

loess (formula = AFD ~ LENGTH, data = LL)

Number of Observations: 398
Equivalent Number of Parameters: 4.77
Residual Standard Error: 0.01557
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Cubic (and other) Splines

An increasingly popular alternative to Polynomial curve fitting is the use of Splines (Cubic Spline,
Thin-plate Splines, and others) to fit a curvilinear pattern. As a means for visualizing the shape of a
complex curve, differences between all methods are usually very small. The {mgcv} package in R
implements Spline fits called "smoothers'" as the basis for GAM models. The same data will be fit with a
Cubic Spline for comparison here.

#CUBIC SPLINE

library(mgcv)
LLG=gam(AFD~s(LENGTH, fx=F, k=-1,bs='cr'),data=LL)
LLG

summary(LLG) > summary(LLG)

Family: gaussian
Link function: identity

Formula:
AFD ~ s (LENGTH, fx = F, k = -1, bs

"cr")

Parametric coefficients:
Estimate Std. Error t value Pr(>]|t])
(Intercept) 0.0842136 0.0007729 109 <2e-16 ***

Signif. codes: 0 ‘Y***’ (0,001 ‘**’ 0.01 ‘*’ 0.05 '.” 0.1 * " 1

Approximate significance of smooth terms:
edf Ref.df F p-value
s (LENGTH) 6.47 7.511 1222 <2e-16 ***

Signif. codes: 0 ‘***’/ (0.001 ‘**’ 0.01 “*’ 0.05 '.” 0.1 Y ' 1

R-sqg. (adj) = 0.959 Deviance explained = 95.9%
GCV score = 0.00024231 Scale est. = 0.00023777 n

398

~ see Worksheet AM 020 for interpretation of the

#CALCULATING FIT & CONFIDENCE BOUNDS . .
summary(), in turn calling summary.gam(), results.

LLGpred=predict(LLG,se=T,type="response’)
LLGpredF=LLGpredS$fit
LLGpredU=LLGpredSfit+2*LLGpredSse
LLGpredL=LLGpred$fit-2*LLGpredSse

Predicted Values for the cubic spline fit are extracted by the generic function predict(), which calls
predict.gam(), which in turn makes the object LLGpred. From this, one extracts the values of fit using the
construction LLGpred$fit. Zuur et al. also use the standard error of the prediction (fit) in LLGpredS$se to
calculate an approximate 95% Confidence Interval. This is done by adding and subtracting LLG$fit by
2*LLGpred$se.
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#PLOTTING DATA & gam() FIT WITH APPROXIMATE 95% CONFIDENCE BOUNDS
plot(LLSLENGTH,LLSAFD,pch=19,col="blue',xlab="LENGTH",ylab="AFD")
points(LLSLENGTH,LLGpredF,type='l',col='green’)
points(LLSLENGTH,LLGpredU,type="l',col="red")
points(LLSLENGTH,LLGpredL,type="l',col="brown')
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