Autocorrelation Structures

ORIGIN := 0

Adding Autocorrelation Structures to Linear and Linear Mixed Models

Linear Models require the fundamental assumption of independence between each instance of the response variable, or equivalently, of all residuals. As part of the construction of a model, therefore, validation plots should be constructed to look for patterns in residuals versus each independent covariate or factor as well as with the model's fitted values. If patterns occur, then remedial measures are necessary to ensure proper P-values of associated the tests. The concept of independence typically enters into formal descriptions of Linear Fixed Models as: $\varepsilon_i \sim N(0,\sigma^2) =$ "residuals (ε) are Normally distributed with mean 0 and variance σ^2 for each observation i. In terms of matrix algebra the above may be expanded into: $\varepsilon_i \sim N(0,\Sigma)$ where Σ is the i by i square covariance matrix, with $\Sigma = \sigma^2 I$, and I being the identity matrix. Equal variances (σ^2) occur along the main diagonal with pairwise covariances, equal to zero, everywhere else.

For instance, for i = 3
observations, covariance matrix
$$\Sigma = \begin{pmatrix} \sigma^2 & 0 & 0 \\ 0 & \sigma^2 & 0 \\ 0 & 0 & \sigma^2 \end{pmatrix} = \sigma^2 \mathbf{I}$$
, where $\mathbf{I} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
Dividing all entries of the matrix by σ^2 , yields the corresponding correlation matrix $\mathbf{P} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

As one can see from the above definitions, this fundamental assumption of Linear Models is a stringent requirement not often met by real data. Mixed Linear Models therefore seek to relax this requirement by allowing observations from Groups to be correlated. In matrix terms, now using i = 3 observations *per group j*, this translates into:

$$\Sigma_{j} = \begin{pmatrix} \sigma_{d}^{2} + \sigma^{2} & \sigma_{d}^{2} & \sigma_{d}^{2} \\ \sigma_{d}^{2} + \sigma^{2} & \sigma_{d}^{2} & \sigma_{d}^{2} \\ \sigma_{d}^{2} & \sigma_{d}^{2} + \sigma^{2} & \sigma_{d}^{2} \\ \sigma_{d}^{2} & \sigma_{d}^{2} & \sigma_{d}^{2} + \sigma^{2} \end{pmatrix}$$
where all covariances have the same value σ_{d}^{2} variance of all observations $= \sigma_{d}^{2} + \sigma^{2}$, and $P_{j} = \begin{pmatrix} 1 & \rho & \rho \\ \rho & 1 & \rho \\ \rho & \rho & 1 \end{pmatrix}$

The term: $\rho_j = \frac{\sigma_d^2}{\sigma_d^2 + \sigma^2}$

is called the *Intraclass correlation coefficient* and refers to the correlation between observations with each group. In addition, variance within each group can be seen to be comprised to two components: σ_d^2 and σ^2 . In Mixed Linear Models, σ_d^2 refers to "between" variance attributed to the random differences between the groups, whereas σ^2 refers to (pooled) variance within groups".

This partial relaxation of the requirement of independence within Mixed Linear Model is called the *Compound Symmetric* Correlation Structure, and is but one of several such structures in current use. Correlation structures are often employed to correct for patterns of non-independence observed in validation plots from models of messy real data.

Shown in this Worksheet are several other Correlation Structures implemented by gls(), lme() and other functions of the {nlme} package in R. Background mathematics can be found in Chapter 5 of Pinheiro & Bates 2004 (PB), *Mixed-Effects Models in S and S-Plus*. Simplified presentation with the following example comes from Ch. 6 of Zuur et al. 2009 (Za), *Mixed Effects Models and Extensions in Ecology with R*. In the latter, emphasis is placed on "Temporal Autocorrelation". The idea here is that successive observations in a time series (or analogous series repeated measures in a spatial context) mostly occur at regularly spaced intervals exhibiting "stationarity" (p. 145). "Stationarity" implies that correlations are modeled only in terms of relative positions t, t+1, t+2 etc, in a time series, but are unrelated to overall position in the series. From this, multiple ways have been developed to convert ρ in P above into different ρ 's depending on position within P.

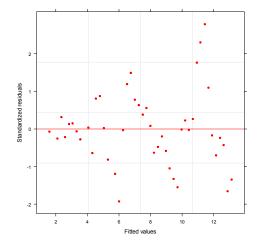
library(nlme) setwd("c:/DATA/Models") H=read.table("Hawaii.txt",header=T) H\$Birds=sqrt(H\$Moorhen.Kauai) H > H

	-	•							
							Moorhen.Kauai		Birds
	1	1956	163	169	528	177	2	15.16	1.414214
	2	1957	272	190	338	273	NA	15.48	NA
	3	1958	549	159	449	256	2	16.26	1.414214
	4	1959	533	211	822	170	10	21.25	3.162278
	5	1960	NA	232	NA	188	4	10.94	2.000000
Following Za, the square root	6	1961	134	155	717	149	10	19.93	3.162278
	7	1962	175	282	12	205	12	12.63	3.464102
of Moorhen.Kauai counts are	8	1963	356	170	169	108	10	20.09	3.162278
placed in "Birds" and used	9	1964	485	164	98	79	8	10.02	2.828427
as the response variable.	10	1965	184	162	112	53	NA	30.91	NA
-	11	1966	242	253	77	75	17	12.49	4.123106
"Rainfall" and "Year" (both		1967	209	188	106	80	7	32.70	2.645751
covariates) are the	13	1968	175	226	64	104	44	18.40	6.633250
· · · · · · · · · · · · · · · · · · ·	14	1969	162	171	15	122	50	25.21	7.071068
independent variables.	15	1970	322	207	130	78	26	18.61	5.099020
	16	1971	362	189	84	76	10	20.13	3.162278
	17	1972	342	274	132	161	NA	15.71	NA
	18	1973	509	352	122	114	7	10.27	2.645751
	19	1974	107	245	41	63	1	18.68	1.000000
	20	1975	110	340	83	151	38	13.74	6.164414
	21	1976	249	335	148	177	92	12.83	9.591663
	22	1977	738	302	148	154	113	11.50	10.630146
		•							
	33	1988	478	296	250	57	36	26.79	6.000000
	34	1989	740	215	542	92	32	40.63	5.656854
	35	1990	515	172	415	41	98	35.20	9.899495
	36	1991	371	197	261	61	116	16.09	10.770330
	37	1992	562	366	450	175	107	16.98	10.344080
	38	1993	393	284	339	90	129	12.69	11.357817
	39	1994	NA	212	NA	68	240	13.93	15.491933
	40	1995	598	191	303	57	294	13.45	17.146428
	41	1996	530	297	214	87	348	31.00	18.654758
	42	1997	558	262	317	113	210	23.08	14.491377
	43	1998	502	424	899	396	131	6.76	11.445523
	44	1999	442	364	1004	384	106	9.66	10.295630
	45	2000	499	526	634	422	138	9.72	11.747340
	46	2001	620	337	668	538	132	10.53	11.489125
	47	2002	692	297	589	234	73	15.07	8.544004
	48	2003	240	258	885	85	92	13.83	9.591663

Constructing and Validating a Linear Fixed Model:

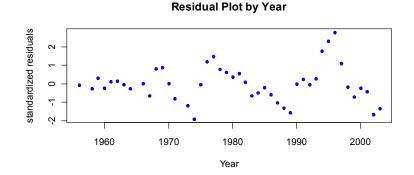
#LINEAR FIXED MODEL

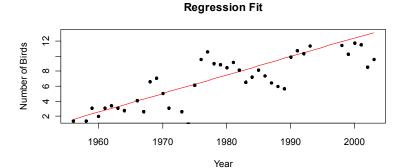
LMgls=gls(Birds~Rainfall+Year,na.action=na.omit,data=H) #VALIDATION PLOT plot(LMgls,col='red',pch=20)



The plots show clear non-randomness and successive correlation by Year & fit indicative of autocorrelation.

A regular pattern of the residuals around the regression fit (shown in red) suggest that additional unaccounted for independent variable(s) may be involved. At the very least, observations in successive years appear to be correlated.





ACF Plot:

Auto Correlation Function (ACF) plots provide another graphical tool for judging autocorrelation. The "Lag" indicates number of constant intervals (i.e., offset) in the time series over which correlation is calculated. Because of the assumption of "stationarity", all Lags (gaps) between measurements are considered equivalent regardless of where the gaps occur in the time series.

```
#AUTOCORRELATION (ACF) PLOT:
E=residuals(LMgls,type="normalized")
I=!is.na(H$Birds)
Ea=vector(length=length(H$Birds))
Ea=NA
Ea[I]=E
acf(Ea,na.action=na.pass,
main="ACF Plot for normalized residuals")
```

Strong positive correlation is observed over Lags 1-3, with negative correlation over Lags 4-12, followed by positive correlation in larger Lags. Perhaps there's evidence for longer-term peridicity in addition to short-term association here, but this will not be considered in what follows.

ACF Plot for normalized residuals

Adding Correlation Structures in gls():

Zuur et al.'s results match the anova() and AIC/BIC findings here. However, Za do not show paremeter estimates from summary(). Displaying the summary results shows a high negative (-1) correlation between Intercept and Rainfall and engenders similar strange results in the models that follow. Therefore, the initial Linear Fixed model will be refit using mean-centered independent variables. As a result, values of the Intercept estimate changes (with minor differences in slopes), but results of the marginal t-tests remain the same.

#OBSERVED CORRELATION IN LINEAR FIXED MODEL: summary(LMgls) #MEAN-CENTERING INDEPENDENT VARIABLES: H\$Year=H\$Year-mean(H\$Year) H\$Rainfall=H\$Rainfall-mean(H\$Rainfall) #REFITTING LINEAR FIXED MODEL: LMgls=gls(Birds~Rainfall+Year,na.action=na.omit,data=H) summary(LMgls)

before mean centering data:

> summary(LMgls)

Generalized least squares fit by REML Model: Birds ~ Rainfall + Year Data: H AIC BIC logLik 228.4798 235.4305 -110.2399

Coefficients:

Residual standard error: 2,608391

Degrees of freedom: 45 total; 42 residual

Value Std.Error t-value p-value (Intercept) -477.6634 56.41907 -8.466346 0.0000 Rainfall 0.0009 0.04989 0.017245 0.9863 Year 0.2450 0.02847 8.604858 0.0000 Correlation: (Intr) Ranfll Rainfall -0.036 Year -1.000 0.020 Standardized residuals: Min Q1 Med Q3 Max -1.91985793 -0.58712230 -0.03223775 0.38320859 2.77801077

after mean-centering data:

> summary(LMgls)

Generalized least squares fit by REML Model: Birds ~ Rainfall + Year Data: H AIC BIC logLik 228.4798 235.4305 -110.2399 Coefficients: Value Std.Error t-value p-value (Intercept) 7.355073 0.3899178 18.863136 0.0000 Rainfall 0.000860 0.0498915 0.017245 0.9863 0.245013 0.0284738 8.604858 0.0000 Year Correlation: (Intr) Ranfll Rainfall 0.018 Year -0.072 0.020 Standardized residuals: Min Q1 Med 03 Max -1.91985793 -0.58712230 -0.03223775 0.38320859 2.77801077 Residual standard error: 2,608391

Residual standard error: 2.608391 Degrees of freedom: 45 total; 42 residual

Compound Symmetry:

"Compound Symmetric" correlation structure is the term used to connote a single ρ for all off diagonal correlations in P. This correlation structure is also imposed by Linear Mixed Models using lme().

> summary(LMcgls1) Generalized least squares fit by REML Model: Birds ~ Rainfall + Year Data: H AIC BIC logLik 230.4798 239.1682 -110.2399 Correlation Structure: Compound symmetry Formula: ~Year Parameter estimate(s): Rho 3.392348e-18 Coefficients: Value Std.Error t-value p-value (Intercept) 7.355073 0.3899178 18.863136 0.0000 Rainfall 0.000860 0.0498915 0.017245 0.9863 **0.245013** 0.0284738 8.604858 0.0000 Year Correlation: (Intr) Ranfll Rainfall 0.018 Year -0.072 0.020 Standardized residuals: Min Q1 Med 03 Max -1.91985793 -0.58712230 -0.03223775 0.38320859 2.77801077 Residual standard error: 2.608391 Degrees of freedom: 45 total; 42 residual

> summary(LMe1)

```
Linear mixed-effects model fit by REML
Data: H
           BIC logLik
     AIC
 230.4798 239.1682 -110.2399
Random effects:
Formula: ~1 | Year
    (Intercept) Residual
StdDev: 2.442313 0.9158673
Fixed effects: Birds ~ Rainfall + Year
            Value Std.Error DF t-value p-value
(Intercept) 7.355073 0.3899178 42 18.863136 0.0000
Rainfall 0.000860 0.0498915 42 0.017245 0.9863
Year
          0.245013 0.0284738 42 8.604858 0.0000
Correlation:
       (Intr) Ranfll
Rainfall 0.018
Year -0.072 0.020
Standardized Within-Group Residuals:
      Min Q1 Med
                                         03
  Max
-0.67410712 -0.20615240 -0.01131943 0.13455352
0.97542470
Number of Observations: 45
Number of Groups: 45
```

^ Similar results are obtained, although note that $\rho = 0$ in the summary from gls().

Variance structure:

 $\Sigma_{j} = \begin{pmatrix} \sigma_{d}^{2} + \sigma^{2} & \sigma_{d}^{2} & \sigma_{d}^{2} \\ \sigma_{d}^{2} & \sigma_{d}^{2} + \sigma^{2} & \sigma_{d}^{2} \\ \sigma_{d}^{2} & \sigma_{d}^{2} + \sigma^{2} & \sigma_{d}^{2} \\ \sigma_{d}^{2} & \sigma_{d}^{2} & \sigma_{d}^{2} + \sigma^{2} \end{pmatrix}$ where all covariances have the same value σ_{d}^{2} variance of all observations = $\sigma_{d}^{2} + \sigma^{2}$, and $P_{j} = \begin{pmatrix} 1 & \rho & \rho \\ \rho & 1 & \rho \\ \rho & \rho & 1 \end{pmatrix}$

In gls(), ρ_j is estimated to be 0 and fixed estimates are the same as the Linear Fixed Model (LMgls) indicating little has been gained by adding Compound Symmetry correlations.

In lme(), estimated variance components and ρ can be calculated from the Random Factor Standard Deviations:

$$\sigma_d^2 = (2.442313)^2$$

and intraclass correlation $\rho = \frac{2.442313^2}{(2.442313^2 + 0.9158673^2)} = 0.877$
 $\sigma^2 = (0.9158673)^2$

These two estimates of ρ obviously do not match, and I haven't yet been able to determine why. My guess is the difference may in part be due to reporting, but may also relate to subtle differences in the methods employed by the two function that blow up when little of value can be estimated from the data. Za only conclude that this correlation structure makes "no improvements in the model" (p. 149.)

	> anov	a(LM	gls,	LN	/lcgls1)								
Anova results are identical		Mode	el d	lf	A	IC	BIC	: logLi	k	Tes	st L.Rat	io p-va	alue
and match Za p. 149.	LMgls		1	4	228.479	98 235	.4305	-110.239	9				
> >	LMcgls1	-	2	5	230.479	98 239	.1682	-110.239	91	VS	2	0	1
Only slight AIC support is	> anov	a(LM	gls,	LIV	/le1)								
seen for a model containing	Μ	íodel	df		AIC	1	BIC	logLik	Т	est	L.Ratio	p-valu	ıe
compound symmetry.	LMgls	1	4	22	8.4798	235.4	305 -	110.2399					
compound symmetry.	LMe1	2	5	23	0.4798	239.1	682 -	110.2399	1 v	s 2	0		1

AR-1 Autocorrelation:

AR-1 Autocorrelation weights the off main-diagonal correlations according to the integer difference between elements (i.e., the Lag) in the time series $\rho^{[i-j]}$, where i & j are indices marking different locations in the sequence.

For a sequence of 4 elements (maximum difference of 3), the correlation matrix is the following:

	1	ρ	ρ^2	ρ^{3}	
P . =	ρ	1	ρ	ρ ²	
$P_j =$	ρ^2	ρ	1	ρ	
	$\int \rho^3$	ρ^2	ρ	1)	

Compared with Compound Symmetry, with AR-1 we now we have different correlations between elements depending on how big the Lag between observations happens to be. Because $|\rho|$ is typically < 1, $\rho^3 < \rho^3 < \rho$ etc., and correlation becomes vanishingly small with higher powers.

```
#AR-1 CORRELATION:
LMcgls2<-gls(Birds~Rainfall+Year,na.action=na.omit,data=H,
correlation=corAR1(form =~ Year))
summary(LMcgls2)
anova(LMgls,LMcgls2)
```

Here we see major improvement to the model as judged by AIC/BIC and the formal Liklihood Ratio test.

Values for AIC & BIC are similar, but not identical, to that reported by Zuur et al. presumably due to estimations on mean-centered data here.

Values of estimates for the Fixed factors show subtle differences from Linear Fixed Model and from the results of lme().

Autocorrelations are reported by:

```
Lag 1 \phi = 0.6698197
Lag 2 \phi^2 = (0.6698197)^2
Lag 3 \phi^3 = (0.6698197)^3
```

```
> summary (LMcgls2)
Generalized least squares fit by REML
  Model: Birds ~ Rainfall + Year
  Data: H
       ATC
                 BIC
                       loqLik
  200.4019 209.0903 -95.20097
Correlation Structure: ARMA(1,0)
Formula: ~Year
 Parameter estimate(s):
     Phi1
0.6698197
Coefficients:
                 Value Std.Error t-value p-value
(Intercept) 7.169698 0.7891140 9.085757 0.0000

        Rainfall
        -0.018731
        0.0345885
        -0.541550
        0.5910

        Year
        0.236668
        0.0524666
        4.510844
        0.0001

Correlation:
         (Intr) Ranfll
Rainfall 0.021
         0.249 -0.015
Year
Standardized residuals:
        Min
                      01
                                   Med
                                                  03
                                                               Max
-2.26298182 -0.60129562 -0.01286182 0.63966754 3.63725014
> anova(LMgls,LMcgls2)
       Model df
                      AIC
                                 BIC
                                           logLik Test L.Ratio p-value
       1 4 228.4798 235.4305 -110.23991
LMgls
LMcgls2 2 5 200.4019 209.0903 -95.20097 1 vs 2 30.07787 <.0001
```

In general, Za repeat advice from several sources that suggests little value in spending much time finding a "best fit" correlation structure for real problems. Many will suffice with only minor differences seen in AIC/BIC levels and in model estimates. Therefore, it seems that AR-1 correlation is probably sufficient for most purposes here. However, a popular alternative correlation structure is given below.

ARMA Correlation Structures:

Auto-Regressive Moving Average (ARMA) correlation structures are briefly described in Za along with an example of their use. ARMA is clearly more sophisticated than AR-1, involving both p "autoregressive" and q "moving average" parameters. Each must be specified and, due to convergence problems in software, should probably not exceed 3 for either p or q. Initial estimates between (-1,1) for all p & q also need to be supplied and these may need to be played with to find software convergence. Keeping in mind that exact models of correlation often matter little, Za describe ARMA as a "black box" from which a reasonable correlation structure might be found that will suffice with little further justification. Because alternate ARMA models do not internest, relative value of model fits should be judged by AIC or BIC.

#ARMA CORRELATION:

```
LMform=formula(Birds~Rainfall+Year)
LMcgls3=gls(LMform,na.action=na.omit,data=H,
correlation=corARMA(c(0.2),p=1,q=0))
LMcgls4=gls(LMform,na.action=na.omit,data=H,
correlation=corARMA(c(0.3,-0.3),p=2,q=0))
LMcgls5=gls(LMform,na.action=na.omit,data=H,
correlation=corARMA(c(0.3,-0.3,0.2),p=2,q=1))
LMcgls6=gls(LMform,na.action=na.omit,data=H,
correlation=corARMA(c(0.3,-0.3,0.3,-0.3),p=2,q=2))
```

AIC(LMcgls3,LMcgls4,LMcgls5,LMcgls6) summary(LMcgls4) anova(LMgls,LMcgls4)

> AIC(LMcgls3,LMcgls4,LMcgls5,LMcgls6)

f AIC	AIC	df	
5 197.7546	197.7546	5	LMcgls3
6 194.5268 < slight preference is seen for	194.5268	6	LMcgls4
7 196.5096 model LMcgls4 based on AI	196.5096	7	LMcgls5
8 198.0618	198.0618	8	LMcgls6

> summary(LMcgls4)

0.9923617 -0.3567427

Coefficients:

```
Generalized least squares fit by REML
Model: LMform
Data: H
AIC BIC logLik
194.5268 204.9528 -91.2634
Correlation Structure: ARMA(2,0)
Formula: ~1
Parameter estimate(s):
Phil Phi2
```

Slight differences in values of the estimates are noted between the preferred ARMA model here and AR-1

- or for that matter, results from lme().

```
Value Std.Error t-value p-value

(Intercept) 7.319921 0.6893037 10.619297 0.0000

Rainfall -0.017918 0.0268054 -0.668465 0.5075

Year 0.240154 0.0484653 4.955172 0.0000

Correlation:

(Intr) Ranfll

Rainfall 0.012

Year -0.066 0.013

Standardized residuals:

<u>Min</u> <u>Q1</u> <u>Med</u> <u>Q3</u> <u>Max</u>

-1.86109211 -0.52771157 -0.05902324 0.45273990 2.83144005
```

Residual standard error: 2.68344 Degrees of freedom: 45 total; 42 residual

Strong preference is shown for the preferred ARMA autocorrelation model over the Linear Fixed Model > without autocorrelation.

> anova(LMgls,LMcgls4)

	Model	df	AIC	BIC	logLik	Test	L.Ratio	p-value
LMgls	1	4	228.4798	235.4305	-110.2399			
LMcgls4	2	6	194.5268	204.9528	-91.2634	1 vs 2	37.95303	<.0001