AM 020 GAM Regression Splines

ORIGIN = 0 General Additive Models using Regression Splines

In constructing a statistical model for non-linear relationships between a dependent variable and multiple
independent variables, common strategies include transforming variables (such as taking the square root or
log) or employing higher-order terms (involving squares, cubes) in a linear model. These strategies often
work quite well. Such linear models and estimated coefficients, transformed back into the equations in
units of the original variables, often form highly useful interpretations. (A good example of this is the
so-called “allometric” equation in assessing measured shape relationships in organisms, derived from
analysis of logged linear models.) However, when one wishes to describe a complex curvilinear relationship,
but no a priori rules exist for higher-order terms, curvilinear curve fitting may be used instead as a
heuristic. General Additive Models (GAM) form a flexible methodology for doing this. Employing cross
validation, an automated methodology exists to more-or-less objectively decide upon the degree of curvature
required for a specific curvilinear fit. In addition, evaluation of properly constructed GAMs, assessed with
AIC or by formal Full Model versus Reduced model test, is substantially analogous to that utilized in linear
models.

Shown here are are Additive Models (GAM with identity link) utilizing using the gam() function in the
{mgcv} package in R (part of the base installation). The example is derived from Chapter 3 in Zuur et al.
2009, Mixed Effects Models and Extensions in Ecology with R. This book is highly recommended as readable
introduction. However, changesin {mgcv} since publication of the book require reading of errata and use of
modified R scripts found on their website: http://www.highstat.com

Example in R: Zuur et al. provide a highly useful set of

instructions for extracting and working with a

#LOADING ZUUR ET AL'S ISIT EXAMPLE DATA subsample from a larger dataset, shown here.
H#EXTRACTING DATA FOR STATIONS 8 & 13 ONLY

#IF PREFERRED THIS MIGHT BE DONE INSTEAD IN MS EXCEL Their original dataset is available as a textfile
setwd("c:/DATA/Models") in a zip folder, or in the R package {AED}.
ISIT=read.table("ISIT.txt",header=T) The R package must be downloaded from
ISIT their website and installed using " Install
S8=ISITSSources[ISITSStation==8] package(s) from local zip files" option on the
D8=ISITSSampleDepth[ISITSStation==8] console main menu.
S$13=ISITSSources[ISITSStation==13]

D13=ISIT$SampleDepth[ISITSStation==13] Using their data set ISIT.txt, information for
So=c(S8, S13); observation stations 8 & 13 are extracted and
De=c(D8, D13) then subsampled for the same range of values
ID=rep(c(8, 13), c(length(S8), length(S13))) of De shared by the two sites. They then
mi=max(min(D8), min(D13)) proceed to work with this subsample directly.
ma=min(max(D8), max(D13))

11=De > mi & De < ma In what follows below, the subsample is
ISIT813=data.frame(So=So[l1],De=De[l1],ID=ID[I1]) written as the new dataset ISIT813.txt, and
ISIT813 then treated as if the data were instead
#NEW DATASET ISIT813 WRITTEN TO DISK modified externally using, for instance, MS
write.table(ISIT813,file="ISIT813.txt") Excel. This approach separates the problem of

using gam() from the problem of data
manipulation in R.

##IMPORTANT - RESTART R AT THIS POINT

HTHIS IS AS IF LOADING THE REVISED DATASET ISIT813 FROM SCRATCH Note: Restart R if proceeding
with the accompaning script.

#READING ISIT813 SUBSAMPLE DATA TABLE FROM DISK

setwd("c:/DATA/Models") Start work fresh at this point.

I=read.table("1SIT813.txt",header=T)

|
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#PLOTS FROM ISIT813 DATASET S|
op=par(mfrow = c(1, 2)) So  De ID
plot(ISDe[151D==8], 1$S0[I$ID==8], pch = 16, xlab = "Depth", 1 39.43 1417 8
ylab ="Sources", col = 1, main = "Station 8", 2 37.91 1167 8
xlim = ¢(500, 3000), ylim = c(0, 40)) 3 35.93 1452 8
4 35.78 1276 8
plot(1$De[1$1D==13], 1$S0[1$1D==13], pch = 16, xlab = "Depth", > 35.78 1521 8
ylab ="Sources", col = 1, main = "Station 13", s i;é: Egi :
xlim = ¢(500, 3000), ylim = c(0, 40)) 8 30:60 1487 8
parop) 9 30.14 1658 8
Station 8 Station 13 10 29.99 1239 8
o ] o 11 22.99 1692 8
. 12 20.25 682 8
., 61 2.67 1805 13
3 . . 3 62 2.67 1953 13
63 2.67 2213 13
64 2.48 1768 13
. 2 o 65 2.48 2503 13
] <, .. 5 | 66 2.29 1844 13
.. . ? * 67 2.10 1991 13
* . ‘e, 68 2.10 2140 13
. . . . 69 2.10 2175 13
= . - * ot 70 1.90 2468 13
IR 71 1.71 1918 13
t . S LN 72 1.71 2029 13
. o . s & 73 1.71 2250 13
T T T T T T T T T T T T 74 1.52 2431 13
500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000 75 1.33 2102 13

Depth Depth

#GAM MODEL FOR ISIT813 SINGLE CURVE WITH OFFSET ONLY
library(mgcv)

attach(l)

fiD=factor(ID)

M4=gam(So~s(De)+fID)

" Plots of original data

> anova(M4)

M4
anova(M4) Family: gaussian
summary(M4) Link function: identity
The "Formula" follows normal R syntax showing Formula:
So as the dependent variable and fID as a standard So ~ s(De) + fID

"parametric" factor. The s(De) term indicates a
"smoother" (i.e., non-parametric curve fit) for
numeric variable De. The P-value for parametric
fID tests the null hypothesis Hy: no difference
between stations 8 & 13 mean response.

Parametric Terms:
df F p-value

fID 1 77.46 7.59e-13

Approximate significance of smooth terms:

edf Ref.df

F p-value

Under description of the smooth term:
edf = "effective degrees of freedom:

s (De)

4.849

5.904 14.77 1.2e-10

edf = 1 linear relationship is sufficient.

edf > 1 higher numbers indicate greater

amounts of curvature are required.

Test Statistic F and associated P-values are not adequately
defined in Zuur et al., but according to the R documentation
for summary.gam(), this tests the whether the smoother
term s() should be in the model or not. Like the general
F-test of nested models, the Null hypothesis H, (Reduced
Model) excludes the s() term whereas H; includes it.

P-values are only approximate and must be used with great
caution when near 0.05.
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Parametric coefficients for
factors may be interpreted in
the same way as in standard
ANOVA. Because "treatment"
contrasts is default in R, the
estimate of (Intercept) gives
mean value for station 8 and
FID13 provides the difference
between stations 13 and 8.

Scale est. = variance of the
residuals.

GCYV score is a measure that
may be used like AIC in
judging the relative merits of
competing models. Smaller is
always better.

plot(Ma4)

Plot of smoother s(De):

Predicted v:ilues o1 smoother s(Je) values ( Y-axis) are plotted against De (X-axis). Dashed lines indicate

GAM Regression Splines

> summary(M4)

Family: gaussian

Link function: identity
Formula:
So ~ s(be) + fID

Parametric coefficients:

Estimate Std. Error t value Pr(>|t])

(Intercept) 19.198 1.054 18.207 < 2e-16
fID13 -12.296 1.397 -8.801 7.59e-13
Signif. codes: 0 Y***/ (0.001 ‘**’ 0.01 ‘*’ 0.05
Approximate significance of smooth terms:

edf Ref.df F p-value
s(De) 4.849 5.904 14.77 1.2e-10 **x*
Signif. codes: 0 Y***’ (0.001 ‘**’ 0.01 ‘*’ 0.05
R-sqg. (adj) = 0.695 Deviance explained = 71.9%
GCV score = 38.802 Scale est. = 35.259 n =75

* Kk Kk

* Kk Kk
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gam.check(M4)

Diagnostic plots for validation of the model. Zuur et al. would have us note that the two right-hand panels
show patterns, and thus indicate the model needs further work by inclusion of additional independent
variables or other corrections.

Resids vs. linear pred.
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#GAM MODEL FOR I1SIT813 WITH INTERACTION
M5=gam(So~s(De)+s(De,by=as.numeric(ID==13)))
#NOTE: CODE HERE IS MODIFIED ACCORDING TO ERRATA AT www.highstat.com
#NUMERICAL VALUES REPORTED CORRESPOND TO R OUTPUT FROM THE ONLINE
#R SCRIPT, BUT NOT TO THE VALUES REPORTED ON P.60
M5
anova(Ms5) > anova(M5)
Family: gaussian
Link f ti : identit
First of three models described as T TEnetion: ddentity
including "interaction" between Formula:
variables De and fID. So ~ s(De) + s(De, by = as.numeric(ID == 13))
Approximate significance of smooth terms:
edf Ref.df F p-value
s (De) 8.073 8.608 101.7 <2e-16

s (De) :as.numeric (ID == 13) 7.696 8.663 113.7 <2e-16
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summary(M5)
> summary(M5)
Family: gaussian
Link function: identity
Formula:
So ~ s(De) + s(De, by = as.numeric(ID == 13))
Parametric coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 18.8552 0.3879 48.6 <2e-16 ***
Signif. codes: 0 ‘Y***/ (0.001 ‘**’ 0.01 “*’ 0.05 ‘.” 0.1 Y ' 1
Approximate significance of smooth terms:
edf Ref.df F p-value
Note: edf value for the second s (De) 8.073 8.608 101.7 <2e-16 xxx

s (De) :as.numeric (ID == 13) 7.696 8.663 113.7 <2e-16 ***

Signif. codes: 0 ‘***’ (0,001 ‘**’ 0.01 ‘*’ 0.05 '.” 0.1 * " 1

smoother is incorrect in Zuur
et al.'s text, but the value here
corresponds to R output

running their modified R script R-sq. (adj) = 0.959 Deviance explained = 96.8%
found online. GCV score = 6.037 Scale est. = 4.6872 n =175

op=par(mfrow = c(1, 2)) Left graph below shows the smoother for the combined data. Right graph below

lot(M5 . .
plot(M5) shows deviation from the overall pattern for data from station 13.
par(op)
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Model M4 has only one smoother and therefore implies only a single kind of non-linear response to De, with
Stations 8 & 13 only allowed to differ by an offset (or difference) in their respective mean levels. By contrast,
Model M5 contains a general smoother s(De) plus an offset smoother s(De, by ID=13) permitting data from
station 13 to deviate from the general pattern in a specific way. This is one of three possible "interaction"
models offered by Zuur et al. The others are models Méa & M6b given below.
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gam.check(M5)
Zuur et al. will have us note much improved apparent

ranaomness 1n tne tTwo rigni-nana paneis.

Resids vs. linear pred.
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Testing Nested Models:
#F-TEST COMPARING NESTED MODELS
anova(M4,M5,test="F')
AIC(M4)
AIC(M5)
> anova(M4,M5,test="F")
Analysis of Deviance Table
. . Model 1: So ~ s(De) + fID
:l“heAnalys1s of Deviance Table Model 2: So ~ s(De) + s(De, by = as.numeric(ID == 13))
is treated anaIOgOUSly toa Resid. Df Resid. Dev Df Deviance F Pr (>F)
regular ANOVA table. Here 1 68.151 2402.90
the F-test uses as Null 2 58.231 272.94 9.9198 2130 45.809 < 2.2e-16 **x
hypothesis the simpler model --
(M4) = Reduced Model (RM), Signif. codes: 0 ‘“***/ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘' 1
with the more specified model
> AIC(M4)
MS5 as the the Full Model (FM).
This procedure is strictl [1] 488.5602
p y > AIC(M5)

analogous to the regular F-test

[1] 345.2614
of nested models.

Both F-test and relative values of AIC (smaller is better) calculated for
both models strongly indiate preference for M5 over M4.
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Two other kinds of "interactions' models:

#TWO OTHER INTERACTION MODELS

GAM Regression Splines

M6a=gam(So~s(De,by = as.numeric(ID== 8))+s(De,by = as.numeric(ID==13))-1)

summary(M6a)
anova(Mé6a)

Méb=gam(So~s(De,by = ID) + factor(ID))
summary(M6b)
anova(Mé6b)

> anova(Méb)
Family: gaussian
Link function: identity

> anova(M6a)
Family: gaussian
Link function: identity

Formula: Formula:

So ~ s(De, by = ID) + factor (ID) So ~ s(De, by = as.numeric(ID == 8)) + s(De, by =
as.numeric (ID ==

Parametric Terms: 13)) -1

df F p-value

factor (ID) 1 121.4 <2e-16 Approximate significance of smooth terms:

edf Ref.df F p-value
Approximate significance of smooth terms: s (De) :as.numeric (ID == 8) 8.581 9.408 374.8 <2e-16
edf Ref.df F p-value s (De) ras.numeric (ID == 13) 7.520 8.647 77.7 <2e-16
s(De):ID 5.057 5.991 42.94 <2e-16
> summary(M6b
. v( . ) > summary(M6a)
Family: gaussian Family:
Link function: identity éml y: gaFSSla?
Link function: identity
Formula: 1
So ~ s(De, by = ID) + factor(ID) Formula: .
So ~ s(De, by = as.numeric(ID == 8)) + s(De, by =
Parametric coefficients: as.nﬁszlc(iD -

Estimate Std. Error t value Pr(>|t])
(Intercept) 11.089 1.006 11.03 <2e-16 ***

factor (ID)13 -17.678 1.604 -11.02 <De-16 *r* Approximate significance of smooth terms:

___ edf Ref.df F p-value
Signif. codes: 0 “***’ 0.001 “**’ 0.01 ‘*’ 0.05 ‘.’ .
0.1 v 1 s (De) ras.numeric (ID == 8) 8.581 9.408 374.8 <2e-16
. * Kk Kk
s(De) :as.numeric (ID == 13) 7.520 8.647 77.7 <2e-16

Approximate significance of smooth terms:
edf Ref.df F p-value
s(De):ID 5.057 5.991 42.94 <2e-16 ***

* Kk

Signif. codes: 0 Y***’/ 0.001 ‘**’ 0.01 “*’ 0.05 ‘.’

Signif. codes: 0 ‘“***/ 0.001 ‘“*%*/ 0.01 ‘%’ 0.05 ‘.’ 0.1t

0.1l R-sqg. (adj) = 0.96 Deviance explained = 98.6%
R-sq. (adj) = 0.596 Deviance explained = 62.45% GCV score = 5.8509 Scale est. = 4.5948 n =75
GCV score = 50.736 Scale est. = 46.631 n =75

anova(M5,M6a,M6b) > AIC(M5) The anova() functions provide deviance calculation but no test
anova(M5,M6a) (1] 345.2614 statistics, implying that the models do not nest. Relative
anova(M5,M6b) > AIC(M6a) values of AIC suggest slight preference for M6a over MS.
anova(Méa,Méb) [1] 343.2881 . . " N

AIC(M5) > AIC(M6b) Interpretat.lon of the three different "interactions" models
AIC(M6a) [1] 508.8192 needs co.nflrmat‘lqn from another sourse, ‘such as Wood 2006,
AIC(M6b) Generalized Additive Models: An Introduction with R.

However, by analogy with linear models, they appear readable:
M5 = So ~ s(De) + s(De, by ID13)
Mé6a = So ~ s(De,by ID8) + s(De,by ID13) - 1 M5 - models a general pattern plus offset for ID13.
M6b = So ~ s(De,by ID) + fID Mb6a - models separate smoothers for ID8 & ID13 without
intercept (Cell Means model analog).
Mb6b - models separate smoothers for ID8 & ID13 (perhaps as
offsets from intercept) plus intercept.



