prepared by Wm Stein

One-Way ANOVA with Random Effects

Studies involving a single classification variable with more than two levels (or states) generally fall under one-way ANOVA models. If the different levels of the classification variable have meaning in and of themselves then the variable is considered "fixed" and one may proceed with standard ANOVA questions. For instance, one may be interested in testing whether there is a general treatment effect (i.e., all mean levels equal) or whether a specific linear contrast (of means or treatment effects) is significant or not. However, if the levels of a classification variable are only a sample from a potentially large number of possibilities, then the variable is termed "random" and different questions are usually of interest. Here instead of looking at specific differences between fixed levels, one is generally more interested in estimating the amount of variance for the population from which specific levels of the study have been drawn. In more sophisticated "mixed" studies involving both fixed and random classification variables one is often interested in partitioning estimates of variance within and between levels. The example here is the simplest possible "random" (Type II) ANOVA involving only a single fixed mean level plus a single random classification variable. Data and analysis from Pinheiro & Bates (PB) 2004, *Mixed-Effects models in S and S-PLUS*.

Example:	Rail data in l	PB 1.1				(1	0) 0	0	0)		(1	1	55
R := READPRN("c	::/DATA/Models/I	Rail.txt")				1	0) 0	0	0		2	1	53
travel := $R^{\langle 2 \rangle}$	Y := travel	< response var	iable			1	0) ()	0	0		3	1	54
rail := $R^{\langle 1 \rangle}$		< independent	random va	riable		0	1) ()	0	0		4	2	26
X := READPRN("c	::/DATA/Models/I	Rail X matrix.txt")) < aall maa	ns model		0	1) ()	0	0		5	2	37
			<pre>cen mea contra</pre>	st matrix		0	1 () ()	0	0		6	2	32
$Y_{bar} := mean(Y)$	$Y_{bar} = 66.5$		< grand n	nean			0		0	0		0	3	78
I incor Fixed N	/ladal:						0		0	0		0 0	3	91 85
		n a d al			X =	0	0) 1	0	0	R =	10	4	92
$\mathbf{Y}_{ij} = \mathbf{p}_i + \mathbf{\varepsilon}_{ij}$			PB p. 6-7			0	0) 1	0	0		11		100
$\mathbf{Y}_{ij} = \mathbf{p} + \mathbf{\tau}_i + \mathbf{\varepsilon}_{ij}$	< Treatments I	Lifect model	-			0	0) 1	0	0		12	4	96
$\Sigma \tau_{i} = 0, \ \varepsilon_{ii} \sim N(0)$,σ ²)					0	0) 0	1	0		13	5	49
	• •		0			0	0	0 (1	0		14	5	51
where: Y _{ij} is the means in cell me	e response variat	ble, β = overall n treatment effec	nean, β _i = c ts for each	ell		0	0) ()	1	0		15	5	50
group, ε _{ij} = erro	or, with i is index	a of groups up to	$\mathbf{r}, \mathbf{j} = \mathbf{i}\mathbf{s} \mathbf{i}\mathbf{n}$	dex of		0	0) ()	0	1		16	6	80
replicates within	n each group up	to n _i				0	0) ()	0	1		17	6	85
Least Squares	Estimation o	f		(54)		(0	0) 0	0	1)		18	6	83)
the Regression	Parameters	:		31.66667										
$\mathbf{B} := \left(\mathbf{x}^{\mathrm{T}} \cdot \mathbf{x}\right)^{-1} \cdot \mathbf{x}$	$\mathbf{x}^{\mathrm{T}} \cdot \mathbf{v}$		B –	84.66667										
			D =	96										
Fitted Values &	& Hat Matrix	H :		50										
$Y_h := X \cdot B$	< fitt	ed values Y _h		82.66667)										
$\mathbf{H} := \mathbf{X} \cdot \left(\mathbf{X}^{\mathrm{T}} \cdot \mathbf{X} \right)^{-}$	$\mathbf{x}^{\mathrm{T}} \mathbf{x}^{\mathrm{T}} \mathbf{x}^{\mathrm{T}}$	n Hat matrix		^ regressio coefficie	n nts									
Residuals: e := Y -	Y _h < resi	iduals												
Dimensions &	Paperwork:													
n := length(Y)		i := 0 n − 1	I := 1	identity(n)										
r := cols(X) $r =$	= 6 p := r	ii := 0 n − 1	l J _{ii}	; := 1										

ANOVA Table:

Sum of Squares:Degrees of Freedom:Mean Squares:SSR := $Y^T \cdot \left[H - \left(\frac{1}{n}\right) \cdot J \right] \cdot Y$ SSR = (9310.5) $df_R := p - 1$ $df_R = 5$ $MSR := \left(\frac{SSR}{df_R}\right)_0$ MSR = 1862.1SSE := $Y^T \cdot (I - H) \cdot Y$ SSE = (194) $df_E := n - p$ $df_E = 12$ $MSE := \left(\frac{SSE}{df_E}\right)_0$ MSE = 16.167SSTO := $Y^T \cdot \left[I - \left(\frac{1}{n}\right) \cdot J \right] \cdot Y$ SSTO = (9504.5) $df_T := n - 1$ $df_T = 17$ $MSTO := \left(\frac{SSTO}{df_T}\right)_0$ MSTO = 559.088

Overall F-Test for *fixed effect*:

Hypotheses:

H ₀ :	β _i the same <i>for all</i> i	
	$\tau_i = 0$ for all i	< Alternate Cell means & Treatment Effects
H ₁ :	<i>At least one</i> β _i different	formulations of the same hypothesis
	At least one $\tau_i \Leftrightarrow 0$	

Test Statistic:

$$F := \frac{MSR}{MSE} \qquad \qquad F = 115.181$$

Critical Value of the Test:

 $\alpha := 0.05$

 $CV := qF[1 - \alpha, (r - 1), (n - r)]$ CV = 3.106

Decision Rule:

IF F > C, THEN REJECT H_0 OTHERWISE ACCEPT H_0

Probability Value:

P := 1 - pF(F, r - 1, n - r) $P = 1.033 \times 10^{-9}$

Prototype in R:

FM=lm(travel~Rail, data=rail) summary(FM) anova(FM) FM2=lm(travel~Rail, data=Rail) summary(FM2) anova(FM2) #lm() WORKS WITH EITHER DATA TYPE Note: PB grouped data objects involve an ordering of factor levels for variable Rail. In R, this defaults to contr.poly contrasts. Conversion to unordered contrasts is therefore necessary as seen below.

Y=railStravel

X=factor(rail\$Rail,ordered=F) #CONVERTING TO UNORDERED FACTORS **#WITH TREATMENTS CONTRASTS** Х FM3=lm(Y~X) summary(FM3) #RAIL 2 IS "INTERCEPT" IN THE REPORT model.matrix(FM3) #NOTE DIFFERENCE IN COLUMN ARRANGEMENT FOR FACTORS anova(FM3)

FM4=Im(Y~X-1) #CELL MEANS MODEL CONTRASTS model.matrix(FM4) anova(FM4) **#NOTE DIFFERENT DF FOR MODEL HERE FM4 VS FM3**

	> summary(F	M3)	#RAIL	2 IS "INTER	RCEPT" IN	THE REPORT	
	lm(formula	= Y	~ X)				
	Residuals:						
	Min	1	Q Media	n 30) Max		
	-6.666/ -1.	000	0 0.166	/ 1.0000	6.3333		
	COELICIEIIC	Es:	timate S	td. Error	t value	Pr(> t)	
	(Intercept)	10	31.667	2.321	13.641	1.15e-08 **	**
	X5		18.333	3.283	5.584	0.000119 **	**
	Xl		22.333	3.283	6.803	1.90e-05 **	**
	Хб		51.000	3.283	15.535	2.60e-09 **	**
	Х3		53.000	3.283	16.144	1.67e-09 **	۲*
	X4		64.333	3.283	19.596	1.77e-10 **	**
	> anova(FM3	,					
	Analysis	ן ז ל ז	Jarianco	o Tablo			
	Response.	v	arrance				
matches ANOVA table	Response.	т Df	Sum Sa	Maan Sa	ີ F ນລໄມ	o Dr(SF)
& F test above >	v	5	9310 5	1862 1	115 1	8 1 0330-0	/ G ***
	Residuals	12	194.0	16.2	110.1	1.00000 0	2
	> anova(FIVI4) #N				L HERE FINA V	/S FIVI3
	Analysis (JL V	ariance	e labie			
	Response:	I D.C	0	M 0 .			`
df 6 here >	37	DI	Sum Sq	Mean Sq	F Value	e Pr(>e))
	X	6 10	889II 104	14819	916.	6 2.9/1e-1	5 ***
	Residuals	ΤZ	194	10			
#ImList() LINEAR MODELS FOR GROU	PS						
setwd("c:/DATA/Models")							
K=read.table("Railframe.txt")							
К							
FM5=lm(travel~factor(Rail)-1,data=K)	#FM5 = CELL	ME/	ANS MOD	EL ANOVA			
summary(FM5)							
anova(FM5) #NOTE 6 DF FOR Rail her	e as opposed	to 5	df in FM5	5			
ImList(travel~1 Rail,data=K) #SEPARA	ATE REGRESSIC) N C	OEFFICIE	NTS FOR E	ACH GROL	JP	

#GIVES CELL MEANS MODEL RESULT

railfactor=factor(K\$Rail)

contrasts(railfactor)=contr.sum #CONVERTS FACTOR CONTRASTS

FM6=lm(travel~railfactor,data=K)

summary(FM6)

anova(FM6) #df 5 for railfactor IN contr.sum MODEL ANOVA IN R

ImList(Rail) #SEPARATE REGRESSION COEFFICIENTS FOR EACH GROUP

#GIVES CELL MEANS MODEL RESULT

One-Way random ANOVA > summary(FM5) Call: lm(formula = travel ~ factor(Rail) - 1, data = K) Residuals: 1Q Median 3Q Min Max -6.6667 -1.0000 0.1667 1.0000 6.3333 Coefficients: Estimate Std. Error t value Pr(>|t|) factor(Rail)1 54.000 2.321 23.26 2.37e-11 *** 2.321 13.64 1.15e-08 *** factor(Rail)2 31.667 factor(Rail)3 84.667 2.321 36.47 1.16e-13 *** factor(Rail)4 96.000 2.321 41.35 2.59e-14 *** factor(Rail) 5 50.000 2.321 21.54 5.86e-11 *** factor(Rail)6 82.667 2.321 35.61 1.54e-13 *** > anova(FM6) #df 5 for railfactor IN contr.sum MODEL ANOVA IN R Analysis of Variance Table Response: travel Df Sum Sq Mean Sq F value Pr(>F) railfactor 5 9310.5 1862.1 115.18 1.033e-09 *** Residuals 12 194.0 16.2 > lmList(travel~1|Rail,data=K) #SEPARATE REGRESSION COEFFICIENTS FOR EACH GROUP Call: Model: travel ~ 1 | Rail Data: K Coefficients: (Intercept) 1 54.00000 Note simple way 2 31.66667 to obtain Cell 3 84.66667 Means model 4 96.00000 using lmList() > 5 50.00000 6 82.66667

Linear Mixed Model Approach using lme() in R:

Fitting the Least Squares regression above suffices for one-way ANOVA models using either balanced or unbalanced data. For more complex models, unbalanced data creates considerable difficulties for Least Squares model fits and estimation. A generally preferable approach utilizes Maximum Likelihood (ML) or Restricted Maximum Likelihood (REML) regressions using iterative approximation. The results (in PB's notation) are ML or REML coefficients of regression fit β for fixed effects plus "best linear unbiased predictors" (BLUP's) b for random effects. Both are generally comparable to fixed coefficients (vector B above - see final section below).

Linear Mixed Model:

	In model notation:	where:
$Y_{ij} = \beta + b_i + \varepsilon_{ij}$ < Random effects Model		Y = response
	$Y \sim 1 + (1 G)$	G = group
$\mathbf{b}_{i} \sim \mathbf{N}(0, \mathbf{\sigma}_{b}^{-2}), \mathbf{\varepsilon}_{ij} \sim \mathbf{N}(0, \mathbf{\sigma}^{2})$	travel ~ 1 + (1 rail)	

where: Y_{ij} is the response variable, β is overall mean (level) of the response, b_i is a random variable for levels, and ϵ_{ij} is random error. Levels & Errors are independent. Observations between block are independent, whereas observations within blocks are correlated.

LMM 010 Model Fit in R:

#Ime() MIXED-EFFECTS MODELS APPROACH FMe=Ime(travel~1, data=Rail, random=~1|Rail) summary(FMe) anova(FMe) coef(FM3) # LEAST SQUARES FIXED COEFFICIENTS treatments MODEL IN R ImList(Rail) # LEAST SQUARES FIXED COEFFICIENTS cell means MODEL IN R coef(FMe) # REML COEFFICIENTS OF FIXED EFFECTS ranef(FMe) # REML COEFFICIENTS OF RANDOM EFFECTS (i.e, BLUP's)

^ BLUP's represent deviations from the grand mean for each group (rail)

Variance Components from Model Fit in R:

#VARIANCE COMPONENTS: VarCorr(FMe) #SQUARE OF StdDev IN Summary.Ime varcomp(FMe) #Alternate Function in {ape}

> VarCorr(FMe) #SQUARE OF StdDev IN Summary.Ime

Rail = pdLogChol(1) Variance StdDev (Intercept) 615.31111 24.805465 Residual 16.16667 4.020779

```
Residual errors are the same: \sqrt{MSE} = 4.020779
```

5

n _i := 3	< replicates	MSR = 1862.1	< from ANOVA table above
a := 1	< fixed factor lev	MSE = 16.167	
$\frac{MSR - N}{n_i \cdot a}$	$\frac{1SE}{1} = 615.311$	< KNNL Eq. 25.50a, p. 1055	Kutner et al. 2005 (KNNL) Applied Linear Statistical Models 5th Edition
$\sqrt{\frac{MSR - n_i \cdot n_i}{n_i \cdot n_i \cdot n_i}}$	$\frac{MSE}{a} = 24.805$	< R calculation verified above	

Approximate Confidence Intervals in R:

intervals(FMe) #APPROXIMATE CONFIDENCE INTERVALS

	> intervals(FMe) #APPROXIMATE CONFIDENCE INTERVALS
	Approximate 95% confidence intervals
	Fixed effects:
	lower est. upper
confidence interval for grand mean >	(Intercept) 44.33921 66.5 88.66079
5	attr(,"label")
	[1] "Fixed effects:"
	Random Effects:
	Level: Rail
	lower est. upper
confidence interval for between group sd >	sd((Intercept)) 13.27432 24.80547 46.35349
	Within-group standard error:
confidence interval for within group sd	lower est. upper 2.695000 4.020779 5.998762

Model Predictions and Plot in R:

Intraclass Correlation:

$$\sigma := \sqrt{MSE}$$

$$\sigma^{2} = 16.167$$

$$\sigma^{2} = 16.167$$

$$\sigma^{2} = 16.167$$

$$\sigma^{2} = 102.552$$

$$\sigma^{2} = 102.552$$

$$\sigma^{2} = 102.552$$

$$\sigma^{2} = 102.552$$

$$\sigma^{2} = 102.552$$
Notation follows KNNL p. 1035.
$$\sigma^{2} = 118.719$$

$$\sigma^{2} = 102.552$$

$$\sigma^{2} = 118.719$$

$$\sigma^{2} = 118.719$$

$$\sigma^{2} = 102.552$$

$$\sigma^{2} = 118.719$$

$$\sigma^{2} = 102.552$$

$$\sigma^{2} = 118.719$$

$$\sigma^{2} = 118.719$$

$$\sigma^{2} = 102.552$$

$$\sigma^{2$$

Test for overall level differences:

Hypotheses:

$$H_0:$$
 $\sigma_{\mu}^2 = 0$ differs, the F statistic is identical. $H_1:$ $\sigma_{\mu}^2 < 0$ < If $\sigma_{\mu}^2 = 0$ then b_i 's (in PB notation above) all have to be the same

Test Statistic:

$$F := \frac{MSR}{MSE} \qquad F = 115.181$$

Critical Value of the Test:

 $\alpha := 0.05$ < Probability of Type I error must be explicitly set

 $CV := qF[1 - \alpha, (r - 1), (n - r)]$ CV = 3.106

Decision Rule:

IF F > C, THEN REJECT H_0 OTHERWISE ACCEPT H_0

Probability Value:

P := 1 - pF(F, r - 1, n - r) $P = 1.033 \times 10^{-9}$

Least Squares Point and Interval Estimation:

KNNL pp. 1038-1047 provides least squares methods for point estimates and for confidence intervals of overall mean (β in PB = μ in KNNL), Intraclass correlation (ICC above), variance components σ^2 , and σ_{μ}^2 (KNNL notation and above). Estimation of σ_{μ}^2 involves Satterthwaite or MLS procedures as explained therein. The lme() procedure in R provides similar estimates based on ML or REML fit, as explained in PB Chapter 2.

Reordering lm() results for Matrix Algebra comparison below:

	(2 31.96909)		(54.10852)		(2	-34.53091		(-12.39148)	
	5 50.14325	β:=		31.96909		5	-16.35675		-34.53091
c	1 54.10852		84.50894		1	-12.39148	1	18.00894	
coer _{FMe} :=	6 82.52631		95.74388	ranet _{FMe} :=	6	16.02631	b :=	29.24388	
	3 84.50894		50.14325 82.52631		3	18.00894		-16.35675	
	4 95.74388				4	29.24388		(16.02631)	

lme() fixed coefficients in original order ^

lme() random BLUP's in original order ^

Note that this test is equivalent to the fixed factor test of

overall effect above. Although the formal hypothesis

Matrix Algebra Comparision of Least Squares vs lme() Models:

Least Squares:

Model: Y = XB + e

X =	$ \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ \end{pmatrix} $	$B = \begin{pmatrix} 54\\ 31.667\\ 84.667\\ 96\\ 50\\ 82.667 \end{pmatrix} Y_{h} =$		$\begin{pmatrix} 54\\ 54\\ 54\\ 31.667\\ 31.667\\ 31.667\\ 84.667\\ 84.667\\ 84.667\\ 96\\ 96\\ 96\\ 50 \end{pmatrix} e =$	$\begin{pmatrix} 1 \\ -1 \\ 0 \\ -5.667 \\ 5.333 \\ 0.333 \\ -6.667 \\ 6.333 \\ 0.333 \\ -4 \\ 4 \\ 0 \\ -1 \end{pmatrix} Y =$	 (55) 53 54 26 37 32 78 91 85 92 100 96 49
	0 0 0 1 0 0 0 0 0 1 0 0	96 50 82.667	96 96	96 96	4 0	100 96
	0 0 0 0 1 0 0 0 0 0 1 0		50 50	50 50	-1 1	49 51
	0 0 0 0 1 0 0 0 0 0 0 1		50 82.667	50 82.667	0	50 80
	$\left \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		82.667 82.667	82.667	2.333	85 83

Linear Mixed Model Ime() in R:

Model: $Y = \beta + Xb + \epsilon$

 $Y_{bar} = 66.5$

 $Yh := Y_{bar} + X \cdot b$

								ε := 3	Y – Yh							
	(1	0	0	0	0	0)	^ mean le	vel		(54.109)		(54.109)		(0.891) ((55)
	1	0	0	0	0	0	(p in PB	notation)		54.109		54.109		-1.109		53
	1	0	0	0	0	0	(54.10	9		54.109		54.109		-0.109		54
	0	1	0	0	0	0	31.96	9		31.969		31.969		-5.969		26
	0	1	0	0	0	0	$\beta = \begin{vmatrix} 84.50 \\ \end{array}$	9		31.969		31.969		5.031		37
	0	1	0	0	0	0	95.74	4		31.969		31.969		0.031		32
	0	0	1	0	0	0	50.14	3		84.509		84.509		-6.509		78
	0	0	1	0	0	0	(82.52	6)		84.509		84.509		6.491		91
v _	0	0 0 1 0 0 0 ^	^ fixed co	fixed coefficients	84.509	Vh –	84.509	6 –	0.491	V -	85					
Λ =	0	0	0	1	0	0	(β _i in PB	notation)	$\mathbf{X} \cdot \mathbf{p} =$	95.744	1 11 =	95.744	ε =	-3.744	I =	92
	0	0	0	1	0	0	(-12.3	91)		95.744		95.744		4.256		100
	0	0	0	1	0	0	-34.5	31		95.744		95.744		0.256		96
	0	0	0	0	1	0	18.00)9		50.143		50.143		-1.143		49
	0	0	0	0	1	0	$b = \begin{vmatrix} 29.24 \\ 29.24 \end{vmatrix}$	4		50.143		50.143		0.857		51
	0	0	0	0	1	0	-16.3	57		50.143		50.143		-0.143		50
	0	0	0	0	0	1	16.02	26		82.526		82.526		-2.526		80
	0	0	0	0	0	1		<i>,</i>		82.526		82.526		2.474		85
	(0	0	0	0	0	1)	^ random	BLUP's		82.526		82.526		0.474) (83