
LMM 070 Autocorrelation Structures 1

Shown in this Worksheet are several other Correlation Structures implemented by gls(), lme() and other 
functions of the {nlme} package in R.  Background mathematics can be found in Chapter 5 of Pinheiro & 
Bates 2004 (PB), Mixed-Effects Models in S and S-Plus.  Simplified presentation with the following example 
comes from Ch. 6 of Zuur et al. 2009 (Za), Mixed Effects Models and Extensions in Ecology with R.  In the 
latter, emphasis is placed on "Temporal Autocorrelation".  The idea here is that successive observations in a 
time series (or analogous series repeated measures in a spatial context) mostly occur at regularly spaced 
intervals exhibiting "stationarity" (p. 145).  "Stationarity" implies that correlations are modeled only in 
terms of relative positions t, t+1, t+2 etc, in a time series, but are unrelated to overall position in the series.  
From this, multiple ways have been developed to convert  in  above into different 's depending on position 
within .

This partial relaxation of the requirement of independence within Mixed Linear Model is called the
Compound Symmetric Correlation Structure, and is but one of several such structures in current use.  
Correlation structures are often employed to correct for patterns of non-independence observed in 
validation plots from models of messy real data.
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The term:  j = 

is called the Intraclass correlation coefficient and refers to the correlation 
between observations with each group.  In addition, variance within each 
group can be seen to be comprised to two components: d

2 and 2.  In Mixed 
Linear Models, d

2 refers to "between"variance attributed to the random 
differences between the groups, whereas 2 refers to (pooled) variance 
within groups".
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j = 

where all covariances have the 
same value d

2 variance of all 

observations = d
2  +2, and

As one can see from the above definitions, this fundamental assumption of Linear Models is a stringent 
requirement not often met by real data.  Mixed Linear Models therefore seek to relax this requirement by 
allowing observations from Groups to be correlated.  In matrix terms, now using i = 3 observations per group j, 
this translates into: 
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Dividing all entries of the matrix by 2, yields the corresponding correlation matrix  = 
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, where I == 2I
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For instance, for i = 3 
observations, covariance matrix  =

Linear Models require the fundamental assumption of independence between each instance of the response 
variable, or equivalently, of all residuals.  As part of the construction of a model, therefore, validation plots 
should be constructed to look for patterns in residuals versus each independent covariate or factor as well as 
with the model's fitted values.  If patterns occur, then remedial measures are necessary to ensure proper 
P-values of associated the tests.  The concept of independence typically enters into formal descriptions of 
Linear Fixed Models as: i ~ N(0,2) = "residuals (are Normally distributed with mean 0 and variance 2 
for each observation i.  In terms of matrix algebra the above may be expanded into: i ~ N(0,) where  is 
the i by i square covariance matrix, with =2I, and I being the identity matrix.  Equal variances (2) occur 
along the main diagonal with pairwise covariances, equal to zero, everywhere else.

Adding Autocorrelation Structures to Linear and Linear Mixed Models 

ORIGIN 0
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library(nlme)
setwd("c:/DATA/Models")
H=read.table("Hawaii.txt",header=T)
H$Birds=sqrt(H$Moorhen.Kauai)
H 

> H
   Year Stilt.Oahu Stilt.Maui Coot.Oahu Coot.Maui Moorhen.Kauai Rainfall     Birds
1  1956        163        169       528       177             2    15.16  1.414214
2  1957        272        190       338       273            NA    15.48        NA
3  1958        549        159       449       256             2    16.26  1.414214
4  1959        533        211       822       170            10    21.25  3.162278
5  1960         NA        232        NA       188             4    10.94  2.000000
6  1961        134        155       717       149            10    19.93  3.162278
7  1962        175        282        12       205            12    12.63  3.464102
8  1963        356        170       169       108            10    20.09  3.162278
9  1964        485        164        98        79             8    10.02  2.828427
10 1965        184        162       112        53            NA    30.91        NA
11 1966        242        253        77        75            17    12.49  4.123106
12 1967        209        188       106        80             7    32.70  2.645751
13 1968        175        226        64       104            44    18.40  6.633250
14 1969        162        171        15       122            50    25.21  7.071068
15 1970        322        207       130        78            26    18.61  5.099020
16 1971        362        189        84        76            10    20.13  3.162278
17 1972        342        274       132       161            NA    15.71        NA
18 1973        509        352       122       114             7    10.27  2.645751
19 1974        107        245        41        63             1    18.68  1.000000
20 1975        110        340        83       151            38    13.74  6.164414
21 1976        249        335       148       177            92    12.83  9.591663
22 1977        738        302       148       154           113    11.50 10.630146
...
33 1988        478        296       250        57            36    26.79  6.000000
34 1989        740        215       542        92            32    40.63  5.656854
35 1990        515        172       415        41            98    35.20  9.899495
36 1991        371        197       261        61           116    16.09 10.770330
37 1992        562        366       450       175           107    16.98 10.344080
38 1993        393        284       339        90           129    12.69 11.357817
39 1994         NA        212        NA        68           240    13.93 15.491933
40 1995        598        191       303        57           294    13.45 17.146428
41 1996        530        297       214        87           348    31.00 18.654758
42 1997        558        262       317       113           210    23.08 14.491377
43 1998        502        424       899       396           131     6.76 11.445523
44 1999        442        364      1004       384           106     9.66 10.295630
45 2000        499        526       634       422           138     9.72 11.747340
46 2001        620        337       668       538           132    10.53 11.489125
47 2002        692        297       589       234            73    15.07  8.544004
48 2003        240        258       885        85            92    13.83  9.591663

Following Za, the square root 
of Moorhen.Kauai counts are 
placed in "Birds" and used 
as the response variable.  
"Rainfall" and "Year" (both 
covariates) are the 
independent variables.

Fitted values
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Constructing and Validating a Linear Fixed Model:

#LINEAR FIXED MODEL
LMgls=gls(Birds~Rainfall+Year,na.acƟon=na.omit,data=H)
#VALIDATION PLOT
plot(LMgls,col='red',pch=20)

#HOMEMADE VALIDATION PLOTS
op=par(mfrow = c(2,1)) 
plot(H$Year[!is.na(H$Birds)],resid(LMgls,type="pearson"),

col="blue",pch=20,xlab="Year",ylab="standardized residuals",
main="Residual Plot by Mean‐Centered Year")

plot(H$Year[!is.na(H$Birds)],fiƩed(LMgls),
col="red",type='l',xlab="Year",ylab="Number of Birds",
main="Regression Fit")

points(H$Year[!is.na(H$Birds)],H$Birds[!is.na(H$Birds)],
col="black",pch=20)

par(op)

The plots show clear non-randomness and 
successive correlation by Year & fit indicative 
of autocorrelation.
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A regular pattern of the residuals around 
the regression fit (shown in red) suggest 
that additional unaccounted for 
independent variable(s) may be involved.  
At the very least, observations in 
successive years appear to be correlated.

ACF Plot:

Auto Correlation Function (ACF) plots 
provide another graphical tool for judging 
autocorrelation.  The "Lag" indicates 
number of constant intervals (i.e., offset) in 
the time series over which correlation is 
calculated. Because of the assumption of 
"stationarity", all Lags (gaps) between 
measurements are considered equivalent 
regardless of where the gaps occur in the 
time series. 
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ACF Plot for normalized residuals

#AUTOCORRELATION (ACF) PLOT:
E=residuals(LMgls,type="normalized")
I=!is.na(H$Birds)
Ea=vector(length=length(H$Birds))
Ea=NA
Ea[I]=E
acf(Ea,na.acƟon=na.pass,
    main="ACF Plot for normalized residuals")

Strong positive correlation is observed 
over Lags 1-3, with negative 
correlation over Lags 4-12, followed by 
positive correlation in larger Lags.
Perhaps there's evidence for 
longer-term peridicity in addition to 
short-term association here, but this 
will not be considered in what follows.
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Adding Correlation Structures in gls():

Zuur et al.'s results match the anova() and AIC/BIC findings here.  However, Za do not show paremeter 
estimates from summary().  Displaying the summary results shows a high negative (-1) correlation between 
Intercept and Rainfall and engenders similar strange results in the models that follow.  Therefore, the initial 
Linear Fixed model will be refit using mean-centered independent variables.  As a result, values of the Intercept 
estimate changes (with minor differences in slopes), but results of the marginal t-tests remain the same. 

#OBSERVED CORRELATION IN LINEAR FIXED  MODEL:
summary(LMgls)
#MEAN‐CENTERING INDEPENDENT VARIABLES:
H$Year=H$Year‐mean(H$Year)
H$Rainfall=H$Rainfall‐mean(H$Rainfall)
#REFITTING LINEAR FIXED MODEL:
LMgls=gls(Birds~Rainfall+Year,na.acƟon=na.omit,data=H)
summary(LMgls)

before mean centering data: after mean-centering data:

> summary(LMgls)
Generalized least squares fit by REML
  Model: Birds ~ Rainfall + Year 
  Data: H 
       AIC      BIC    logLik
  228.4798 235.4305 -110.2399

Coefficients:
                Value Std.Error   t-value p-value
(Intercept) -477.6634  56.41907 -8.466346  0.0000
Rainfall       0.0009   0.04989  0.017245  0.9863
Year           0.2450   0.02847  8.604858  0.0000

 Correlation: 
         (Intr) Ranfll
Rainfall -0.036       
Year     -1.000  0.020

Standardized residuals:
        Min          Q1         Med          Q3      
   Max 
-1.91985793 -0.58712230 -0.03223775  0.38320859  
2.77801077 

Residual standard error: 2.608391 
Degrees of freedom: 45 total; 42 residual

> summary(LMgls)
Generalized least squares fit by REML
  Model: Birds ~ Rainfall + Year 
  Data: H 
       AIC      BIC    logLik
  228.4798 235.4305 -110.2399

Coefficients:
               Value Std.Error   t-value p-value
(Intercept) 7.355073 0.3899178 18.863136  0.0000
Rainfall    0.000860 0.0498915  0.017245  0.9863
Year        0.245013 0.0284738  8.604858  0.0000

 Correlation: 
         (Intr) Ranfll
Rainfall  0.018       
Year     -0.072  0.020

Standardized residuals:
        Min          Q1         Med          Q3    
     Max 
-1.91985793 -0.58712230 -0.03223775  0.38320859  
2.77801077 

Residual standard error: 2.608391 
Degrees of freedom: 45 total; 42 residual

Compound Symmetry:

#CORRELATION STRUCTURES:
#COMPOUND SYMMETRY = NESTED lme():
LMcgls1=gls(Birds~Rainfall+Year,na.acƟon=na.omit,data=H,
    correlaƟon=corCompSymm(form =~Year))
summary(LMcgls1)
LMe1=lme(Birds~Rainfall+Year,na.acƟon=na.omit,data=H,

random=~1|Year)
summary(LMe1)
anova(LMgls,LMcgls1)
anova(LMgls,LMe1)

< compound symmetric correlation
    in specified by corCompSymm() in gls()

< compound symmetric correlation
   implicit in lme()

"Compound Symmetric" correlation structure is the term used to connote a single  for all off diagonal 
correlations in .  This correlation structure is also imposed by Linear Mixed Models using lme().



LMM 070 Autocorrelation Structures 5

Anova results are identical
and match Za p. 149.
              >
Only slight AIC support is 
seen for a model containing 
compound symmetry.

> anova(LMgls,LMcgls1)
        Model df      AIC      BIC    logLik   Test L.Ratio p-value
LMgls       1  4 228.4798 235.4305 -110.2399                       
LMcgls1     2  5 230.4798 239.1682 -110.2399 1 vs 2       0       1

> anova(LMgls,LMe1)
      Model df      AIC      BIC    logLik   Test L.Ratio p-value
LMgls     1  4 228.4798 235.4305 -110.2399                       
LMe1      2  5 230.4798 239.1682 -110.2399 1 vs 2       0       1

These two estimates of  obviously do not match, and I haven't yet been able to determine why.  My guess is 
the difference may in part be due to reporting, but may also relate to subtle differences in the methods 
employed by the two function that blow up when little of value can be estimated from the data.   Za only 
conclude that this correlation structure makes "no improvements in the model" (p. 149.)   

 2 = (0.9158673)2 
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0.877and intraclass correlation  = 

 d
2 = (2.442313)2

In gls(), j is estimated to be 0 and fixed estimates are the same as the Linear Fixed Model 
(LMgls) indicating little has been gained by adding Compound Symmetry correlations. 

In lme(), estimated variance components and  can be calculated from the Random Factor 
Standard Deviations:
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where all covariances have the 
same value d

2 variance of all 

observations = d
2  +2, and

Variance structure:

^ Similar results are obtained, although note
   that = 0 in the summary from gls().

> summary(LMe1)
Linear mixed-effects model fit by REML
 Data: H 
       AIC      BIC    logLik
  230.4798 239.1682 -110.2399

Random effects:
 Formula: ~1 | Year
        (Intercept)  Residual
StdDev:    2.442313 0.9158673

Fixed effects: Birds ~ Rainfall + Year 
               Value Std.Error DF   t-value p-value
(Intercept) 7.355073 0.3899178 42 18.863136  0.0000
Rainfall    0.000860 0.0498915 42  0.017245  0.9863
Year        0.245013 0.0284738 42  8.604858  0.0000
 Correlation: 
         (Intr) Ranfll
Rainfall  0.018       
Year     -0.072  0.020

Standardized Within-Group Residuals:
        Min          Q1         Med          Q3      
   Max 
-0.67410712 -0.20615240 -0.01131943  0.13455352  
0.97542470 

Number of Observations: 45
Number of Groups: 45 

> summary(LMcgls1)
Generalized least squares fit by REML
  Model: Birds ~ Rainfall + Year 
  Data: H 
       AIC      BIC    logLik
  230.4798 239.1682 -110.2399

Correlation Structure: Compound symmetry
 Formula: ~Year 
 Parameter estimate(s):
         Rho 
3.392348e-18 

Coefficients:
               Value Std.Error   t-value p-value
(Intercept) 7.355073 0.3899178 18.863136  0.0000
Rainfall    0.000860 0.0498915  0.017245  0.9863
Year        0.245013 0.0284738  8.604858  0.0000

 Correlation: 
         (Intr) Ranfll
Rainfall  0.018       
Year     -0.072  0.020

Standardized residuals:
        Min          Q1         Med          Q3         
Max 
-1.91985793 -0.58712230 -0.03223775  0.38320859  
2.77801077 

Residual standard error: 2.608391 
Degrees of freedom: 45 total; 42 residual
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AR-1 Autocorrelation:

AR-1 Autocorrelation weights the off main-diagonal correlations according to the integer difference 
between elements (i.e., the Lag) in the time series |i-j|, where i & j are indices marking different locations 
in the sequence. 

For a sequence of 4 elements (maximum difference of 3), the correlation matrix is the following:

Compared with Compound Symmetry, with AR-1 we now we 
have different correlations between elements depending on 
how big the Lag between observations happens to be.  
Because || is typically < 1, 3 < 3 <  etc., and correlation 
becomes vanishingly small with higher powers.  
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#AR‐1 CORRELATION:
LMcgls2<‐gls(Birds~Rainfall+Year,na.acƟon=na.omit,data=H,
    correlaƟon=corAR1(form =~ Year))
summary(LMcgls2)
anova(LMgls,LMcgls2)

> summary(LMcgls2)
Generalized least squares fit by REML
  Model: Birds ~ Rainfall + Year 
  Data: H 
       AIC      BIC    logLik
  200.4019 209.0903 -95.20097

Correlation Structure: ARMA(1,0)
 Formula: ~Year 
 Parameter estimate(s):
     Phi1 
0.6698197 

Coefficients:
                Value Std.Error   t-value p-value
(Intercept)  7.169698 0.7891140  9.085757  0.0000
Rainfall    -0.018731 0.0345885 -0.541550  0.5910
Year         0.236668 0.0524666  4.510844  0.0001

 Correlation: 
         (Intr) Ranfll
Rainfall  0.021       
Year      0.249 -0.015

Standardized residuals:
        Min          Q1         Med          Q3         Max 
-2.26298182 -0.60129562 -0.01286182  0.63966754  3.63725014

> anova(LMgls,LMcgls2)
        Model df      AIC      BIC     logLik   Test  L.Ratio p-value
LMgls       1  4 228.4798 235.4305 -110.23991                        
LMcgls2     2  5 200.4019 209.0903  -95.20097 1 vs 2 30.07787  <.0001 

Here we see major improvement to 
the model as judged by AIC/BIC and 
the formal Liklihood Ratio test.

Values for AIC & BIC are similar, 
but not identical, to that reported by 
Zuur et al. presumably due to 
estimations on mean-centered data 
here.

Values of estimates for the Fixed 
factors show subtle differences from 
Linear Fixed Model and from the 
results of lme(). 

Autocorrelations are reported by:

Lag 1  = 0.6698197

Lag 2 0.6698197)2

Lag 3 0.6698197)3
...

In general, Za repeat advice from several sources that suggests little value in spending much time finding a 
"best fit" correlation structure for real problems.  Many will suffice with only minor differences seen in 
AIC/BIC levels and in model estimates.  Therefore, it seems that AR-1 correlation is probably sufficient for 
most purposes here.  However, a popular alternative correlation structure is given below. 
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ARMA Correlation Structures:

Auto-Regressive Moving Average (ARMA) correlation structures are briefly described  in Za along with an 
example of their use.  ARMA is clearly more sophisticated than AR-1, involving both p "autoregressive" and 
q "moving average" parameters.  Each must be specified and, due to convergence problems in software, 
should probably not exceed 3 for either p or q.   Initial estimates between (-1,1) for all p & q also need to be 
supplied and these may need to be played with to find software convergence.  Keeping in mind that exact 
models of correlation often matter little, Za describe ARMA as a "black box" from which a reasonable 
correlation structure might be found that will suffice with little further justification.  Because alternate 
ARMA models do not internest, relative value of model fits should be judged by AIC or BIC. 

#ARMA CORRELATION:
LMform=formula(Birds~Rainfall+Year)
LMcgls3=gls(LMform,na.acƟon=na.omit,data=H,
    correlaƟon=corARMA(c(0.2),p=1,q=0))
LMcgls4=gls(LMform,na.acƟon=na.omit,data=H,
    correlaƟon=corARMA(c(0.3,‐0.3),p=2,q=0))
LMcgls5=gls(LMform,na.acƟon=na.omit,data=H,
    correlaƟon=corARMA(c(0.3,‐0.3,0.2),p=2,q=1))
LMcgls6=gls(LMform,na.acƟon=na.omit,data=H,
    correlaƟon=corARMA(c(0.3,‐0.3,0.3,‐0.3),p=2,q=2))

AIC(LMcgls3,LMcgls4,LMcgls5,LMcgls6)
summary(LMcgls4)
anova(LMgls,LMcgls4)

> AIC(LMcgls3,LMcgls4,LMcgls5,LMcgls6)
        df      AIC
LMcgls3  5 197.7546
LMcgls4  6 194.5268
LMcgls5  7 196.5096
LMcgls6  8 198.0618

< slight preference is seen for 
    model LMcgls4 based on AIC

> summary(LMcgls4)
Generalized least squares fit by REML
  Model: LMform 
  Data: H 
       AIC      BIC   logLik
  194.5268 204.9528 -91.2634

Correlation Structure: ARMA(2,0)
 Formula: ~1 
 Parameter estimate(s):
      Phi1       Phi2 
 0.9923617 -0.3567427 

Coefficients:
                Value Std.Error   t-value p-value
(Intercept)  7.319921 0.6893037 10.619297  0.0000
Rainfall    -0.017918 0.0268054 -0.668465  0.5075
Year         0.240154 0.0484653  4.955172  0.0000

 Correlation: 
         (Intr) Ranfll
Rainfall  0.012       
Year     -0.066  0.013

Standardized residuals:
        Min          Q1         Med          Q3         Max 
-1.86109211 -0.52771157 -0.05902324  0.45273990  2.83144005 

Residual standard error: 2.68344 
Degrees of freedom: 45 total; 42 residual

> anova(LMgls,LMcgls4)
        Model df      AIC      BIC    logLik   Test  L.Ratio p-value
LMgls       1  4 228.4798 235.4305 -110.2399                        
LMcgls4     2  6 194.5268 204.9528  -91.2634 1 vs 2 37.95303  <.0001

Slight differences in values of the 
estimates are noted between the 
preferred ARMA model here and AR-1

- or for that matter, results from lme(). 

Strong preference is shown for the 
preferred ARMA autocorrelation 
model over the Linear Fixed Model  >  
without autocorrelation.            


